Evaluation of yield and fruit quality in five genotypes of Castilla blackberry (Rubus glaucus Benth.)
Evaluación del rendimiento y calidad del fruto de cinco genotipos de mora de Castilla (Rubus glaucus Benth.)
DOI:
https://doi.org/10.15446/agron.colomb.v43n1.119251Keywords:
physicochemical properties, Brix, selection index (en)propiedades fisicoquímicas, Brix, índice de selección (es)
Downloads
In Colombia, blackberry (Rubus spp.) is one of the crops with the most significant geographic coverage, and the ecotype “Castilla” (Rubus glaucus) is the most extensively commercialized. Despite the importance of the crop, there are no registered varieties or hybrids specifically adapted to the diverse growing conditions of the country’s various production areas. The purpose of this study was to evaluate and select advanced genotypes of Castilla blackberry based on yield attributes and physicochemical quality of the fruits. Data from five genotypes and one regional check were recorded in the municipality of Silvania, Cundinamarca, during 2022 and 2023. The yield traits, including the number of fruits per kg and the weight of the fruits harvested, were evaluated, as well as the physicochemical variables: fruit diameter, fruit weight, firmness, acidity, total soluble solids, pH, juice and pulp weights, and maturity index. The data were statistically processed using a generalized linear model, principal component and cluster analysis, and Ward’s minimum variance clustering method. A selection index based on the traits of production, total soluble solids, fruit weight, and firmness, relevant to the crop, was used. Significant differences were observed between genotypes for the yield traits, total soluble solids, pH, acidity, and maturity index. The results suggested that genotypes G1, G4, and G3 were outstanding in terms of yield and fruit quality. However, genotype G1 led the index selection, outperforming the other genotypes under evaluation.
En Colombia, la mora (Rubus spp.) es uno de los cultivos con mayor cobertura geográfica, siendo el ecotipo "Castilla" (Rubus glaucus) el más comercializado. Pese a la importancia del cultivo, no hay registro de variedades o híbridos específicamente adaptados a las diversas condiciones de crecimiento de las diferentes zonas productoras del país. El propósito de este trabajo fue evaluar y seleccionar genotipos avanzados de mora de Castilla por atributos de rendimiento y calidad fisicoquímica de fruto. Se registraron datos de cinco genotipos y un testigo regional en Silvania, Cundinamarca, durante los años 2022 y 2023. Se evaluaron los atributos de rendimiento: número de frutos por kg y peso de los frutos cosechados, así como las variables fisicoquímicas: diámetros de fruta, peso de fruto, firmeza, acidez, contenido de sólidos solubles totales, pH, pesos de jugo y pulpa, e índice de madurez. Los datos fueron estadísticamente procesados mediante un modelo lineal generalizado, análisis de componentes principales y conglomerados, y el método de agrupamiento de varianza mínima de Ward. Se usó un índice de selección basado en las características: producción, sólidos solubles totales, peso de fruto y firmeza, relevantes para el cultivo. Se observaron diferencias significativas entre los genotipos para las características de rendimiento, sólidos solubles totales, pH, acidez e índice de madurez. Los resultados sugirieron que los genotipos G1, G4 y G3 fueron los sobresalientes en rendimiento y calidad de fruto. Sin embargo, el genotipo G1 lideró la selección por el índice, superando a los otros genotipos en evaluación.
References
Abbott, L., & Pistorale, S. (2010). Determinación de componentes de la varianza y heredabilidad en cebadilla criolla (Bromus catharticus Vahl.). Agriscientia, 27(2), 115–123. https://www.scielo.org.ar/pdf/agrisc/v27n2/v27n2a07.pdf DOI: https://doi.org/10.31047/1668.298x.v27.n2.2773
Agronet. (2024). Reporte: Área, producción y rendimiento nacional por cultivo. https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1
Association of Official Analytical Chemists. (1995). Official methods of analysis (14th ed.). AOAC.
Ballington, J. R. (2016). The history of blackberry and raspberry breeding in the southern USA. Acta Horticulturae, 1133, 13–22. https://doi.org/10.17660/ActaHortic.2016.1133.3 DOI: https://doi.org/10.17660/ActaHortic.2016.1133.3
Bizari, E. H., Val, B. H. P., Pereira, E. M., Mauro, A. O., & Unêda-Trevisoli, S. H. (2017). Selection indices for agronomic traits in segregating populations of soybean. Revista Ciência Agronômica, 48(1), 110–117. https://www.scielo.br/j/rca/a/z3hyMyygmLPmQCmJn6s7DJR/ DOI: https://doi.org/10.5935/1806-6690.20170012
Blejan, A. M., Nour, V., Păcularu-Burada, B., & Popescu, S. M. (2023). Wild bilberry, blackcurrant, and blackberry by-products as a source of nutritional and bioactive compounds. International Journal of Food Properties, 26(1), 1579–1595. https://doi.org/10.1080/10942912.2023.2224530 DOI: https://doi.org/10.1080/10942912.2023.2224530
Business Research Insights. (2025). Blackberry market size, growth, and industry analysis, by grade (trailing, erect, semi-erect), by application (online and offline), regional insights, and forecast from 2025 to 2033. https://www.businessresearchinsights.com/market-reports/blackberry-market-108458
Chizk, T. M., Clark, J. R., Johns, C., Nelson, L., Ashrafi, H., Aryal, R., & Worthington, M. L. (2023). Genome-wide association identifies key loci controlling blackberry postharvest quality. Frontiers in Plant Science, 14, Article 1182790. https://doi.org/10.3389/fpls.2023.1182790 DOI: https://doi.org/10.3389/fpls.2023.1182790
Clark, J. R., Stafne, E. T., Hall, H. K., & Finn, C. E. (2007). Blackberry breeding and genetics. In J. Janick (Ed.), Plant breeding reviews (Vol. 29, pp. 19–144). Wiley. https://doi.org/10.1002/9780470168035.ch2 DOI: https://doi.org/10.1002/9780470168035.ch2
Coyner, M. A., Skirvin, R. M., Norton, M. A., & Otterbacher, A. G. (2005). Thornlessness in blackberries. Small Fruits Review, 4(2), 83–106. https://doi.org/10.1300/J301v04n02_09 DOI: https://doi.org/10.1300/J301v04n02_09
Díaz, L. G. M. (2007). Estadística multivariada: inferencias y métodos (2nd ed.). Departamento de Estadística, Facultad de Ciencias, Universidad Nacional de Colombia. https://repositorio.unal.edu.co/bitstream/handle/unal/79907/Estad%c3%adstica%20Multivariada%209789587011951.pdf?sequence=2&isAllowed=y
Espinosa Bayer, N., Sánchez León, D. E., García Ramírez, A., Ariza Nieto, M., Ariza Nieto, C., & Barrero Meneses, L. S. (2009). Evaluación agronómica, nutricional y selección participativa de materiales de mora en Silvania, Cundinamarca. Corporación Colombiana de Investigación Agropecuaria – CORPOICA. http://hdl.handle.net/20.500.12324/18951
EVA, & UPRA. (2025). Evaluaciones agropecuarias municipales: base agrícola 2019–2023. SICA – Federación Nacional de Cafeteros; ENAM – DANE; Fedearroz; gremios locales. https://www.agronet.gov.co/estadistica/paginas/home.aspx?cod=59
Fellahi, Z. E. A., Hannachi, A., & Bouzerzour, H. (2020). Expected genetic gains from mono trait and index-based selection in advanced bread wheat (Triticum aestivum L.) populations. Revista Facultad Nacional de Agronomía Medellín, 73(2), 9131–9141. https://doi.org/10.15446/rfnam.v73n2.77806 DOI: https://doi.org/10.15446/rfnam.v73n2.77806
Foster, T. M., Bassil, N. V., Dossett, M., Worthington, M. L., & Graham, J. (2019). Genetic and genomic resources for Rubus breeding: A roadmap for the future. Horticulture Research, 6(1), Article 116. https://doi.org/10.1038/s41438-019-0199-2 DOI: https://doi.org/10.1038/s41438-019-0199-2
Gazal, A., Nehvi, F. A., Lone, A. A., Dar, Z. A., & Wani, M. A. (2017). Smith Hazel selection index for the improvement of maize inbred lines under water stress conditions. International Journal of Pure & Applied Bioscience, 5(1), 72–81. https://doi.org/10.18782/2320-7051.2444 DOI: https://doi.org/10.18782/2320-7051.2444
Gil-Martínez, L., Mut-Salud, N., Ruiz-García, J. A., Falcón-Piñeiro, A., Maijó-Ferré, M., Baños, A., De la Torre-Ramírez, J. M., Guillamón, E., Verardo, V., & Gómez-Caravaca, A. M. (2023). Phytochemicals determination, and antioxidant, antimicrobial, anti-inflammatory and anticancer activities of blackberry fruits. Foods, 12(7), Article 1505. https://doi.org/10.3390/foods12071505 DOI: https://doi.org/10.3390/foods12071505
González-Castro, Y., Manzano-Durán, O., & García-Hoya, O. (2019). Puntos críticos de la cadena productiva de la mora (Rubus glaucus Benth) en el municipio de Pamplona, Colombia. Revista de Investigación, Desarrollo e Innovación, 10(1), 9–22. https://doi.org/10.19053/20278306.v10.n1.2019.10008 DOI: https://doi.org/10.19053/20278306.v10.n1.2019.10008
Hernández-Bautista, A., Lobato-Ortiz, R., Rocandio-Rodríguez, M., Hernández-Rodríguez, M., Hernández-Bautista, A. L., Rodríguez-Bautista, G., Hernández-Leal, E., & Bautista-Ramírez, E. (2022). Genetic parameters and estimated breeding values of blackberry parents under a warm environment. Genetika, 54(2), 857–870. https://doi.org/10.2298/GENSR2202857B DOI: https://doi.org/10.2298/GENSR2202857B
Instituto Colombiano de Normas Técnicas. (1997). Frutas frescas. Mora de Castilla, especificaciones – NTC 4106. ICONTEC.
López Gutiérrez, A. M., Marulanda Ángel, M. L., Gómez López, L. M., & Barrera Sánchez, C. F. (2019). Rubus glaucus Benth.: Morphology and floral biology aimed at plant breeding processes. Revista Facultad Nacional de Agronomía Medellín, 72(3), 8909–8915. https://doi.org/10.15446/rfnam.v72n1.75910 DOI: https://doi.org/10.15446/rfnam.v72n1.75910
Lund, P. A., De Biase, D., Liran, O., Scheler, O., Mira, N. P., Cetecioglu, Z., Noriega Fernández, E., Bover-Cid, S., Hall, R., Sauer, M., & O’Byrne, C. (2020). Understanding how microorganisms respond to acid pH is central to their control and successful exploitation. Frontiers in Microbiology, 11, Article 556140. https://doi.org/10.3389/fmicb.2020.556140 DOI: https://doi.org/10.3389/fmicb.2020.556140
Martins, M. S., Gonçalves, A. C., Alves, G., & Silva, L. R. (2023). Blackberries and mulberries: Berries with significant health-promoting properties. International Journal of Molecular Sciences, 24(15), Article 12024. https://doi.org/10.3390/ijms241512024 DOI: https://doi.org/10.3390/ijms241512024
Marulanda, M. L., & López, A. M. (2009). Characterization of thornless Rubus glaucus in Colombia. Canadian Journal of Pure & Applied Sciences, 3(3), 875–885. https://www.cjpas.net/uploads/pdfs/3/3/Paper1.pdf
MADR – Ministerio de Agricultura y Desarrollo Rural. (2021). Cadena productiva de la mora. https://sioc.minagricultura.gov.co/Mora/Documentos/2021-06-30%20Cifras%20Sectoriales.pdf
Moreira, S. O., Kuhlcamp, K. T., Barros, F. L. S., Zucoloto, M., & Godinho, T. O. (2019). Selection index based on phenotypic and genotypic values predicted by REML/BLUP in papaya. Revista Brasileira de Fruticultura, 41(1), Article e-079. https://doi.org/10.1590/0100-29452019079 DOI: https://doi.org/10.1590/0100-29452019079
Moreno-Medina, B. L., Casierra-Posada, F., & Albesiano, S. (2020). Rubus alutaceus (Rosaceae), a new species for Colombia with agronomic potential. Revista Brasileira de Fruticultura, 42(2), Article e-542. https://doi.org/10.1590/0100-29452020542 DOI: https://doi.org/10.1590/0100-29452020542
Rahimi, M., & Debnath, S. (2023). Estimating optimum and base selection indices in plant and animal breeding programs by developing new and simple SAS and R codes. Scientific Reports, 13(1), Article 46368. https://doi.org/10.1038/s41598-023-46368-6 DOI: https://doi.org/10.1038/s41598-023-46368-6
Ramírez, F. (2023). Latin American blackberries biology: Mora de Castilla (Rubus glaucus Benth.). Springer. https://doi.org/10.1007/978-3-031-31750-7 DOI: https://doi.org/10.1007/978-3-031-31750-7
Resende, M. D. V. (2002). Genética biométrica e estatística no melhoramento de plantas perenes. Embrapa Informação Tecnológica.
Sabouri, H., Rabiei, B., & Fazlalipour, M. (2008). Use of selection indices based on multivariate analysis for improving grain yield in rice. Rice Science, 15(4), 303–310. https://doi.org/10.1016/S1672-6308(09)60008-1 DOI: https://doi.org/10.1016/S1672-6308(09)60008-1
Sánchez-Betancourt, E., García-Muñoz, M. C., Argüelles-Cárdenas, J., Franco-Flórez, V., & Núñez, V. (2020). Fruit quality attributes of ten Colombian blackberry (Rubus glaucus Benth.) genotypes. Agronomía Colombiana, 38(1), 9–18. https://doi.org/10.15446/agron.colomb.v38n1.80559 DOI: https://doi.org/10.15446/agron.colomb.v38n1.80559
Stanfield, W. D. (1971). Genética. Teoría y 400 problemas resueltos. Serie Schaum. McGraw-Hill.
Stephens, M. J., Alspach, P. A., Beatson, R. A., Winefield, C., & Buck, E. J. (2012). Genetic parameters and development of a selection index for breeding red raspberries for processing. Journal of the American Society for Horticultural Science, 137(4), 236–242. https://doi.org/10.21273/JASHS.137.4.236 DOI: https://doi.org/10.21273/JASHS.137.4.236
Threlfall, R. T., Hines, O. S., Clark, J. R., Howard, L. R., Brownmiller, C. R., Segantini, D. M., & Lawless, L. J. R. (2016). Physiochemical and sensory attributes of fresh blackberries grown in the southeastern United States. HortScience, 51(11), 1351–1362. https://doi.org/10.21273/HORTSCI10678-16 DOI: https://doi.org/10.21273/HORTSCI10678-16
Turner-Hissong, S. D., Mabry, M. E., Beissinger, T. M., Ross-Ibarra, J., & Pires, J. C. (2020). Evolutionary insights into plant breeding. Current Opinion in Plant Biology, 54, 93–100. https://doi.org/10.1016/j.pbi.2020.03.003 DOI: https://doi.org/10.1016/j.pbi.2020.03.003
Vaillant, F. (2020). Blackberries. In A. K. Jaiswal (Ed.), Nutritional composition and antioxidant properties of fruits and vegetables (pp. 407–422). Academic Press. https://doi.org/10.1016/B978-0-12-812780-3.00025-8 DOI: https://doi.org/10.1016/B978-0-12-812780-3.00025-8
Vergara, M. F., Vargas, J., & Acuña, J. F. (2016). Physicochemical characteristics of blackberry (Rubus glaucus Benth.) fruits from four production zones of Cundinamarca, Colombia. Agronomía Colombiana, 34(3), 336–345. https://doi.org/10.15446/agron.colomb.v34n3.62755 DOI: https://doi.org/10.15446/agron.colomb.v34n3.62755
Vieira, R. A., Rocha, R., Scapim, C. A., Amaral Júnior, A. T., & Vivas, M. (2016). Selection index based on the relative importance of traits and possibilities in breeding popcorn. Genetics and Molecular Research, 15(2), Article 15027719. DOI: https://doi.org/10.4238/gmr.15027719
Vieira, S. D., Souza, D. C., Martins, I. A., Ribeiro, G. H. M. R., Resende, L. V., Ferraz, A. K. L., Galvão, A. G., & Resende, J. T. V. (2017). Selection of experimental strawberry (Fragaria × ananassa) hybrids based on selection indices. Genetics and Molecular Research, 16(1), Article 16019052. DOI: https://doi.org/10.4238/gmr16019052
Zhang, C., Xiong, Z., Yang, H., & Wu, W. (2019). Changes in pericarp morphology, physiology and cell wall composition account for flesh firmness during the ripening of blackberry (Rubus spp.) fruit. Scientia Horticulturae, 250, 59–68. https://doi.org/10.1016/j.scienta.2019.02.015 DOI: https://doi.org/10.1016/j.scienta.2019.02.015
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2025 Agronomía Colombiana

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
© Centro Editorial de la Facultad de Ciencias Agrarias, Universidad Nacional de Colombia
Reproduction and quotation of material appearing in the journal is authorized provided the following are explicitly indicated: journal name, author(s) name, year, volume, issue and pages of the source. The ideas and observations recorded by the authors are their own and do not necessarily represent the views and policies of the Universidad Nacional de Colombia. Mention of products or commercial firms in the journal does not constitute a recommendation or endorsement on the part of the Universidad Nacional de Colombia; furthermore, the use of such products should comply with the product label recommendations.
The Creative Commons license used by Agronomia Colombiana journal is: Attribution - NonCommercial - ShareAlike (by-nc-sa)

Agronomia Colombiana by Centro Editorial of Facultad de Ciencias Agrarias, Universidad Nacional de Colombia is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional License.
Creado a partir de la obra en http://revistas.unal.edu.co/index.php/agrocol/.







