Published

2025-04-30

Citizen science and digital data for trend analysis and impact assessment of Prodiplosis as an emerging pest in foliage crops

Ciencia ciudadana y datos digitales para el análisis de tendencias y la evaluación del impacto de Prodiplosis como plaga emergente en cultivos de follaje

DOI:

https://doi.org/10.15446/agron.colomb.v43n1.118919

Keywords:

bibliometrics, digital platforms, Google trends, social networks, spatial analysis (en)
bibliometría, plataformas digitales, Google trends, redes sociales, análisis espacial (es)

Downloads

Authors

  • Laura Alejandra Valbuena-Gaona Universidad Nacional de Colombia - Bogotá - Facultad de Ciencias Agrarias Departamento de Agronomía - Laboratorio de Agrocomputación y Análisis epidemiológico - Center of Excellence in Scientific Computing https://orcid.org/0009-0002-5323-8760
  • Hector Julio Villamil-Martha Economía Agraria – Agropecuaria Villapard - Cachipay, Cundinamarca - Colombia https://orcid.org/0009-0002-1888-0678
  • Luz Mary Pardo-Ramírez Economía Agraria – Agropecuaria Villapard - Cachipay, Cundinamarca - Colombia https://orcid.org/0009-0004-7606-4868
  • Joaquín Guillermo Ramírez-Gil Universidad Nacional de Colombia - Bogotá - Facultad de Ciencias Agrarias Departamento de Agronomía - Laboratorio de Agrocomputación y Análisis epidemiológico - Center of Excellence in Scientific Computing https://orcid.org/0000-0002-0162-3598

Prodiplosis longifila is a pest of significant economic relevance, severely impacting crops like tomatoes and asparagus. Its effect on crops of ornamental foliage remains poorly documented, despite its growing importance in the agricultural sector. This study addresses our knowledge gap by implementing and validating digital tools of epidemiology (DE) and citizen science (CS) to enable a dynamic and participatory approach to pest monitoring. A trend analysis of scientific publications was conducted using web searches and social media interactions to identify topics concerning Prodiplosis over time, our knowledge gaps, and emerging areas of public interest. We assessed the impact of Prodiplosis on foliage crops, focusing on indirect effects and farmer-led management strategies shared through digital communication. Results show that digital tools such as trend monitoring on social media, web data analysis, WhatsApp group discussions, and farmer-managed digital platforms were effective for identifying the pest’s distribution, significance, and control practices. DE and CS approaches revealed critical knowledge gaps concerning the biology, ecology, and management of Prodiplosis, particularly in ornamental crops. Field data confirmed the pest’s negative impact on foliage yield and quality, with a strong dependence on chemical control methods, often applied without technical guidance. This study introduces an innovative methodology for assessing pest impacts through digital data analysis, offering practical insights for agricultural and policy decision-making. Moreover, the study highlights the potential of natural language processing as a powerful tool for synthesizing and detecting patterns in textual data and enhances the efficiency of pest surveillance and management systems.

Prodiplosis longifila es una plaga de alta relevancia económica,  que afecta gravemente cultivos como tomate y espárrago. Sin embargo, su impacto sobre cultivos de follaje ha sido poco estudiado, a pesar de su creciente importancia. Este estudio aborda dicha brecha mediante la implementación y validación de herramientas de epidemiología digital (ED) y ciencia ciudadana (CC), que permiten un enfoque participativo y dinámico para el monitoreo de esta plaga. Se realizó un análisis de tendencias basado en publicaciones científicas, búsquedas en internet e interacciones en redes sociales, con el objetivo de identificar los temas tratados, los vacíos de conocimiento y las áreas emergentes de interés. Adicionalmente, se evaluó el impacto de Prodiplosis en cultivos de follaje, describiendo sus efectos indirectos y las estrategias de manejo adoptadas por los agricultores a través de canales digitales. Los resultados muestran que herramientas digitales como el análisis de tendencias en redes sociales, la exploración de datos web, los grupos de WhatsApp y las plataformas digitales gestionadas por productores son eficaces para identificar la distribución, importancia y estrategias de control de Prodiplosis. Las metodologías de ED y CC también revelaron vacíos críticos en el conocimiento sobre la biología, ecología y manejo de esta plaga en cultivos ornamentales. El análisis de campo confirmó su impacto negativo en el rendimiento y la calidad del follaje, con una alta dependencia del control químico, usualmente sin asesoría técnica. Este estudio propone una metodología innovadora basada en datos digitales, destacando el potencial del procesamiento de lenguaje natural para fortalecer la vigilancia  y gestión fitosanitaria.

References

Adebayo, I. A., Pam, V. K., Arsad, H., & Samian, M. R. (2020). The global floriculture industry: Status and future prospects. In K. R. Hakeem (Ed.), The global floriculture industry (pp. 1–14). Apple Academic Press. https://api.pageplace.de/preview/DT0400.9781000751383_A40408500/preview-9781000751383_A40408500.pdf DOI: https://doi.org/10.1201/9781003000723-1

Agnese, F., Othman, Z., Mitin, A., & Wan Yahaya, W. A. J. (2024). Participatory monitoring in farmer field school program through Whatsapp among indigenous farmers in rural Sarawak, Malaysia. Interactive Learning Environments, 32(9), 5699–5710. https://doi.org/10.1080/10494820.2023.2223241 DOI: https://doi.org/10.1080/10494820.2023.2223241

Cáceres-Zambrano, J., Ramírez-Gil, J. G., & Barrios, D. (2023). Factors associated with the adoption of technologies for avocado production systems. Agronomía Colombiana, 41(3), Article 110579. https://doi.org/10.15446/agron.colomb.v41n3.110579 DOI: https://doi.org/10.15446/agron.colomb.v41n3.110579

Carney, R. M., Mapes, C., Low, R. D., Long, A., Bowser, A., Durieux, D., Rivera, K., Dekramanjian, B., Bartumeus, F., Guerrero, D., Seltzer, C. E., Azam, F., Chellappan, S., & Palmer, J. R. B. (2022). Integrating global citizen science platforms to enable next-generation surveillance of invasive and vector mosquitoes. Insects, 13(8), Article 675. https://doi.org/10.3390/insects13080675 DOI: https://doi.org/10.3390/insects13080675

Castillo Valiente, J. R., Rodríguez Quispe, S. P., Apaza Tapia, W. E. Julca-Otiniano, A. M., Canto Saenz, M. A. , & Rosales Sanchez, T. (2020). Prodiplosis longifila Gagné (Diptera: Cecidomyiidae) in asparagus (Asparagus officinalis) crop in Chavimochic Irrigation Project. Peruvian Journal of Agronomy, 4(3), 75–81. https://doi.org/10.21704/pja.v4i3.1645 DOI: https://doi.org/10.21704/pja.v4i3.1645

Cedano, C., & Cubas, P. (2012). Baeuveria bassiana (Bals.) Vuill. y Metarhizium anisopliae (Metsch.) Sorokin para el control de pupas de Prodiplosis longifila Gagné en el cultivo de espárrago. Scientia Agropecuaria, 3(1), 29–34. https://doi.org/10.17268/sci.agropecu.2012.01.04 DOI: https://doi.org/10.17268/sci.agropecu.2012.01.04

Cervellin, G., Comelli, I., & Lippi, G. (2017). Is Google Trends a reliable tool for digital epidemiology? Insights from different clinical settings. Journal of Epidemiology and Global Health, 7(3), 185–189. https://doi.org/10.1016/j.jegh.2017.06.001 DOI: https://doi.org/10.1016/j.jegh.2017.06.001

Charles-Smith, L. E., Reynolds, T. L., Cameron, M. A., Conway, M., Lau, E. H. Y., Olsen, J. M., Pavlin, J. A., Shigematsu, M., Streichert, L. C., Suda, K. J., & Corley, C. D. (2015). Using social media for actionable disease surveillance and outbreak management: A systematic literature review. PLoS ONE, 10(10), Article e0139701. https://doi.org/10.1371/journal.pone.0139701 DOI: https://doi.org/10.1371/journal.pone.0139701

Choudhury, R. A., Mahaffee, W. F., McRoberts, N., & Gubler, W. D. (2018). Modeling uncertainty in grapevine powdery mildew epidemiology using fuzzy logic. bioRxiv, Article 264622. https://doi.org/10.1101/264622 DOI: https://doi.org/10.1101/264622

de Sherbinin, A., Bowser, A., Chuang, T.-R., Cooper, C., Danielsen, F., Edmunds, R., Elias, P., Faustman, E., Hultquist, C., Mondardini, R., Popescu, I., Shonowo, A., & Sivakumar, K. (2021). The critical importance of citizen science data. Frontiers in Climate, 3, Article 650760. https://doi.org/10.3389/fclim.2021.650760 DOI: https://doi.org/10.3389/fclim.2021.650760

Ekman, A., & Litton, J.-E. (2007). New times, new needs; e-epidemiology. European Journal of Epidemiology, 22(5), 285–292. https://doi.org/10.1007/s10654-007-9119-0 DOI: https://doi.org/10.1007/s10654-007-9119-0

EPPO. (2017). Pest risk analysis for Prodiplosis longifila. EPPO. http://www.eppo.int/QUARANTINE/Pest_Risk_Analysis/PRA_intro.htm

EPPO. (2025). Prodiplosis longifila (PRDILO) [Categorization]. EPPO Global Database. https://gd.eppo.int/taxon/PRDILO/categorization

Faust, J. E., & Dole, J. M. (2021). The global cut flower and foliage marketplace. https://doi.org/10.1079/9781789247602.0001 DOI: https://doi.org/10.1079/9781789247602.0000

Fraisl, D., Hager, G., Bedessem, B., Gold, M., Hsing, P.-Y., Danielsen, F., Hitchcock, C. B., Hulbert, J. M., Piera, J., Spiers, H., Thiel, M., & Haklay, M. (2022). Citizen science in environmental and ecological sciences. Nature Reviews Methods Primers, 2(1), 1–20. https://doi.org/10.1038/s43586-022-00144-4 DOI: https://doi.org/10.1038/s43586-022-00144-4

Fulk, A., Romero-Alvarez, D., Abu-Saymeh, Q., Onge, J. M. S., Peterson, A. T., & Agusto, F. B. (2022). Using Google Health Trends to investigate COVID-19 incidence in Africa. PLOS ONE, 17(6), Article e0269573. https://doi.org/10.1371/journal.pone.0269573 DOI: https://doi.org/10.1371/journal.pone.0269573

Gagné, R. J. (1986). Revision of Prodiplosis (Diptera: Cecidomyiidae) with descriptions of three new species. Annals of the Entomological Society of America, 79(1), 235–245. https://doi.org/10.1093/aesa/79.1.235 DOI: https://doi.org/10.1093/aesa/79.1.235

Geraud-Pouey, F., Garces, A., Contreras, N., & Geraud-Chirinos, J. E. (2022). Prodiplosis longifila (Diptera: Cecidomyiidae), evolución como plaga y un método para evaluar sus poblaciones en tomate. Revista Colombiana de Entomología, 48(1), Article e7807. https://doi.org/10.25100/socolen.v48i1.7807 DOI: https://doi.org/10.25100/socolen.v48i1.7807

Ginsberg, J., Mohebbi, M. H., Patel, R. S., Brammer, L., Smolinski, M. S., & Brilliant, L. (2009). Detecting influenza epidemics using search engine query data. Nature, 457(7232), 1012–1014. https://doi.org/10.1038/nature07634 DOI: https://doi.org/10.1038/nature07634

Goldsmith, J., Castillo, J., & Clarke-Harris, D. (2013). Gall midges (Cecidomyiidae) attacking horticultural crops in the Caribbean region and South America. In J. E. Peña (Ed.), Potential invasive pests of agricultural crops (pp. 240–250). CABI. https://doi.org/10.1079/9781845938291.0240 DOI: https://doi.org/10.1079/9781845938291.0240

Hernandez, L. M., Guzman, Y. C., Martínez-Arias, A., Manzano, M. R., & Selvaraj, J. J. (2015). The bud midge Prodiplosis longifila: Damage characteristics, potential distribution and presence on a new crop host in Colombia. Springer Plus, 4(1), Article 205. https://doi.org/10.1186/s40064-015-0987-6 DOI: https://doi.org/10.1186/s40064-015-0987-6

Jebb, A. T., Ng, V., & Tay, L. (2021). A review of key Likert scale development advances: 1995–2019. Frontiers in Psychology, 12, Article 637547. https://doi.org/10.3389/fpsyg.2021.637547 DOI: https://doi.org/10.3389/fpsyg.2021.637547

Johnston, A., Matechou, E., & Dennis, E. B. (2023). Outstanding challenges and future directions for biodiversity monitoring using citizen science data. Methods in Ecology and Evolution, 14(1), 103–116. https://doi.org/10.1111/2041-210X.13834 DOI: https://doi.org/10.1111/2041-210X.13834

Joshi, A., Kale, S., Chandel, S., & Pal, D. K. (2015). Likert scale: Explored and explained. Current Journal of Applied Science and Technology, 396–403. https://doi.org/10.9734/BJAST/2015/14975 DOI: https://doi.org/10.9734/BJAST/2015/14975

Katapally, T. R., Hammami, N., & Chu, L. M. (2021). A randomized community trial to advance digital epidemiological and mHealth citizen scientist compliance: A smart platform study. PLoS ONE, 16(11), Article e0259486. https://doi.org/10.1371/journal.pone.0259486 DOI: https://doi.org/10.1371/journal.pone.0259486

Khurana, D., Koli, A., Khatter, K., & Singh, S. (2023). Natural language processing: State of the art, current trends and challenges. Multimedia Tools and Applications, 82(3), 3713–3744. https://doi.org/10.1007/s11042-022-13428-4 DOI: https://doi.org/10.1007/s11042-022-13428-4

Kroschel, J., Mujica, N., Alcazar, J., Canedo, V., & Zegarra, O. (2012). Developing integrated pest management for potato: Experiences and lessons from two distinct potato production systems of Peru. In Z. He, R. Larkin, & W. Honeycutt (Eds.), Sustainable potato production: Global case studies (pp. 419–450). Springer. https://doi.org/10.1007/978-94-007-4104-1_25 DOI: https://doi.org/10.1007/978-94-007-4104-1_25

Kullenberg, C., & Kasperowski, D. (2016). What is citizen science? – A scientometric meta-analysis. PLoS ONE, 11(1), Article e0147152. https://doi.org/10.1371/journal.pone.0147152 DOI: https://doi.org/10.1371/journal.pone.0147152

Lippi, G., & Cervellin, G. (2019). Is digital epidemiology reliable?— Insight from updated cancer statistics. Annals of Translational Medicine, 7(1), Article 15. https://doi.org/10.21037/atm.2018.11.55 DOI: https://doi.org/10.21037/atm.2018.11.55

Maulud, D. H., Zeebaree, S. R. M., Jacksi, K., Sadeeq, M. A. M., & Sharif, K. H. (2021). State of art for semantic analysis of natural language processing. Qubahan Academic Journal, 1(2), 21−28. https://doi.org/10.48161/qaj.v1n2a44 DOI: https://doi.org/10.48161/qaj.v1n2a40

Merigó, J. M., & Yang, J.-B. (2017). A bibliometric analysis of operations research and management science. Omega, 73, 37–48. https://doi.org/10.1016/j.omega.2016.12.004 DOI: https://doi.org/10.1016/j.omega.2016.12.004

Mujica, N., & Kroschel, J. (2019). Ecological, economic, and environmental assessments of integrated pest management in potato: A case study from the Cañete Valley, Peru. Food and Energy Security, 8(1), Article e00153. https://doi.org/10.1002/fes3.153 DOI: https://doi.org/10.1002/fes3.153

Nain, M. S., Singh, R., & Mishra, J. R. (2019). Social networking of innovative farmers through WhatsApp messenger for learning exchange: A study of content sharing. The Indian Journal of Agricultural Sciences, 89(3), 556–558. https://doi.org/10.56093/ijas.v89i3.87605 DOI: https://doi.org/10.56093/ijas.v89i3.87605

Park, H.-A., Jung, H., On, J., Park, S. K., & Kang, H. (2018). Digital epidemiology: Use of digital data collected for non-epidemiological purposes in epidemiological studies. Healthcare Informatics Research, 24(4), 253–262. https://doi.org/10.4258/hir.2018.24.4.253 DOI: https://doi.org/10.4258/hir.2018.24.4.253

Peña, J. E., Baranowski, R. M., & McMillan, R. T. (1987). Prodiplosis longifila (Diptera: Cecidomyiidae) a new pest of citrus in Florida. The Florida Entomologist, 70(4), 527–529. https://doi.org/10.2307/3494798 DOI: https://doi.org/10.2307/3494798

Pereira, V., Basilio, M. P., & Santos, C. H. T. (2025). PyBibX – A Python library for bibliometric and scientometric analysis powered with artificial intelligence tools. Data Technologies and Applications, 59(2), 302–337. https://doi.org/10.1108/DTA-08-2023-0461 DOI: https://doi.org/10.1108/DTA-08-2023-0461

R Core Team. (2004). R: A language and environment for statistical computing [Software]. R Foundation for Statistical Computing. https://www.R-project.org/

Rojas Burgos, E. E. (2022). Los ODS y el riesgo ambiental en la producción de follajes en la provincia del Tequendama (Colombia). Human Review, 11(2), 1–11. https://dialnet.unirioja.es/servlet/articulo?codigo=8839797 DOI: https://doi.org/10.37467/revhuman.v11.4110

Rosas, L. G., Espinosa, P. R., Jimenez, F. M., & King, A. C. (2022). The role of citizen science in promoting health equity. Annual Review of Public Health, 43, 215–234. https://doi.org/10.1146/annurev-publhealth-090419-102856 DOI: https://doi.org/10.1146/annurev-publhealth-090419-102856

Ryan, S. F., Adamson, N. L., Aktipis, A., Andersen, L. K., Austin, R., Barnes, L., Beasley, M. R., Bedell, K. D., Briggs, S., Chapman, B., Cooper, C. B., Corn, J. O., Creamer, N. G., Delborne, J. A., Domenico, P., Driscoll, E., Goodwin, J., Hjarding, A., Hulbert, J. M., ..., Dunn, R. R. (2018). The role of citizen science in addressing grand challenges in food and agriculture research. Proceedings of the Royal Society B: Biological Sciences, 285(1891), Article 20181977. https://doi.org/10.1098/rspb.2018.1977 DOI: https://doi.org/10.1098/rspb.2018.1977

Salathé, M. (2018). Digital epidemiology: What is it, and where is it going? Life Sciences, Society and Policy, 14(1), Article 1. https://doi.org/10.1186/s40504-017-0065-7 DOI: https://doi.org/10.1186/s40504-017-0065-7

Samaras, L., García-Barriocanal, E., & Sicilia, M.-A. (2020). Comparing social media and Google to detect and predict severe epidemics. Scientific Reports, 10(1), Article 4747. https://doi.org/10.1038/s41598-020-61686-9 DOI: https://doi.org/10.1038/s41598-020-61686-9

Tey, Y. S., & Brindal, M. (2012). Factors influencing the adoption of precision agricultural technologies: A review for policy implications. Precision Agriculture, 13(6), 713–730. https://doi.org/10.1007/s11119-012-9273-6 DOI: https://doi.org/10.1007/s11119-012-9273-6

Tran, T., Porter, W. T., Salkeld, D. J., Prusinski, M. A., Jensen, S. T., & Brisson, D. (2021). Estimating disease vector population size from citizen science data. Journal of the Royal Society Interface, 18(184), Article 20210610. https://doi.org/10.1098/rsif.2021.0610 DOI: https://doi.org/10.1098/rsif.2021.0610

Tripathy, J. K., Sethuraman, S. C., Cruz, M. V., Namburu, A., Mangalraj, Kumar, N., Ilango, S., & Vijayakumar, V. (2021). Comprehensive analysis of embeddings and pre-training in NLP. Computer Science Review, 42, Article 100433. https://doi.org/10.1016/j.cosrev.2021.100433 DOI: https://doi.org/10.1016/j.cosrev.2021.100433

Wei, X., Khachatryan, H., Hodges, A., Hall, C., Palma, M., Torres, A., & Brumfield, R. (2023). Exploring market choices in the US ornamental horticulture industry. Agribusiness, 39(1), 65–109. https://doi.org/10.1002/agr.21769 DOI: https://doi.org/10.1002/agr.21769

Xiong, Z., Shen, Q., Xiong, Y., Wang, Y., & Li, W. (2019). New generation model of word vector representation based on CBOW or Skip-Gram. Computers, Materials & Continua, 60(1), 259–273. https://doi.org/10.32604/cmc.2019.05155 DOI: https://doi.org/10.32604/cmc.2019.05155

How to Cite

APA

Valbuena-Gaona, L. A., Villamil-Martha, H. J., Pardo-Ramírez, L. M. & Ramírez-Gil, J. G. (2025). Citizen science and digital data for trend analysis and impact assessment of Prodiplosis as an emerging pest in foliage crops. Agronomía Colombiana, 43(1), e118919. https://doi.org/10.15446/agron.colomb.v43n1.118919

ACM

[1]
Valbuena-Gaona, L.A., Villamil-Martha, H.J., Pardo-Ramírez, L.M. and Ramírez-Gil, J.G. 2025. Citizen science and digital data for trend analysis and impact assessment of Prodiplosis as an emerging pest in foliage crops. Agronomía Colombiana. 43, 1 (Jan. 2025), e118919. DOI:https://doi.org/10.15446/agron.colomb.v43n1.118919.

ACS

(1)
Valbuena-Gaona, L. A.; Villamil-Martha, H. J.; Pardo-Ramírez, L. M.; Ramírez-Gil, J. G. Citizen science and digital data for trend analysis and impact assessment of Prodiplosis as an emerging pest in foliage crops. Agron. Colomb. 2025, 43, e118919.

ABNT

VALBUENA-GAONA, L. A.; VILLAMIL-MARTHA, H. J.; PARDO-RAMÍREZ, L. M.; RAMÍREZ-GIL, J. G. Citizen science and digital data for trend analysis and impact assessment of Prodiplosis as an emerging pest in foliage crops. Agronomía Colombiana, [S. l.], v. 43, n. 1, p. e118919, 2025. DOI: 10.15446/agron.colomb.v43n1.118919. Disponível em: https://revistas.unal.edu.co/index.php/agrocol/article/view/118919. Acesso em: 13 nov. 2025.

Chicago

Valbuena-Gaona, Laura Alejandra, Hector Julio Villamil-Martha, Luz Mary Pardo-Ramírez, and Joaquín Guillermo Ramírez-Gil. 2025. “Citizen science and digital data for trend analysis and impact assessment of Prodiplosis as an emerging pest in foliage crops”. Agronomía Colombiana 43 (1):e118919. https://doi.org/10.15446/agron.colomb.v43n1.118919.

Harvard

Valbuena-Gaona, L. A., Villamil-Martha, H. J., Pardo-Ramírez, L. M. and Ramírez-Gil, J. G. (2025) “Citizen science and digital data for trend analysis and impact assessment of Prodiplosis as an emerging pest in foliage crops”, Agronomía Colombiana, 43(1), p. e118919. doi: 10.15446/agron.colomb.v43n1.118919.

IEEE

[1]
L. A. Valbuena-Gaona, H. J. Villamil-Martha, L. M. Pardo-Ramírez, and J. G. Ramírez-Gil, “Citizen science and digital data for trend analysis and impact assessment of Prodiplosis as an emerging pest in foliage crops”, Agron. Colomb., vol. 43, no. 1, p. e118919, Jan. 2025.

MLA

Valbuena-Gaona, L. A., H. J. Villamil-Martha, L. M. Pardo-Ramírez, and J. G. Ramírez-Gil. “Citizen science and digital data for trend analysis and impact assessment of Prodiplosis as an emerging pest in foliage crops”. Agronomía Colombiana, vol. 43, no. 1, Jan. 2025, p. e118919, doi:10.15446/agron.colomb.v43n1.118919.

Turabian

Valbuena-Gaona, Laura Alejandra, Hector Julio Villamil-Martha, Luz Mary Pardo-Ramírez, and Joaquín Guillermo Ramírez-Gil. “Citizen science and digital data for trend analysis and impact assessment of Prodiplosis as an emerging pest in foliage crops”. Agronomía Colombiana 43, no. 1 (January 1, 2025): e118919. Accessed November 13, 2025. https://revistas.unal.edu.co/index.php/agrocol/article/view/118919.

Vancouver

1.
Valbuena-Gaona LA, Villamil-Martha HJ, Pardo-Ramírez LM, Ramírez-Gil JG. Citizen science and digital data for trend analysis and impact assessment of Prodiplosis as an emerging pest in foliage crops. Agron. Colomb. [Internet]. 2025 Jan. 1 [cited 2025 Nov. 13];43(1):e118919. Available from: https://revistas.unal.edu.co/index.php/agrocol/article/view/118919

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

216

Downloads

Download data is not yet available.