Influence of naphthaleneacetic acid on the yield and bunch composition of the interspecific O × G hybrid of oil palm
Influencia del ácido naftalenacético en el rendimiento y la composición del racimo del híbrido interespecífico O × G de palma de aceite
DOI:
https://doi.org/10.15446/agron.colomb.v43n2.120605Keywords:
auxins, Elaeis oleifera (Kunth) Cortés × Elaeis guineensis Jacq., oil palm hybrid, artificial pollination, parthenocarpic fruits, oil production (en)auxinas, Elaeis oleifera (Kunth) Cortés × Elaeis guineensis Jacq., híbrido de palma de aceite, polinización artificial,, frutos partenocárpicos, producción de aceite (es)
Downloads
The interspecific hybrid O × G of oil palm is a promising genotype whose cultivated area in Colombia has increased in recent years due to its high productivity attributed to the formation of parthenocarpic fruits and its outstanding diseases tolerance. This study aimed to evaluate the effect of two forms of naphthaleneacetic acid, applied at different concentrations, on bunch composition variables that explain the yield of oil palm hybrids. A split-plot experimental design was employed, where the main factor was the type of auxins and the subfactor was dosage. A total of 31 bunch composition variables were evaluated through correlation analysis, principal component analysis, and a predictive yield model. Oil production was primarily associated with fruit set, bunch weight, and the weight of parthenocarpic fruits. There was no significant correlation with normal fruit traits such as seed weight or the kernel and seed-to-fruit ratio. The proposed model successfully explains oil yield based on the evaluated variables, which were influenced by the type and dose of auxin. The optimal response was obtained with 450 mg L−¹ of sodium salt naphthaleneacetic acid (NAAS) and 1200 mg L−¹ of naphthaleneacetic acid (NAA). These treatments promoted an ideal fruit set, increased parthenocarpic fruit weight, bunch weight, and oil-to-bunch ratio, as reflected in yield. These findings confirm the potential of auxins to enhance productivity and offer valuable insights for genetic improvement and the sustainability of oil palm cultivation.
El híbrido interespecífico O × G de palma de aceite es un genotipo promisorio cuya área de siembra en Colombia ha aumentado en los últimos años debido a su elevada productividad atribuida a la formación de frutos partenocárpicos y a su sobresaliente tolerancia a enfermedades. Esta investigación tuvo como objetivo determinar el efecto de dos moléculas de ácido naftalenacético, aplicadas en diferentes concentraciones, sobre las variables de composición del racimo que explican el rendimiento del híbrido de palma de aceite. Se empleó un diseño experimental de parcelas divididas, donde el factor principal fue el tipo de auxinas y el subfactor fue la dosis. Se evaluaron un total de 31 variables de composición del racimo mediante análisis de correlación, análisis de componentes principales y un modelo predictivo de rendimiento. La producción de aceite se asoció principalmente con el cuajado, el peso del racimo y el peso de los frutos partenocárpicos. No hubo correlación significativa con los rasgos normales de los frutos, como el peso de las semillas o la relación entre el grano y la semilla y el fruto. El modelo propuesto explica con éxito el rendimiento de aceite basándose en las variables evaluadas, que se vieron influidas por el tipo y la dosis de auxina. La mejor respuesta se obtuvo con 450 mg L−¹ de sal sódica de ácido naftalenacético (SANA) y con 1200 mg L−¹ de ácido naftalenacético (ANA), tratamientos que promovieron el llenado de los frutos, incrementaron el peso de los frutos partenocárpicos y del racimo, así como el porcentaje de aceite en racimo, reflejándose en un mayor rendimiento. Estos resultados confirman el potencial de las auxinas para mejorar la productividad y aportan información clave para el mejoramiento genético y la sostenibilidad del cultivo.
References
Arias, D., González, M., Prada, F., Ayala-Diaz, I., Montoya, C., Daza, E., & Romero, H. M. (2015). Genetic and phenotypic diversity of natural American oil palm (Elaeis oleifera (H.B.K.) Cortés) accessions. Tree Genetics & Genomes, 11(6), Article 122. https://doi.org/10.1007/s11295-015-0946-y
Avila-Diazgranados, R. A., Daza, E. S., Navia, E., & Romero, H. M. (2016). Response of various oil palm materials (Elaeis guineensis and Elaeis oleifera × Elaeis guineensis interspecific hybrids) to bud rot disease in the southwestern oil palm-growing area of Colombia. Agronomía Colombiana, 34(1), Article 53760. https://doi.org/10.15446/agron.colomb.v34n1.53760
Azzeme, A. M., Abdullah, S. N. A., Aziz, M. A., & Megat Wahab, P. E. (2020). Overexpression of oil palm EgDREB1 in tomato decreased fruit size and produced parthenocarpic fruits. Biologia Plantarum, 64(1), 58−67. https://doi.org/10.32615/bp.2019.084
Basyuni, M., Amri, N., Putri, L. A. P., Syahputra, I., & Arifiyanto, D. (2017). Characteristics of fresh fruit bunch yield and the physicochemical qualities of palm oil during storage in North Sumatra, Indonesia. Indonesian Journal of Chemistry, 17(2), 182−190. https://doi.org/10.22146/ijc.24910
Bennett, T., & Leyser, O. (2014). The auxin question: A philosophical overview. In E. Zažímalová, J. Petrášek, & E. Benková (Eds.), Auxin and its role in plant development (pp. 3−19). Springer. https://doi.org/10.1007/978-3-7091-1526-8_1
Campanoni, P., & Nick, P. (2005). Auxin-dependent cell division and cell elongation. 1-naphthaleneacetic acid and 2,4-dichlorophenoxyacetic acid activate different pathways. Plant Physiology, 137(3), 939−948. https://doi.org/10.1104/pp.104.053843
Cayón Salinas, D. G., Ligarreto Moreno, G. A., Magnitskiy, S., Rosero, G., & Leguizamón, O. (2022). Application of naphthalene acetic acid and gibberellic acid favours fruit induction and development in oil palm hybrid (Elaeis oleifera x Elaeis guineensis). Experimental Agriculture, 58, Article e35. https://doi.org/10.1017/s001447972200031x
Chew, C. L., Ng, C. Y., Hong, W. O., Wu, T. Y., Lee, Y.-Y., Low, L. E., Kong, P. S., & Chan, E. S. (2021). Improving sustainability of palm oil production by increasing oil extraction rate: a review. Food and Bioprocess Technology, 14(4), 573−586. https://doi.org/10.1007/s11947-020-02555-1
Corley, R. H. V., & Tiker, P. B. (2015). The origin and development of the oil palm industry. In R. H. V. Corley, & P. Tinker (Eds.), The oil palm (pp. 1−29). John Wiley & Sons Ltd. https://doi.org/10.1002/9781118953297.ch1
Daza, E., Ayala-Díaz, I., Ruiz-Romero, R., & Romero, H. M. (2020). Effect of the application of plant hormones on the formation of parthenocarpic fruits and oil production in oil palm interspecific hybrids (Elaeis oleifera Cortes x Elaeis guineensis Jacq.). Plant Production Science, 24(3), 354−362. https://doi.org/10.1080/1343943X.2020.1862681
Fedepalma. (2015). Anuario estadístico 2015: la agroindustria de la palma de aceite en Colombia y en el mundo 2010−2014. https://publicaciones.fedepalma.org/index.php/anuario/article/view/11721
Fedepalma. (2021). Anuario estadístico 2021: principales cifras de la agroindustria de la palma de aceite en Colombia y en el mundo 2016−2020. https://publicaciones.fedepalma.org/index.php/anuario/issue/view/1556
Harun, M. H., & Roslan Md Noor, M. (2002). Fruit set and oil palm bunch components. Journal of Oil Palm Research, 14(2), 24−33. https://jopr.mpob.gov.my/fruit-setand-oil-palm-bunch-components
Henson, I. E., & Dolmat, M. T. (2004). Seasonal variation in yield and developmental processes in an oil palm density trial on a peat soil: 2. Bunch weight components. Journal of Oil Palm Research, 16(2), 106−120. https://jopr.mpob.gov.my/seasonal-variation-in-yield-and-developmental-processes-in-an-oil-palm-density-trial-on-a-peat-soil-2-bunch-weightcomponents
Hormaza Martínez, P. A., Forero Hernández, D. C., Ruiz Romero, R., & Romero Angulo, H. M. (2010). Fenología de la palma de aceite africana (Elaeis guineensis Jacq.) y del híbrido interespecífico (Elaeis oleifera [Kunt] Cortes x Elaeis guineensis Jacq.). Cenipalma. https://repositorio.fedepalma.org/handle/123456789/80999
Hormaza, P., Mesa Fuquen, E., & Romero, H. M. (2012). Phenology of the oil palm interspecific hybrid Elaeis oleifera × Elaeis guineensis. Scientia Agricola, 69(4), 275−280. https://doi.org/10.1590/S0103-90162012000400007
Htwe, Y. M., Shi, P., Zhang, D., Li, Z., Xiao, Y., Yang, Y., Lei, X., & Wang, Y. (2022). Programmed cell death may be involved in the seedless phenotype formation of oil palm. Frontiers in Plant Science, 13, Article 832017. https://doi.org/10.3389/fpls.2022.832017
Jain, A. K. (1988). Algorithms for clustering data. Prentice Hall.
Jolliffe, I. T. (2002). Principal component analysis for special types of data. In I. T. Jolliffe (Ed.), Principal component analysis (2nd ed., pp. 338−372). Springer. https://doi.org/10.1007/0-387-22440-8_13
Krualee, S., Sdoodee, S., Eksomtramage, T., & Sereeprasert, V. (2013). Correlation and path analysis of palm oil yield components in oil palm (Elaeis guineensis Jacq.). Agriculture and Natural Resources, 47(4), 528−533. https://li01.tci-thaijo.org/index.php/anres/article/view/243092
Lerner, A. M., Zuluaga, A. F., Chará, J., Etter, A., & Searchinger, T. (2017). Sustainable cattle ranching in practice: moving from theory to planning in Colombia’s livestock sector. Environmental Management, 60(2), 176−184. https://doi.org/10.1007/s00267-017-0902-8
Liu, J., Zhai, R., Liu, F., Zhao, Y., Wang, H., Liu, L., Yang, C., Wang, Z., Ma, F., & Xu, L. (2018). Melatonin induces parthenocarpy by regulating genes in gibberellin pathways of ‘Starkrimson’ pear (Pyrus communis L.). Frontiers in Plant Science, 9, Article 946. https://doi.org/10.3389/fpls.2018.00946
Mandal, N. K., Kumari, K., Kundu, A., Arora, A., Bhowmick, P. K., Iquebal, M. A., Jaiswal, S., Behera, T. K., Munshi, A. D., & Dey, S. S. (2022). Cross-talk between the cytokinin, auxin, and gibberellin regulatory networks in determining parthenocarpy in cucumber. Frontiers in Genetics, 13, Article 957360. https://doi.org/10.3389/fgene.2022.957360
Mellor, N., Band, L. R., Pěnčík, A., Novák, O., Rashed, A., Holman, T., Wilson, M. H., Voß, U., Bishopp, A., King, J. R., Ljung, K., Bennett, M. J., & Owen, M. R. (2016). Dynamic regulation of auxin oxidase and conjugating enzymes AtDAO1 and GH3 modulates auxin homeostasis. Proceedings of the National Academy of Sciences, 113(39), 11022–11027. https://doi.org/10.1073/pnas.1604458113
Montoya, C., Mejia-Alvarado, F. S., Botero-Rozo, D., Ayala-Diaz, I. M., & Romero, H. M. (2023). Parthenocarpy-related genes induced by naphthalene acetic acid in oil palm interspecific O × G [Elaeis oleifera (Kunth) Cortés × Elaeis guineensis Jacq.] hybrids. Frontiers in Genetics, 14, Article 1099489. https://doi.org/10.3389/fgene.2023.1099489
Mosquera-Montoya, M., Camperos, J. E., Ruiz, E., Hernández, D., García, A., Vargas, L. E., Mesa, E., Munévar, D., & Sinisterra, K. (2023). Evidence of sustainable intensification in the production of palm oil from crops planted with Elaeis oleifera x Elaeis guineensis in Colombia. Frontiers in Sustainable Food Systems, 7, Article 1217653. https://doi.org/10.3389/fsufs.2023.1217653
Murphy, D. J., Goggin, K., & Paterson, R. R. M. (2021). Oil palm in the 2020s and beyond: challenges and solutions. CABI Agriculture and Bioscience, 2(1), Article 39. https://doi.org/10.1186/s43170-021-00058-3
Nieto Mogollon, D. I., Venturini, O. J., Ocampo Batlle, E. A., Martinez González, A., Munar-Florez, D. A., Ramirez-Contreras, N. E., García-Nuñez, J. A., Borges, P. T., & Silva Lora, E. E. (2024). Environmental and energy issues in biodiesel production using palm oil from the interspecific hybrid OxG and Elaeis guineensis: a case study in Colombia. Oilseeds and fats, Crops and Lipids- OCL, 31, Article 25. https://doi.org/10.1051/ocl/2024020
Pandolfini, T., Molesini, B., & Spena, A. (2007). Molecular dissection of the role of auxin in fruit initiation. Trends in Plant Science, 12(8), 327−329. https://doi.org/10.1016/j.tplants.2007.06.011
Pearson, K. (1900). I. Mathematical contributions to the theory of evolution. – VII. On the correlation of characters not quantitatively measurable. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 195(262-273), 1−47. https://doi.org/10.1098/rsta.1900.0022
Perrot-Rechenmann, C. (2010). Cellular responses to auxin: Division versus expansion. Cold Spring Harbor Perspectives in Biology, 2(5), Article a001446. https://doi.org/10.1101/cshperspect.a001446
Pirker, J., Mosnier, A., Kraxner, F., Havlík, P., & Obersteiner, M. (2016). What are the limits to oil palm expansion? Global Environmental Change, 40, 73−81. https://doi.org/10.1016/j.gloenvcha.2016.06.007
Prada C., F., & Romero, H. M. (2012). Muestreo y análisis de racimos en el cultivo de la palma de aceite. Tecnologías para la agroindustria de la palma de aceite: guía para facilitadores. Javegraf, Bogotá, Colombia. https://repositorio.fedepalma.org/handle/123456789/107697
Rincón, S. M., Hormaza, P. A., Moreno, L. P., Prada, F., Portillo, D. J., García, J. A., & Romero, H. M. (2013). Use of phenological stages of the fruits and physicochemical characteristics of the oil to determine the optimal harvest time of oil palm interspecific OxG hybrid fruits. Industrial Crops and Products, 49, 204−210. https://doi.org/10.1016/j.indcrop.2013.04.035
Rios, S. A., Cunha, R. N. V., Lopes, R., Barcelos, E., Rocha, R. N. C., & Lima, W. A. A. (2018). Correlation and Path analysis for yield components in Dura oil palm germplasm. Industrial Crops and Products, 112, 724−733. https://doi.org/10.1016/j.indcrop.2017.12.054
Romero, H. M., Daza, E., Ayala-Díaz, I., & Ruiz-Romero, R. (2021). High-oleic palm oil (hopo) production from parthenocarpic fruits in oil palm interspecific hybrids using naphthalene acetic acid. Agronomy, 11(2), Article 290. https://doi.org/10.3390/agronomy11020290
Romero, H. M., Ruiz-Romero, R., Caicedo-Zambrano, A. F., Ayala- Diaz, I., & Rodríguez, J. L. (2025). Determining the optimum harvest point in oil palm interspecific hybrids (O×G) to maximize oil content. Agronomy, 15(4), Article 887. https://doi.org/10.3390/agronomy15040887
Rosero, G., Santacruz, L., & Carvajal, S. (2017). Influencia del destape de la inflorescencia en la polinización asistida del híbrido OxG. Palmas, 38(1), 49−62. https://publicaciones.fedepalma.org/index.php/palmas/article/view/12044
Ruiz-Alvarez, E., Daza, E. S., Caballero-Blanco, K., & Mosquera-Montoya, M. (2021). Complementing assisted pollination with artificial pollination in oil palm crops planted with interspecific hybrids O × G (Elaeis guineensis × Elaeis oleifera): Is it profitable? Oilseeds and fats, Crops and Lipids – OCL, 28, Article 27. https://doi.org/10.1051/ocl/2021014
SAS – Statistical Analysis Software Institute Inc. (2013). The statistical analysis software (SAS®) version 9.04. SAS Institute Inc., Cary.
Sekaran, U., Lai, L., Ussiri, D. A. N., Kumar, S., & Clay, S. (2021). Role of integrated crop-livestock systems in improving agriculture production and addressing food security – A review. Journal of Agriculture and Food Research, 5, Article 100190. https://doi.org/10.1016/j.jafr.2021.100190
Singh, R., Low, E.-T. L., Ooi, L. C.-L., Ong-Abdullah, M., Nookiah, R., Ting, N.-C., Marjuni, M., Chan, P.-L., Ithnin, M., Manaf, M. A. A., Nagappan, J., Chan, K.-L., Rosli, R., Halim, M. A., Azizi, N., Budiman, M. A., Lakey, N., Bacher, B., Van Brunt, A., …, & Sambanthamurthi, R. (2014). The oil palm VIRESCENS gene controls fruit colour and encodes a R2R3-MYB. Nature Communications, 5(1), Article 4106. https://doi.org/10.1038/ncomms5106
Socha, J., Cayón, D., Ligarreto, G., & Chaves, G. (2019). Effect of pollen doses on fruit formation and oil production in two hybrid palm genotypes (Elaeis oleifera H.B.K. Cortes x Elaeis guineensis Jacq.). Agronomía Colombiana, 37(1), 12−17. https://doi.org/10.15446/agron.colomb.v37n1.75313
Somyong, S., Walayaporn, K., Jomchai, N., Naktang, C., Yodyingyong, T., Phumichai, C., Pootakham, W., & Tangphatsornruang, S. (2018). Transcriptome analysis of oil palm inflorescences revealed candidate genes for an auxin signaling pathway involved in parthenocarpy. PeerJ, 6, Article e5975. https://doi.org/10.7717/peerj.5975
Swaray, S., Amiruddin, M. D., Rafii, M. Y., Jamian, S., Ismail, M. F., Jalloh, M., Eswa, M., Marjuni, M., Akos, I. S., & Yusuff, O. (2021). Oil palm inflorescence sex ratio and fruit set assessment in dura × pisifera biparental progenies on fibric peat soil. Agronomy, 11(7), Article 1380. https://doi.org/10.3390/agronomy11071380
Taiz, L., Zeiger, E., Møller, I. M., & Murphy, A. S. (2017). Fisiologia e desenvolvimento vegetal (6th ed.). Artmed.
Tanya, P., Hadkam, Y., Taeprayoon, P., & Srinives, P. (2013). Estimates of repeatability and path coefficient of bunch and fruit traits in Bang Boet Dura oil palm. Journal of Oil Palm Research, 25(1), 108−115. https://jopr.mpob.gov.my/wp-content/uploads/2013/10/joprv25april2013-Patcharin1.pdf
Thomas, R. L., Seth, A. K., Chan, K. W., & Ooi, S. C. (1973). Induced parthenocarpy in the oil-palm. Annals of Botany, 37(3), 447–452. https://doi.org/10.1093/oxfordjournals.aob.a084711
Van Hintum, Th. J. L., Brown, A. H. D., Spillane, C., & Hodgkin, T. (2000). Core collections of plant genetic resources (Technical Bulletin No. 3). International Plant Genetic Resources Institute IPGRI. Rome, Italy. https://research.wur.nl/en/publications/core-collections-of-plant-genetic-resources
Zhang, S., Gu, X., Shao, J., Hu, Z., Yang, W., Wang, L., Su, H., & Zhu, L. (2021). Auxin metabolism is involved in fruit set and early fruit development in the parthenocarpic tomato “R35-P”. Frontiers in Plant Science, 12, Article 671713. https://doi.org/10.3389/fpls.2021.671713
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2025 Agronomía Colombiana

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
© Centro Editorial de la Facultad de Ciencias Agrarias, Universidad Nacional de Colombia
Reproduction and quotation of material appearing in the journal is authorized provided the following are explicitly indicated: journal name, author(s) name, year, volume, issue and pages of the source. The ideas and observations recorded by the authors are their own and do not necessarily represent the views and policies of the Universidad Nacional de Colombia. Mention of products or commercial firms in the journal does not constitute a recommendation or endorsement on the part of the Universidad Nacional de Colombia; furthermore, the use of such products should comply with the product label recommendations.
The Creative Commons license used by Agronomia Colombiana journal is: Attribution - NonCommercial - ShareAlike (by-nc-sa)

Agronomia Colombiana by Centro Editorial of Facultad de Ciencias Agrarias, Universidad Nacional de Colombia is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional License.
Creado a partir de la obra en http://revistas.unal.edu.co/index.php/agrocol/.







