Citizen science and digital data for trend analysis and impact assessment of Prodiplosis as an emerging pest in foliage crops
Ciencia ciudadana y datos digitales para el análisis de tendencias y la evaluación del impacto de Prodiplosis como plaga emergente en cultivos de follaje
DOI:
https://doi.org/10.15446/agron.colomb.v43n1.118919Keywords:
bibliometrics, digital platforms, Google trends, social networks, spatial analysis (en)bibliometría, plataformas digitales, Google trends, redes sociales, análisis espacial (es)
Downloads
Prodiplosis longifila is a pest of significant economic relevance, severely impacting crops like tomatoes and asparagus. Its effect on crops of ornamental foliage remains poorly documented, despite its growing importance in the agricultural sector. This study addresses our knowledge gap by implementing and validating digital tools of epidemiology (DE) and citizen science (CS) to enable a dynamic and participatory approach to pest monitoring. A trend analysis of scientific publications was conducted using web searches and social media interactions to identify topics concerning Prodiplosis over time, our knowledge gaps, and emerging areas of public interest. We assessed the impact of Prodiplosis on foliage crops, focusing on indirect effects and farmer-led management strategies shared through digital communication. Results show that digital tools such as trend monitoring on social media, web data analysis, WhatsApp group discussions, and farmer-managed digital platforms were effective for identifying the pest’s distribution, significance, and control practices. DE and CS approaches revealed critical knowledge gaps concerning the biology, ecology, and management of Prodiplosis, particularly in ornamental crops. Field data confirmed the pest’s negative impact on foliage yield and quality, with a strong dependence on chemical control methods, often applied without technical guidance. This study introduces an innovative methodology for assessing pest impacts through digital data analysis, offering practical insights for agricultural and policy decision-making. Moreover, the study highlights the potential of natural language processing as a powerful tool for synthesizing and detecting patterns in textual data and enhances the efficiency of pest surveillance and management systems.
Prodiplosis longifila es una plaga de alta relevancia económica, que afecta gravemente cultivos como tomate y espárrago. Sin embargo, su impacto sobre cultivos de follaje ha sido poco estudiado, a pesar de su creciente importancia. Este estudio aborda dicha brecha mediante la implementación y validación de herramientas de epidemiología digital (ED) y ciencia ciudadana (CC), que permiten un enfoque participativo y dinámico para el monitoreo de esta plaga. Se realizó un análisis de tendencias basado en publicaciones científicas, búsquedas en internet e interacciones en redes sociales, con el objetivo de identificar los temas tratados, los vacíos de conocimiento y las áreas emergentes de interés. Adicionalmente, se evaluó el impacto de Prodiplosis en cultivos de follaje, describiendo sus efectos indirectos y las estrategias de manejo adoptadas por los agricultores a través de canales digitales. Los resultados muestran que herramientas digitales como el análisis de tendencias en redes sociales, la exploración de datos web, los grupos de WhatsApp y las plataformas digitales gestionadas por productores son eficaces para identificar la distribución, importancia y estrategias de control de Prodiplosis. Las metodologías de ED y CC también revelaron vacíos críticos en el conocimiento sobre la biología, ecología y manejo de esta plaga en cultivos ornamentales. El análisis de campo confirmó su impacto negativo en el rendimiento y la calidad del follaje, con una alta dependencia del control químico, usualmente sin asesoría técnica. Este estudio propone una metodología innovadora basada en datos digitales, destacando el potencial del procesamiento de lenguaje natural para fortalecer la vigilancia y gestión fitosanitaria.
References
Adebayo, I. A., Pam, V. K., Arsad, H., & Samian, M. R. (2020). The global floriculture industry: Status and future prospects. In K. R. Hakeem (Ed.), The global floriculture industry (pp. 1–14). Apple Academic Press. https://api.pageplace.de/preview/DT0400.9781000751383_A40408500/preview-9781000751383_A40408500.pdf DOI: https://doi.org/10.1201/9781003000723-1
Agnese, F., Othman, Z., Mitin, A., & Wan Yahaya, W. A. J. (2024). Participatory monitoring in farmer field school program through Whatsapp among indigenous farmers in rural Sarawak, Malaysia. Interactive Learning Environments, 32(9), 5699–5710. https://doi.org/10.1080/10494820.2023.2223241 DOI: https://doi.org/10.1080/10494820.2023.2223241
Cáceres-Zambrano, J., Ramírez-Gil, J. G., & Barrios, D. (2023). Factors associated with the adoption of technologies for avocado production systems. Agronomía Colombiana, 41(3), Article 110579. https://doi.org/10.15446/agron.colomb.v41n3.110579 DOI: https://doi.org/10.15446/agron.colomb.v41n3.110579
Carney, R. M., Mapes, C., Low, R. D., Long, A., Bowser, A., Durieux, D., Rivera, K., Dekramanjian, B., Bartumeus, F., Guerrero, D., Seltzer, C. E., Azam, F., Chellappan, S., & Palmer, J. R. B. (2022). Integrating global citizen science platforms to enable next-generation surveillance of invasive and vector mosquitoes. Insects, 13(8), Article 675. https://doi.org/10.3390/insects13080675 DOI: https://doi.org/10.3390/insects13080675
Castillo Valiente, J. R., Rodríguez Quispe, S. P., Apaza Tapia, W. E. Julca-Otiniano, A. M., Canto Saenz, M. A. , & Rosales Sanchez, T. (2020). Prodiplosis longifila Gagné (Diptera: Cecidomyiidae) in asparagus (Asparagus officinalis) crop in Chavimochic Irrigation Project. Peruvian Journal of Agronomy, 4(3), 75–81. https://doi.org/10.21704/pja.v4i3.1645 DOI: https://doi.org/10.21704/pja.v4i3.1645
Cedano, C., & Cubas, P. (2012). Baeuveria bassiana (Bals.) Vuill. y Metarhizium anisopliae (Metsch.) Sorokin para el control de pupas de Prodiplosis longifila Gagné en el cultivo de espárrago. Scientia Agropecuaria, 3(1), 29–34. https://doi.org/10.17268/sci.agropecu.2012.01.04 DOI: https://doi.org/10.17268/sci.agropecu.2012.01.04
Cervellin, G., Comelli, I., & Lippi, G. (2017). Is Google Trends a reliable tool for digital epidemiology? Insights from different clinical settings. Journal of Epidemiology and Global Health, 7(3), 185–189. https://doi.org/10.1016/j.jegh.2017.06.001 DOI: https://doi.org/10.1016/j.jegh.2017.06.001
Charles-Smith, L. E., Reynolds, T. L., Cameron, M. A., Conway, M., Lau, E. H. Y., Olsen, J. M., Pavlin, J. A., Shigematsu, M., Streichert, L. C., Suda, K. J., & Corley, C. D. (2015). Using social media for actionable disease surveillance and outbreak management: A systematic literature review. PLoS ONE, 10(10), Article e0139701. https://doi.org/10.1371/journal.pone.0139701 DOI: https://doi.org/10.1371/journal.pone.0139701
Choudhury, R. A., Mahaffee, W. F., McRoberts, N., & Gubler, W. D. (2018). Modeling uncertainty in grapevine powdery mildew epidemiology using fuzzy logic. bioRxiv, Article 264622. https://doi.org/10.1101/264622 DOI: https://doi.org/10.1101/264622
de Sherbinin, A., Bowser, A., Chuang, T.-R., Cooper, C., Danielsen, F., Edmunds, R., Elias, P., Faustman, E., Hultquist, C., Mondardini, R., Popescu, I., Shonowo, A., & Sivakumar, K. (2021). The critical importance of citizen science data. Frontiers in Climate, 3, Article 650760. https://doi.org/10.3389/fclim.2021.650760 DOI: https://doi.org/10.3389/fclim.2021.650760
Ekman, A., & Litton, J.-E. (2007). New times, new needs; e-epidemiology. European Journal of Epidemiology, 22(5), 285–292. https://doi.org/10.1007/s10654-007-9119-0 DOI: https://doi.org/10.1007/s10654-007-9119-0
EPPO. (2017). Pest risk analysis for Prodiplosis longifila. EPPO. http://www.eppo.int/QUARANTINE/Pest_Risk_Analysis/PRA_intro.htm
EPPO. (2025). Prodiplosis longifila (PRDILO) [Categorization]. EPPO Global Database. https://gd.eppo.int/taxon/PRDILO/categorization
Faust, J. E., & Dole, J. M. (2021). The global cut flower and foliage marketplace. https://doi.org/10.1079/9781789247602.0001 DOI: https://doi.org/10.1079/9781789247602.0000
Fraisl, D., Hager, G., Bedessem, B., Gold, M., Hsing, P.-Y., Danielsen, F., Hitchcock, C. B., Hulbert, J. M., Piera, J., Spiers, H., Thiel, M., & Haklay, M. (2022). Citizen science in environmental and ecological sciences. Nature Reviews Methods Primers, 2(1), 1–20. https://doi.org/10.1038/s43586-022-00144-4 DOI: https://doi.org/10.1038/s43586-022-00144-4
Fulk, A., Romero-Alvarez, D., Abu-Saymeh, Q., Onge, J. M. S., Peterson, A. T., & Agusto, F. B. (2022). Using Google Health Trends to investigate COVID-19 incidence in Africa. PLOS ONE, 17(6), Article e0269573. https://doi.org/10.1371/journal.pone.0269573 DOI: https://doi.org/10.1371/journal.pone.0269573
Gagné, R. J. (1986). Revision of Prodiplosis (Diptera: Cecidomyiidae) with descriptions of three new species. Annals of the Entomological Society of America, 79(1), 235–245. https://doi.org/10.1093/aesa/79.1.235 DOI: https://doi.org/10.1093/aesa/79.1.235
Geraud-Pouey, F., Garces, A., Contreras, N., & Geraud-Chirinos, J. E. (2022). Prodiplosis longifila (Diptera: Cecidomyiidae), evolución como plaga y un método para evaluar sus poblaciones en tomate. Revista Colombiana de Entomología, 48(1), Article e7807. https://doi.org/10.25100/socolen.v48i1.7807 DOI: https://doi.org/10.25100/socolen.v48i1.7807
Ginsberg, J., Mohebbi, M. H., Patel, R. S., Brammer, L., Smolinski, M. S., & Brilliant, L. (2009). Detecting influenza epidemics using search engine query data. Nature, 457(7232), 1012–1014. https://doi.org/10.1038/nature07634 DOI: https://doi.org/10.1038/nature07634
Goldsmith, J., Castillo, J., & Clarke-Harris, D. (2013). Gall midges (Cecidomyiidae) attacking horticultural crops in the Caribbean region and South America. In J. E. Peña (Ed.), Potential invasive pests of agricultural crops (pp. 240–250). CABI. https://doi.org/10.1079/9781845938291.0240 DOI: https://doi.org/10.1079/9781845938291.0240
Hernandez, L. M., Guzman, Y. C., Martínez-Arias, A., Manzano, M. R., & Selvaraj, J. J. (2015). The bud midge Prodiplosis longifila: Damage characteristics, potential distribution and presence on a new crop host in Colombia. Springer Plus, 4(1), Article 205. https://doi.org/10.1186/s40064-015-0987-6 DOI: https://doi.org/10.1186/s40064-015-0987-6
Jebb, A. T., Ng, V., & Tay, L. (2021). A review of key Likert scale development advances: 1995–2019. Frontiers in Psychology, 12, Article 637547. https://doi.org/10.3389/fpsyg.2021.637547 DOI: https://doi.org/10.3389/fpsyg.2021.637547
Johnston, A., Matechou, E., & Dennis, E. B. (2023). Outstanding challenges and future directions for biodiversity monitoring using citizen science data. Methods in Ecology and Evolution, 14(1), 103–116. https://doi.org/10.1111/2041-210X.13834 DOI: https://doi.org/10.1111/2041-210X.13834
Joshi, A., Kale, S., Chandel, S., & Pal, D. K. (2015). Likert scale: Explored and explained. Current Journal of Applied Science and Technology, 396–403. https://doi.org/10.9734/BJAST/2015/14975 DOI: https://doi.org/10.9734/BJAST/2015/14975
Katapally, T. R., Hammami, N., & Chu, L. M. (2021). A randomized community trial to advance digital epidemiological and mHealth citizen scientist compliance: A smart platform study. PLoS ONE, 16(11), Article e0259486. https://doi.org/10.1371/journal.pone.0259486 DOI: https://doi.org/10.1371/journal.pone.0259486
Khurana, D., Koli, A., Khatter, K., & Singh, S. (2023). Natural language processing: State of the art, current trends and challenges. Multimedia Tools and Applications, 82(3), 3713–3744. https://doi.org/10.1007/s11042-022-13428-4 DOI: https://doi.org/10.1007/s11042-022-13428-4
Kroschel, J., Mujica, N., Alcazar, J., Canedo, V., & Zegarra, O. (2012). Developing integrated pest management for potato: Experiences and lessons from two distinct potato production systems of Peru. In Z. He, R. Larkin, & W. Honeycutt (Eds.), Sustainable potato production: Global case studies (pp. 419–450). Springer. https://doi.org/10.1007/978-94-007-4104-1_25 DOI: https://doi.org/10.1007/978-94-007-4104-1_25
Kullenberg, C., & Kasperowski, D. (2016). What is citizen science? – A scientometric meta-analysis. PLoS ONE, 11(1), Article e0147152. https://doi.org/10.1371/journal.pone.0147152 DOI: https://doi.org/10.1371/journal.pone.0147152
Lippi, G., & Cervellin, G. (2019). Is digital epidemiology reliable?— Insight from updated cancer statistics. Annals of Translational Medicine, 7(1), Article 15. https://doi.org/10.21037/atm.2018.11.55 DOI: https://doi.org/10.21037/atm.2018.11.55
Maulud, D. H., Zeebaree, S. R. M., Jacksi, K., Sadeeq, M. A. M., & Sharif, K. H. (2021). State of art for semantic analysis of natural language processing. Qubahan Academic Journal, 1(2), 21−28. https://doi.org/10.48161/qaj.v1n2a44 DOI: https://doi.org/10.48161/qaj.v1n2a40
Merigó, J. M., & Yang, J.-B. (2017). A bibliometric analysis of operations research and management science. Omega, 73, 37–48. https://doi.org/10.1016/j.omega.2016.12.004 DOI: https://doi.org/10.1016/j.omega.2016.12.004
Mujica, N., & Kroschel, J. (2019). Ecological, economic, and environmental assessments of integrated pest management in potato: A case study from the Cañete Valley, Peru. Food and Energy Security, 8(1), Article e00153. https://doi.org/10.1002/fes3.153 DOI: https://doi.org/10.1002/fes3.153
Nain, M. S., Singh, R., & Mishra, J. R. (2019). Social networking of innovative farmers through WhatsApp messenger for learning exchange: A study of content sharing. The Indian Journal of Agricultural Sciences, 89(3), 556–558. https://doi.org/10.56093/ijas.v89i3.87605 DOI: https://doi.org/10.56093/ijas.v89i3.87605
Park, H.-A., Jung, H., On, J., Park, S. K., & Kang, H. (2018). Digital epidemiology: Use of digital data collected for non-epidemiological purposes in epidemiological studies. Healthcare Informatics Research, 24(4), 253–262. https://doi.org/10.4258/hir.2018.24.4.253 DOI: https://doi.org/10.4258/hir.2018.24.4.253
Peña, J. E., Baranowski, R. M., & McMillan, R. T. (1987). Prodiplosis longifila (Diptera: Cecidomyiidae) a new pest of citrus in Florida. The Florida Entomologist, 70(4), 527–529. https://doi.org/10.2307/3494798 DOI: https://doi.org/10.2307/3494798
Pereira, V., Basilio, M. P., & Santos, C. H. T. (2025). PyBibX – A Python library for bibliometric and scientometric analysis powered with artificial intelligence tools. Data Technologies and Applications, 59(2), 302–337. https://doi.org/10.1108/DTA-08-2023-0461 DOI: https://doi.org/10.1108/DTA-08-2023-0461
R Core Team. (2004). R: A language and environment for statistical computing [Software]. R Foundation for Statistical Computing. https://www.R-project.org/
Rojas Burgos, E. E. (2022). Los ODS y el riesgo ambiental en la producción de follajes en la provincia del Tequendama (Colombia). Human Review, 11(2), 1–11. https://dialnet.unirioja.es/servlet/articulo?codigo=8839797 DOI: https://doi.org/10.37467/revhuman.v11.4110
Rosas, L. G., Espinosa, P. R., Jimenez, F. M., & King, A. C. (2022). The role of citizen science in promoting health equity. Annual Review of Public Health, 43, 215–234. https://doi.org/10.1146/annurev-publhealth-090419-102856 DOI: https://doi.org/10.1146/annurev-publhealth-090419-102856
Ryan, S. F., Adamson, N. L., Aktipis, A., Andersen, L. K., Austin, R., Barnes, L., Beasley, M. R., Bedell, K. D., Briggs, S., Chapman, B., Cooper, C. B., Corn, J. O., Creamer, N. G., Delborne, J. A., Domenico, P., Driscoll, E., Goodwin, J., Hjarding, A., Hulbert, J. M., ..., Dunn, R. R. (2018). The role of citizen science in addressing grand challenges in food and agriculture research. Proceedings of the Royal Society B: Biological Sciences, 285(1891), Article 20181977. https://doi.org/10.1098/rspb.2018.1977 DOI: https://doi.org/10.1098/rspb.2018.1977
Salathé, M. (2018). Digital epidemiology: What is it, and where is it going? Life Sciences, Society and Policy, 14(1), Article 1. https://doi.org/10.1186/s40504-017-0065-7 DOI: https://doi.org/10.1186/s40504-017-0065-7
Samaras, L., García-Barriocanal, E., & Sicilia, M.-A. (2020). Comparing social media and Google to detect and predict severe epidemics. Scientific Reports, 10(1), Article 4747. https://doi.org/10.1038/s41598-020-61686-9 DOI: https://doi.org/10.1038/s41598-020-61686-9
Tey, Y. S., & Brindal, M. (2012). Factors influencing the adoption of precision agricultural technologies: A review for policy implications. Precision Agriculture, 13(6), 713–730. https://doi.org/10.1007/s11119-012-9273-6 DOI: https://doi.org/10.1007/s11119-012-9273-6
Tran, T., Porter, W. T., Salkeld, D. J., Prusinski, M. A., Jensen, S. T., & Brisson, D. (2021). Estimating disease vector population size from citizen science data. Journal of the Royal Society Interface, 18(184), Article 20210610. https://doi.org/10.1098/rsif.2021.0610 DOI: https://doi.org/10.1098/rsif.2021.0610
Tripathy, J. K., Sethuraman, S. C., Cruz, M. V., Namburu, A., Mangalraj, Kumar, N., Ilango, S., & Vijayakumar, V. (2021). Comprehensive analysis of embeddings and pre-training in NLP. Computer Science Review, 42, Article 100433. https://doi.org/10.1016/j.cosrev.2021.100433 DOI: https://doi.org/10.1016/j.cosrev.2021.100433
Wei, X., Khachatryan, H., Hodges, A., Hall, C., Palma, M., Torres, A., & Brumfield, R. (2023). Exploring market choices in the US ornamental horticulture industry. Agribusiness, 39(1), 65–109. https://doi.org/10.1002/agr.21769 DOI: https://doi.org/10.1002/agr.21769
Xiong, Z., Shen, Q., Xiong, Y., Wang, Y., & Li, W. (2019). New generation model of word vector representation based on CBOW or Skip-Gram. Computers, Materials & Continua, 60(1), 259–273. https://doi.org/10.32604/cmc.2019.05155 DOI: https://doi.org/10.32604/cmc.2019.05155
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2025 Agronomía Colombiana

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
© Centro Editorial de la Facultad de Ciencias Agrarias, Universidad Nacional de Colombia
Reproduction and quotation of material appearing in the journal is authorized provided the following are explicitly indicated: journal name, author(s) name, year, volume, issue and pages of the source. The ideas and observations recorded by the authors are their own and do not necessarily represent the views and policies of the Universidad Nacional de Colombia. Mention of products or commercial firms in the journal does not constitute a recommendation or endorsement on the part of the Universidad Nacional de Colombia; furthermore, the use of such products should comply with the product label recommendations.
The Creative Commons license used by Agronomia Colombiana journal is: Attribution - NonCommercial - ShareAlike (by-nc-sa)

Agronomia Colombiana by Centro Editorial of Facultad de Ciencias Agrarias, Universidad Nacional de Colombia is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional License.
Creado a partir de la obra en http://revistas.unal.edu.co/index.php/agrocol/.







