The addition of essential oils increases the oxidative stability of sacha inchi (Plukenetia volubilis) oil
La adición de aceites esenciales incrementa la estabilidad oxidativa del aceite de sacha inchi (Plukenetia volubilis)
DOI:
https://doi.org/10.15446/agron.colomb.v43n3.120180Keywords:
Amazonian cinnamon oil, lemon oil, oxidative stability, Rancimat, shelf life (en)aceite de canela amazónica, aceite de limón, estabilidad oxidativa, Rancimat, vida útil (es)
Downloads
Essential oils are known for their antioxidant properties, which make them a natural alternative for preventing oxidative rancidity in fixed oils. The aim of this research was to analyze the effects of adding essential oils of Mespilodaphne quixos or Citrus limon on the shelf life of sacha inchi (Plukenetia volubilis) oil. We determined oxidative stability using the Rancimat method at 80 and 100°C. We extrapolated the results to 30°C to estimate the oil shelf life under real storage conditions. Analysis of variance was used to evaluate the effects of oil type and bdose (200-800 mg kg-1) on shelf life. The optimal conditions were identified using an optimal design. The oil of sacha inchi is rich in unsaturated fatty acids, mainly cis-13,16-docosadienoic acid (47.16%) and linolenic acid (35.13%), which may undergo reactions that alter the degrees of unsaturation and alter the properties of the oil. The addition of M. quixos and C. limon essential oils significantly increased the oxidative stability of sacha inchi oil. We obtained the best results with the 800 mg kg-1 dose. The M. quixos oil performed better than the C. limon oil, increasing the shelf life of sacha inchi oil by 2.29 years and 2.07 years, respectively, compared to the control.
Los aceites esenciales son reconocidos por sus propiedades antioxidantes, lo que los convierte en una alternativa natural para prevenir la rancidez oxidativa en aceites fijos. El objetivo de esta investigación fue analizar los efectos que tiene la adición de aceites esenciales de Mespilodaphne quixos o Citrus limon sobre la vida útil del aceite de sacha inchi (Plukenetia volubilis). La estabilidad oxidativa se determinó mediante el método Rancimat a 80 y 100°C, y los resultados se extrapolaron a 30°C para estimar la vida útil en condiciones reales de almacenamiento. Se aplicó un análisis de varianza para evaluar el efecto del tipo de aceite y la dosis (200-800 mg kg-1) sobre la vida útil. Las condiciones óptimas se identificaron usando un diseño optimo. El aceite de sacha inchi es rico en ácidos grasos insaturados, principalmente ácido cis-13,16-docosadienoico (47,16%) y ácido linolénico (35,13%), que pueden sufrir reacciones que provoquen cambios en los grados de insaturación y alteren las propiedades del aceite. Con la adición de aceites esenciales de M. quixos y C. limon, se observó un aumento significativo de la estabilidad oxidativa del aceite evaluado. Los mejores resultados se obtuvieron con la dosis de 800 mg kg-1. El aceite de M. quixos se comportó mejor que el de C. limon, aumentando la vida útil del aceite de sacha inchi en 2,29 años y 2,07 años respectivamente en comparación con el control.
References
Adal, E., & Eren, S. (2019). Rosemary and oregano essential oils as natural antioxidants to preserve pistachio puree. Journal of Food Science and Engineering, 9(8), 318–332. https://www.davidpublisher.com/index.php/Home/Article/index?id=41839.html
Aktar, T., & Adal, E. (2019). Determining the Arrhenius kinetics of avocado oil: oxidative stability under rancimat test conditions. Foods, 8(7), Article 236. https://doi.org/10.3390/foods8070236
Amberg, N., & Fogarassy, C. (2019). Green consumer behavior in the cosmetics market. Resources, 8(3), Article 137. https://doi.org/10.3390/resources8030137
AOCS Official Method Cd 12b-92. (n.d.). Estabilidade oxidativa. Scribd. Retrieved 2022, from https://es.scribd.com/document/605835993/AOCS-Method-Cd12b-92-Estabilidade-Oxidativa
Arteaga-Crespo, Y., Ureta-Leones, D., García-Quintana, Y., Montalván, M., Gilardoni, G., & Malagón, O. (2021). Preliminary predictive model of termiticidal and repellent activities of essential oil extracted from Ocotea quixos leaves against Nasutitermes corniger (Isoptera: Termitidae) using one-factor response surface methodology design. Agronomy, 11(6), Article 1249. https://doi.org/10.3390/AGRONOMY11061249
Baj, T., Kowalska, G., Kowalski, R., Szymańska, J., Kai, G., Coutinho, H. D. M., & Sieniawska, E. (2023). Synergistic antioxidant activity of four-component mixture of essential oils: basil, cedarwood, citronella and thyme for the use as medicinal and food ingredient. Antioxidants, 12(3), Article 577. https://doi.org/10.3390/antiox12030577
Bermúdez-del Sol, A., Chuquirima Sarango, G. N., Gallegos Cobo, A. E., & Bravo Sánchez, L. R. (2024). Characterization and antioxidant activity of the essential oil of Mespilodaphne quixos (Lam.) Rohwer (amazonian cinnamon). Interamerican Journal of Health Sciences, 4, Article 102. https://doi.org/10.59471/ijhsc2024102
Bruni, R., Medici, A., Andreotti, E., Fantin, C., Muzzoli, M., Dehesa, M., Romagnoli, C., & Sacchetti, G. (2004). Chemical composition and biological activities of ishpingo essential oil, a traditional Ecuadorian spice from Ocotea quixos (Lam.) Kosterm. (Lauraceae) flower calices. Food Chemistry, 85(3), 415–421. https://doi.org/10.1016/j.foodchem.2003.07.019
Busetta, G., Ponte, M., Barbera, M., Alfonzo, A., Ioppolo, A., Maniaci, G., Guarcello, R., Francesca, N., Palazzolo, E., Bonanno, A., Moschetti, G., Settanni, L., & Gaglio, R. (2022). Influence of Citrus essential oils on the microbiological, physicochemical and antioxidant properties of primosale cheese. Antioxidants, 11(10), Article 2004. https://doi.org/10.3390/antiox11102004
Calleja, M. A., Vieites, J. M., Montero-Meterdez, T., Torres, M. I., Faus, M. J., Gil, A., & Suárez, A. (2013). The antioxidant effect of β-caryophyllene protects rat liver from carbon tetrachlorideinduced fibrosis by inhibiting hepatic stellate cell activation. British Journal of Nutrition, 109(3), 394–401. https://doi.org/10.1017/S0007114512001298
Chabni, A., Bañares, C., & Torres, C. F. (2024). Study of the oxidative stability via Oxitest and Rancimat of phenolic-rich olive oils obtained by a sequential process of dehydration, expeller and supercritical CO2 extractions. Frontiers in Nutrition, 11, Article 1494091. https://doi.org/10.3389/fnut.2024.1494091
Condori, M. A. V., Chagman, G. J. P., Barriga-Sanchez, M., Vilchez, L. F. V., Ursetta, S., Pérez, A. G., & Hidalgo, A. (2019). Effect of tomato (Solanum lycopersicum L.) lycopene-rich extract on the kinetics of rancidity and shelf-life of linseed (Linum usitatissimum L.) oil. Food Chemistry, 302, Article 125327. https://doi.org/10.1016/j.foodchem.2019.125327
Di Rauso Simeone, G., Di Matteo, A., Rao, M. A., & Di Vaio, C. (2020). Variations of peel essential oils during fruit ripening in four lemon (Citrus limon (L.) Burm. F.) cultivars. Journal of the Science of Food and Agriculture, 100(1), 193–200. https://doi.org/10.1002/jsfa.10016
Esmaeili, M., Goli, S. A. H., Shirvani, A., & Shakerardakani, A. (2018). Improving storage stability of pistachio oil packaged in different containers by using rosemary (Rosmarinus officinalis L.) and peppermint (Mentha piperita) essential oils. European Journal of Lipid Science and Technology, 120(4), Article 1700432. https://doi.org/10.1002/ejlt.201700432
Falleh, H., Jemaa, M. B., Saada, M., & Ksouri, R. (2020). Essential oils: A promising eco-friendly food preservative. Food Chemistry, 330, Article 127268. https://doi.org/10.1016/j.foodchem.2020.127268
Flores-Soto, M. E., Corona-Angeles, J. A., Tejeda-Martinez, A. R., Flores-Guzman, P. A., Luna-Mujica, I., Chaparro-Huerta, V., & Viveros-Paredes, J. M. (2021). β-Caryophyllene exerts protective antioxidant effects through the activation of NQO1 in the MPTP model of Parkinson’s disease. Neuroscience Letters, 742, Article 135534. https://doi.org/10.1016/j.neulet.2020.135534
Gowder, S. J. T., & Devaraj, H. (2006). Effect of the food flavour cinnamaldehyde on the antioxidant status of rat kidney. Basic and Clinical Pharmacology and Toxicology, 99(5), 379–382. https://doi.org/10.1111/j.1742-7843.2006.pto_560.x
Hung, Y. H. R., Lin, H. J., Lee, E. C., Lu, W. J., Lin, Y. T., Huang, B. B., Lin, T. C., & Lin, H. T. V. (2023). Effect of lemon essential oil on the microbial control, physicochemical properties, and aroma profiles of peeled shrimp. LWT – Food Science and Technology, 173, Article 114340. https://doi.org/10.1016/J.LWT.2022.114340
Kačániová, M., Čmiková, N., Vukovic, N. L., Verešová, A., Bianchi, A., Garzoli, S., Saad, R. B., Hsouna, A. B., Ban, Z., & Vukic, M. D. (2024). Citrus limon essential oil: chemical composition and selected biological properties focusing on the antimicrobial (in vitro, in situ), antibiofilm, insecticidal activity and preservative effect against Salmonella enterica inoculated in carrot. Plants, 13(4), Article 524. https://doi.org/10.3390/plants13040524
Liu, T., Gao, Z., Zhong, W., Fu, F., Li, G., Guo, J., & Shan, Y. (2022). Preparation, characterization, and antioxidant activity of nanoemulsions incorporating lemon essential oil. Antioxidants, 11(4), Article 650. https://doi.org/10.3390/antiox11040650
López-Mata, M. A., Ruiz-Cruz, S., Ornelas-Paz, J. J., Del Toro-Sánchez, C. L., Márquez-Ríos, E., Silva Beltrán, N. P., Cira-Chávez, L. A., & Burruel-Ibarra, S. E. (2018). Mechanical, barrier and antioxidant properties of chitosan films Incorporating cinnamaldehyde. Journal of Polymers and the Environment, 26(2), 452–461. https://doi.org/10.1007/s10924-017-0961-1
Lourith, N., Kanlayavattanakul, M., & Chaikul, P. (2023). Sacha inchi: the promising source of functional oil for anti-aging product. Journal of Oleo Science, 73(4), 429–435. https://doi.org/10.5650/jos.ess23147
Molania, T., Moghadamnia, A. A., Pouramir, M., Aghel, S., Moslemi, D., Ghassemi, L., & Motallebnejad, M. (2012). The effect of cinnamaldehyde on mucositis and salivary antioxidant capacity in gamma-irradiated rats (a preliminary study). DARU Journal of Pharmaceutical Sciences, 20(1), Article 89. https://doi.org/10.1186/2008-2231-20-89
Moosavy, M. H., Hassanzadeh, P., Mohammadzadeh, E., Mahmoudi, R., Khatibi, S. A., & Mardani, K. (2017). Antioxidant and antimicrobial activities of essential oil of lemon (Citrus limon) peel in vitro and in a food model. Journal of Food Quality and Hazards Control, 4(2), 42–48. https://www.researchgate.net/publication/323970463_Antioxidant_and_antimicrobial_activities_of_essential_oil_of_lemon_Citrus_limon_peel_in_vitro_and_in_a_food_model
Morsy, M. K., Sami, R., Algarni, E., Al-Mushhin, A. A. M., Benajiba, N., Almasoudi, A. G., & Mekawi, E. (2022). Phytochemical profile and antioxidant activity of sesame seed (Sesamum indicum) by-products for stability and shelf life improvement of refined olive oil. Antioxidants, 11(2), Article 338. https://doi.org/10.3390/antiox11020338
Naveena, B. M., Muthukumar, M., Sen, A. R., Praveen Kumar, Y., & Kiran, M. (2014). Use of cinnamaldehyde as a potential antioxidant in ground spent hen meat. Journal of Food Processing and Preservation, 38(4), 1911–1917. https://doi.org/10.1111/jfpp.12163
Neta, M. C. S., Vittorazzi, C., Guimarães, A. C., Martins, J. D. L., Fronza, M., Endringer, D. C., & Scherer, R. (2017). Effects of β-caryophyllene and Murraya paniculata essential oil in the murine hepatoma cells and in the bacteria and fungi 24-h time-kill curve studies. Pharmaceutical Biology, 55(1), 190–197. https://doi.org/10.1080/13880209.2016.1254251
Odjo, K., Al-Maqtari, Q. A., Yu, H., Xie, Y., Guo, Y., Li, M., Du, Y., Liu, K., Chen, Y., & Yao, W. (2022). Preparation and characterization of chitosan-based antimicrobial films containing encapsulated lemon essential oil by ionic gelation and cranberry juice. Food Chemistry, 397, Article 133781. https://doi.org/10.1016/J.FOODCHEM.2022.133781
Ormachea, C., & Ferretti, C. A. (2022). In silico evaluation of antioxidant properties of cinnamaldehyde phenylhydrazone. Chemistry Proceedings, 8(10), 2–6. https://doi.org/10.3390/ecsoc-25-11711
Ortiz Calderón, F. G., Silva Ortiz, Y. L., & Galeano García, P. L. (2018). Chemical composition and antioxidant and antibacterial activity of Ocotea quixos. Revista Cubana de Plantas Medicinales, 23(4). https://revplantasmedicinales.sld.cu/index.php/pla/article/view/562
Pino, J. A., Fon-Fay, F. M., Falco, A. S., Pérez, J. C., Hernández, I., Rodeiro, I., & Fernández, M. D. (2018). Chemical composition and biological activities of essential oil from Ocotea quixos (Lam.) Kosterm. leaves grown wild in Ecuador. American Journal of Essential Oils and Natural Products, 6(1), 31–34. https://www.essencejournal.com/archives/2018/6/1/A/5-4-5A
Pisoschi, A. M., Pop, A., Iordache, F., Stanca, L., Predoi, G., & Serban, A. I. (2021). Oxidative stress mitigation by antioxidants – An overview on their chemistry and influences on health status. European Journal of Medicinal Chemistry, 209, Article 112891. https://doi.org/10.1016/j.ejmech.2020.112891
Rezvankhah, A., Emam-Djomeh, Z., & Askari, G. (2020). Encapsulation and delivery of bioactive compounds using spray and freeze-drying techniques: A review. Drying Technology, 38(1–2), 235–258. https://doi.org/10.1080/07373937.2019.1653906
Romero-Hidalgo, L. E., Valdiviezo-Rogel, C. J., & Bonilla-Bermeo, S. M. (2019). Caracterización del aceite de la semilla de Sacha Inchi (Plukenetia volubilis) del cantón San Vicente, Manabí, Ecuador, obtenida mediante procesos no térmicos de extrusión. La Granja: Revista de Ciencias de la Vida, 30(2), 77–87. https://doi.org/10.17163/lgr.n30.2019.07
Scherer, M. M. C., Marques, F. M., Figueira, M. M., Peisino, M. C. O., Schmitt, E. F. P., Kondratyuk, T. P., Endringer, D. C., Scherer, R., & Fronza, M. (2019). Wound healing activity of terpinolene and α-phellandrene by attenuating inflammation and oxidative stress in vitro. Journal of Tissue Viability, 28(2), 94–99. https://doi.org/10.1016/j.jtv.2019.02.003
Shah, B. B., & Mehta, A. A. (2018). In vitro evaluation of antioxidant activity of d-limonene. Asian Journal of Pharmacy and Pharmacology, 4(6), 883–887. https://doi.org/10.31024/ajpp.2018.4.6.25
Sosa, L., Espinoza, L. C., Valarezo, E., Bozal, N., Calpena, A., Fábrega, M., Baldomà, L., Rincón, M., & Mallandrich, M. (2023). Therapeutic applications of essential oils from native and cultivated ecuadorian plants: cutaneous candidiasis and dermal anti-inflammatory activity. Molecules, 28(15), Article 5903. https://doi.org/10.3390/molecules28155903
Suryanti, V., Wibowo, F. R., Khotijah, S., & Andalucki, N. (2018). Antioxidant activities of cinnamaldehyde derivatives. IOP Conference Series: Materials Science and Engineering, 333(1), Article 012077. https://doi.org/10.1088/1757-899X/333/1/012077
Trif, L. (2024). Ecology and trends in the development of cosmetic brands and their impact on future makeup. Věda A Perspektivy, 7(38), 279–288. https://doi.org/10.52058/2695-1592-2024-7(38)-279-288
Valarezo, E., Toledo-Ruiz, L., Coque-Saetama, W., Caraguay-Martínez, A., Jaramillo-Fierro, X., Cumbicus, N., & Meneses, M. A. (2025). Chemical composition, enantiomeric distribution and antimicrobial, antioxidant and antienzymatic activities of essential oil from leaves of Citrus x limonia. Molecules, 30(4), Article 937. https://doi.org/10.3390/molecules30040937
Wang, D., Dong, Y., Wang, Q., Wang, X., & Fan, W. (2020). Limonene, the compound in essential oil of nutmeg displayed antioxidant effect in sunflower oil during the deep-frying of Chinese Maye. Food Science and Nutrition, 8(1), 511–520. https://doi.org/10.1002/fsn3.1333
Yang, S. A., Jeon, S. K., Lee, E. J., Shim, C. H., & Lee, I. S. (2012). Comparative study of the chemical composition and antioxidant activity of six essential oils and their components. Natural Product Research, 24(2), 140–151. https://doi.org/10.1080/14786410802496598
Yeasmin, M. S., Uddin, M. J., Dey, S. S., Barmon, J., Ema, N. T., Rana, G. M., Rahman, M. M., Begum, M., Ferdousi, L., Ahmed, S., Khan, M. S., Khatun, M. H., & Muzahid, A. A. (2024). Optimization of green microwave-assisted extraction of essential oil from lemon (Citrus limon) leaves: Bioactive, antioxidant and antimicrobial potential. Current Research in Green and Sustainable Chemistry, 8, Article 100413. https://doi.org/10.1016/j.crgsc.2024.100413
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2025 Agronomía Colombiana

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
© Centro Editorial de la Facultad de Ciencias Agrarias, Universidad Nacional de Colombia
Reproduction and quotation of material appearing in the journal is authorized provided the following are explicitly indicated: journal name, author(s) name, year, volume, issue and pages of the source. The ideas and observations recorded by the authors are their own and do not necessarily represent the views and policies of the Universidad Nacional de Colombia. Mention of products or commercial firms in the journal does not constitute a recommendation or endorsement on the part of the Universidad Nacional de Colombia; furthermore, the use of such products should comply with the product label recommendations.
The Creative Commons license used by Agronomia Colombiana journal is: Attribution - NonCommercial - ShareAlike (by-nc-sa)

Agronomia Colombiana by Centro Editorial of Facultad de Ciencias Agrarias, Universidad Nacional de Colombia is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional License.
Creado a partir de la obra en http://revistas.unal.edu.co/index.php/agrocol/.







