Published

2026-02-17

The position in the canopy affects the quality of tropical and subtropical fruits

La posición en el dosel afecta la calidad de frutos tropicales y subtropicales

DOI:

https://doi.org/10.15446/agron.colomb.v44n1.122292

Keywords:

fruit acidity, antioxidants, physiological disorders, cacao diseases, solar radiation, soluble solids (en)
acidez del fruto, antioxidantes, desórdenes fisiológicos, enfermedades, radiación solar, sólidos solubles (es)

Downloads

Authors

The position of tropical and subtropical fruits in the canopy is essential for determining their quality, as it is strongly influenced by solar radiation, which acts directly on the outer canopy or indirectly on the inner canopy. The objective of this review was to examine the role of fruit position within the tree canopy on fruit quality, with an emphasis on tropical and subtropical species. In general, fleshy fruits on the outside of the canopy, which are well exposed to sunlight, are distinguished by their greater firmness and content of total soluble solids, sugars, ascorbic acid, antioxidant activity, phenolics, carotenoids, flavonoids, and color, but also by H2O2 and O2. Meanwhile, fruits inside the canopy not only accumulate higher amounts of the antioxidants peroxidase (POD), ascorbate peroxidase (APX), superoxide dismutase (SOD), and catalase (CAT), but also acidity. Fruit position also influences disease incidence, mainly due to shade and higher humidity within the canopy. At the same time, physiological disorders such as epidermal discoloration, cracking, or wrinkling are more common in fruits exposed to high radiation. The practices that influence the fruit’s exposure to light include pruning, thinning, bagging, and shading nets. Pruning branches and thinning fruits promote light penetration and overall fruit quality. Fruit bagging particularly improves its phytosanitary condition, while shading nets protect the outer fruits from sunburn. The sun-exposed position of the fruits accelerates their ripening, indicating that the canopy position is of great importance in determining the optimal time for harvesting.

La posición de los frutos tropicales y subtropicales en el dosel es muy importante para la determinación de su calidad, siendo influenciada en alto grado por la radiación solar, ya sea de forma directa, en la parte externa de la copa, o indirecta, en la parte interna del árbol. El objetivo de esta revisión fue estudiar el papel que desempeña la posición del fruto en la copa del árbol sobre la calidad del fruto con énfasis en especies tropicales y subtropicales. En general, los frutos en el exterior de la copa, con buena incidencia de la radiación, se distinguen por su mayor firmeza y contenido de sólidos solubles totales, azúcares, ácido ascórbico, actividad antioxidante, fenoles, carotenos, flavonoides y color, pero también de H2O2 y O2. Mientras que los frutos en el interior de la copa no acumulan solamente una mayor cantidad de los antioxidantes peroxidasa (POD), ascorbato peroxidasa (APX), superoxido dismutasa (SOD) y catalasa (CAT), sino también acidez. La posición del fruto influye también en la presencia de enfermedades especialmente por la sombra y mayor humedad en el interior de la copa, mientras que fisiopatías como decoloración, rajado o arrugamiento de la epidermis se observan más en frutos expuestos a alta radiación. Los manejos que influyen en la exposición del fruto a la luz son especialmente la poda, el raleo y el embolsado del fruto, además del sombrío del árbol. La poda de ramas y el raleo de frutos fomentan la entrada de la luz y la calidad en general. El embolsado del fruto mejora especialmente su estado fitosanitario, mientras las polisombras protegen los frutos externos de las quemaduras del sol. La posición soleada del fruto adelanta su maduración, lo que significa que la posición del fruto tiene una gran importancia en la elección del momento óptimo para la cosecha.

References

Abobatta, W. F. (2021). Fruit orchards under climate change conditions: adaptation strategies and management. Journal of Applied Biotechnology and Bioengineering, 8(3), 99‒102. https://doi.org/10.15406/jabb.2021.08.00260

Agustí, M. (2010). Fruticultura. Ediciones Mundi-Prensa, Madrid. https://books.google.com.co/books?id=h9K-xQMXoAQC&printsec=frontcover&hl=es&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false

Akmal, A., Santosa, E., Poerwanto, R., & Dewi, E. S. (2023). The effect of fruit position and bagging treatment on Gamboge disorder in mangosteen (Garcinia mangostana L.). Acta Agriculturae Slovenica, 119(1), 1–9. https://doi.org/10.14720/aas.2023.119.1.2136

Al-Douri, E. F. S., Al-Jubouri, S. H. A., & Owain, M. A. (2021). Effects of position within tree canopy on physical and chemical traits of orange fruits. International Journal of Agricultural and Statistical Sciences, 17(Sup1), 1655−1660. https://www.researchgate.net/publication/358742383_effects_of_position_within_tree_canopy_on_physical_and_chemical_traits_of_orange_fruits

Alvarez-Herrera, J., Balaguera-López, H., & Fischer, G. (2012). Effect of irrigation and nutrition with calcium on fruit cracking of the cape gooseberry (Physalis peruviana L.) in the three strata of the plant. Acta Horticulturae, 928, 163−170. https://doi.org/10.17660/ActaHortic.2012.928.19

Álvarez-Herrera, J. G., Fischer, G., & Jaime-Guerrero, M. (2024). Preharvest calcium and irrigation regime affects postharvest quality of cape gooseberry fruit (Physalis peruviana L.). Journal of Applied Botany and Food Quality, 97, 15−21. https://doi.org/10.5073/JABFQ.2024.097.002

Anderson, N. T., Walsh, K. B., Koirala, A., Wang, Z., Amaral, M. H., Dickinson, G. R., Sinha, P., & Robson, A. J. (2021). Estimation of fruit load in Australian mango orchards using machine vision. Agronomy, 11(9), Article 1711. https://doi.org/10.3390/agronomy11091711

Aregay, N., Belew, D., Zenebe, A., Grima, A., Haile, M., & Gebresamuel, G. (2021). Influences of rootstock and agro-climatic condition on physico-chemical and bioactive compounds of Gunda Gundo orange (Citrus sinensis L. Osbeck) in the Northern Ethiopia. Horticultural Plant Journal, 7(6), 509–519. https://doi.org/10.1016/j.hpj.2021.06.001

Arjona, C., & Santinoni, L. A. (2007). Poda de árboles frutales. In G. O. Sozzi (Ed.), Árboles frutales – Ecofisiología, cultivo y aprovechamiento (pp. 245−282). Editorial Facultad de Agronomía, Universidad de Buenos Aires, Argentina.

Asrey, R., Pal, R. K., Sagar, V. R., & Patel, V. B. (2007). Impact of tree age and canopy position on fruit quality of guava. Acta Horticulturae, 735, 259−262. https://doi.org/10.17660/ActaHortic.2007.735.34

Balaguera-López, H. E., Fischer, G., & Yahia, E. M. (2024). Environmental conditions during preharvest influence bioactive compounds in fruits: A review with emphasis on tropical and subtropical species. Agronomía Colombiana, 42(3), Article e116951. https://doi.org/10.15446/agron.colomb.v42n3.116951

Casierra-Posada, F., & Fischer, G. (2012). Poda de árboles frutales. In Fischer, G. (Ed.), Manual para el cultivo de frutales en el trópico (pp. 169–185). Produmedios, Bogotá.

Chander, S., & Kurian, R. M. (2019). Effect of crop load, fruit position and shoot vigour on yield and quality of Annona atemoya × Annona squamosa in India. The Journal of Horticultural Science and Biotechnology, 94(4), 507−512. https://doi.org/10.1080/14620316.2019.1592712

Colli-Cortés, P. M., Sandoval-Villa, M., Rodríguez-Mendoza, N., & Guerra-Ramírez, D. (2020). La conductividad eléctrica de la solución nutritiva modifica rendimiento y calidad de frutos de Physalis peruviana. Revista Mexicana Ciencias Agrícolas, 11(4), 953−960. https://cienciasagricolas.inifap.gob.mx/index.php/agricolas/article/view/2108

Cooper, T., Gargiullo, A., Retamales, J., & Streif, J. (2005). Investigation on early softening of kiwi fruit. Acta Horticulturae, 682, 1159−1164. https://doi.org/10.17660/ActaHortic.2005.682.153

Costa, G., Blanke, M. M., & Widmer, A. (2013). Principles of thinning in fruit tree crops – needs and novelties. Acta Horticulturae, 989, 17−26. https://doi.org/10.17660/ActaHortic.2013.998.1

Cronje, P. J. R., Barry, G. H., & Huysamer, M. (2013). Canopy position affects pigment expression and accumulation of flavedo carbohydrates of ‘Nules Clementine’ mandarin fruit, thereby affecting rind condition. Journal of the American Society for Horticultural Science, 138(3), 217–224. https://doi.org/10.21273/JASHS.138.3.217

Diedhiou, P. M., Mbaye, N., Dramé, A., & Samb, P. I. (2007). Alteration of post harvest diseases of mango Mangifera indica through production practices and climatic factors. African Journal of Biotechnology, 6(9), 1087−1094. https://www.ajol.info/index.php/ajb/article/view/57113

El-Sayed, S. A. (2016). Some factors affecting orange fruit splitting of Washington Navel orange under Kaferelshikh conditions. B. The effect of climatic conditions and fruit position on the tree canopy. Journal of Plant Production, 7(3), 339−342. https://jpp.journals.ekb.eg/article_45357_250502105a17574080415413578d3c53.pdf

Fischer, G. (Ed.). (2012). Manual para el cultivo de frutales en el trópico. Produmedios, Bogotá.

Fischer, G., Balaguera-López, H. E., & Álvarez-Herrera, J. (2021). Causes of fruit cracking in the era of climate change. A review. Agronomía Colombiana, 39(2), 196–207. https://doi.org/10.15446/agron.colomb.v39n2.97071

Fischer, G., Balaguera-López, H. E., & Melgarejo, L. M. (2024). Crop physiology of Physalis peruviana. In M. F. Ramadan (Ed.), Handbook of goldenberry (Physalis peruviana): Cultivation, processing and functionality (pp. 101−119). Academic Press. https://doi.org/10.1016/B978-0-443-15433-1.00010-8

Fischer, G., Balaguera-López, H. E., Parra-Coronado, A., & Magnitskiy, S. (2024). Adaptation of fruit trees to different elevations in the tropical Andes. In S. Tripathi, R. Bhadouria, P. Srivastava, R. Singh, & R. S. Devi (Eds.), Ecophysiology of tropical plants - Recent trends and future perspectives (pp. 193−208). CRC Press. https://doi.org/10.1201/9781003335054

Fischer, G., Orduz-Rodríguez, J. O., & Amarante, C. V. T. (2022). Sunburn disorder in tropical and subtropical fruits. A review. Revista Colombiana de Ciencias Hortícolas, 16(3), Article e15703. https://doi.org/10.17584/rcch.2022v16i3.15703

Fischer, G., & Parra-Coronado, A. (2020). Influence of some environmental factors on the feijoa (Acca sellowiana [Berg] Burret): A review. Agronomía Colombiana, 38(3), 388–397. https://doi.org/10.15446/agron.colomb.v38n3.88982

Fischer, G., Parra-Coronado, A., & Balaguera-López, H. E. (2022). Altitude as a determinant of fruit quality with emphasis on the Andean tropics of Colombia. A review. Agronomía Colombiana, 40(2), 212–227. https://doi.org/10.15446/agron.colomb.v40n2.101854

Gasparin, E., Souza, E. G., Uribe-Opazo, M. A., Santos, R. N., Bier, V. A., & Rocha, D. M. (2017). 3D thematic maps of the chemical parameters of orange fruits. Acta Scientiarum Technology, 39(4), 417−423. https://doi.org/10.4025/actascitechnol.v39i4.29575

González, M., & Cuevas, J. (2008). Optimal crop load and positioning of fruit in cherimoya (Annona cherimola Mill.) trees. Scientia Horticulturae, 115(2), 129–134. https://doi.org/10.1016/j.scienta.2007.08.002

Gutiérrez-Villamil, D. A., Magnitskiy, S., & Balaguera-López, H. E. (2024). Physiological and molecular functions of brassinosteroids during fruit development, ripening, and postharvest damage of horticultural products: A review. Postharvest Biology and Technology, 214, Article 112984. https://doi.org/10.1016/j.postharvbio.2024.112984

Hamza, D. M. (2019). Evaluation of fruit positions on tree, chilling injury sensitivity, and antioxidant enzyme activities of (Mangifera indica L. ‘Ewas’) mangos during cold storage. Journal of Plant Production, 10(12), 1103−1110. https://doi.org/10.21608/jpp.2019.77747

Hosomi, A., Miwa, Y., & Mano, T. (2015). Shoot growth and fruit production of ‘Masui Dauphine’ fig trees having high limb position with downward shoots. Journal of the Japanese Society for Horticultural Science, 82(3), 215–221. https://doi.org/10.2503/jjshs1.82.215

Inglese, P., Costanza, P., Gugliuzza, G., Inglese, G., & Liguori G. (2010). Influence of within-tree and environmental factors on fruit quality of cactus pear (Opuntia ficus-indica) in Italy. Fruits, 65(3), 179−189. https://www.cabidigitallibrary.org/doi/10.1051/fruits/2010012

Interdonato, R., Rosa, M., Nieva, C. B., González, J. A., Hilal, M., & Prado, F. E. (2011). Effects of low UV-B doses on the accumulation of UV-B absorbing compounds and total phenolics and carbohydrate metabolism in the peel of harvested lemons. Environmental and Experimental Botany, 70(2-3), 204−211. https://doi.org/10.1016/j.envexpbot.2010.09.006

Jiménez, J., Chiamolera, F. M., Hueso, J. J., & Cuevas, J. (2022). Long preharvest deficit irrigation as a tool to reduce purple spot incidence in ‘Algerie’ loquat. Scientia Horticulturae, 304, Article 111314. https://doi.org/10.1016/j.scienta.2022.111314

Joas, J., Vulcain, E., & Léchaudel, M. (2013). Effect of fruit position in the canopy on physiological age and physicochemical composition of mango ‘Cogshall’. Acta Horticulturae, 992, 123−128. https://doi.org/10.17660/ActaHortic.2013.992.14

Kawphaitoon, S., Isarangkool Na Ayutthaya, S., & Techawongstien, S. (2016). Effect of fruit position on fruit quality of ‘Num Dok Mai Sithong’ mango. Acta Horticulturae, 1111, 335–340. https://doi.org/10.17660/ActaHortic.2016.1111.48

Khandaker, M. M., Amran, N. Q., & Ismail, S. Z. (2017). Effect of canopy position on growth, quality and quantity of Syzygium samarangense (wax apple var. Jambu Madu) fruits. Australian Journal of Crop Science, 11(7), 838−843. https://doi.org/10.21475/ajcs.17.11.07.pne485

Kimeu, E. N., Mutui, T. M., & Opile, W. R. (2012). Influence of fruit canopy position on postharvest quality and longevity of avocado (Persea americana Mill.). Proceedings of Moi University’s 6th Annual International Conference. Moi University, Eldoret, Kenya. https://www.researchgate.net/publication/315481451_Influence_of_Fruit_Canopy_Position_on_Post-harvest_Quality_and_Longevity_of_Avocado_Persea_americana_Mill

Kohout, M., & Crane, J. H. (2004). The influence of within tree position on ‘Arkin’ carambola (Averrhoa carambola L.) fruit quality and number. Proceedings of the Florida State Horticultural Society, 117, 220−223.

Ladaniya, M. S. (2008). Preharvest factors affecting fruit quality and postharvest life. In M. S. Ladaniya (Ed.), Citrus fruit, biology, technology and evaluation (pp. 79–101). Academic Press. https://doi.org/10.1016/B978-012374130-1.50006-1

Lammerich, S., Kunz, A., Damerow, L., & Blanke, M. (2020). Mechanical crop load management (CLM) improves fruit quality and reduces fruit drop and alternate bearing in European plum (Prunus domestica L.). Horticulturae, 6(3), Article 52. https://doi.org/10.3390/horticulturae6030052

Léchaudel, M., & Joas, J. (2007). An overview of preharvest factors influencing mango fruit growth, quality and postharvest behaviour. Brazilian Journal of Plant Physiology, 19(4), 287−298. https://doi.org/10.1590/S1677-04202007000400004

Léchaudel, M., Lopez-Lauri, F., Vidal, V., Sallanon, H., & Joas, J. (2013). Response of the physiological parameters of mango fruit (transpiration, water relations and antioxidant system) to its light and temperature environment. Journal of Plant Physiology, 170(6), 567−576. https://doi.org/10.1016/j.jplph.2012.11.009

Llanos, A. K., & Apaza, W. E. (2021). Distribution of stem-end rot on the canopy in ‘Hass’ avocado trees in two coastal areas in Peru. Peruvian Journal of Agronomy, 5(2), 60–70. https://doi.org/10.21704/pja.v5i2.1771

Lo’ay, A. A. (2010). Influence of mango maturity and location on its behavior during cold storage. Journal of Plant Production, 1(10), 1409−1418. https://jpp.journals.ekb.eg/article_86588_389145eab40344d214aa6ce41da20d64.pdf

Lo’ay, A. A., Mostafa, N. A., Al-Qahtani, S. M., Al-Harbi, N. A., Hassan, S., & Abdein, M. A. (2021). Influence of the position of mango fruit on the tree (Mangifera indica L. cv. Zibda’) on chilling sensitivity and antioxidant enzyme activity. Horticulturae, 7(12), Article 515. https://doi.org/10.3390/horticulturae7120515

López, R., Cano, F. J., Martin‐StPaul, N. K., Cochard, H., & Choat, B. (2021). Coordination of stem and leaf traits define different strategies to regulate water loss and tolerance ranges to aridity. New Phytologist, 230(2), 497–509. https://doi.org/10.1111/nph.17185

Magwaza, L. S., Mditshwa, L., Tesfay, S. Z., & Opara, U. L. (2017). An overview of preharvest factors affecting vitamin C content of citrus fruit. Scientia Horticulturae, 216, 12–21. https://doi.org/10.1016/j.scienta.2016.12.021

Magwaza, L. S., Opara, U. L., Cronje, P. J. R., Landahl, S., & Terry, L. A. (2013). Canopy position affects rind biochemical profile of ‘Nules Clementine’ mandarin fruit during postharvest storage. Postharvest Biology and Technology 86, 300–308. https://doi.org/10.1016/j.postharvbio.2013.07.029

Martínez-Vega, R. R., Fischer, G., Herrera, A., Chaves, B., & Quintero, O. C. (2008). Características físico-químicas de frutos de feijoa influenciadas por la posición en el canopi. Revista Colombiana de Ciencias Hortícolas, 2(1), 21−32. https://doi.org/10.17584/rcch.2008v2i1.1170

Miranda, D. (2012). Establecimiento de huertos frutícolas. In G. Fischer (Ed.), Manual para el cultivo de frutales en el trópico (pp. 99−119). Produmedios, Bogotá.

Montanaro, G., Dichio, B., Xiloyannis, C., & Celano, G. (2006). Light influences transpiration and calcium accumulation in fruit of kiwifruit plants (Actinidia deliciosa var. deliciosa). Plant Science, 170(3), 520–527. https://doi.org/10.1016/j.plantsci.2005.10.004

Muchie, A., & Assefa, F. (2021). Impact of climate change on horticultural crops production and quality: a review. American Journal of Bioscience and Bioengineering, 9(6), 156−161. https://doi.org/10.11648/j.bio.20210906.12

Musacchi, S., & Serra, S. (2018). Apple fruit quality: Overview on pre-harvest factors. Scientia Horticulturae, 234, 409-430. https://doi.org/10.1016/j.scienta.2017.12.057

Neves, C. G., Amaral, D. O. J., Paula, M. F. B., Nascimento, L. S., Costantino, G., Passos, O. S., Santos, M. A., Ollitrault, P., Gesteira, A. S., Luro, F., & Micheli, F. (2018). Characterization of tropical mandarin collection: Implications for breeding related to fruit quality. Scientia Horticulturae, 239, 289–299. https://doi.org/10.1016/j.scienta.2018.05.022

Nordey, T., Léchaudel, M., Genard, M., & Joas, J. (2014). Spatial and temporal variations in mango colour, acidity, and sweetness in relation to temperature and ethylene gradients within the fruit. Journal of Plant Physiology, 171(17), 1555–1563. https://doi.org/10.1016/j.jplph.2014.07.009

Nuncio-Jáuregui, N., Calín-Sánchez, A., Carbonell-Barrachina, A., & Hernández, F. (2014). Changes in quality parameters, proline, antioxidant activity and color of pomegranate (Punica granatum L.) as affected by fruit position within tree, cultivar and ripening stage. Scientia Horticulturae, 165, 181–189. https://doi.org/10.1016/j.scienta.2013.11.021

Olale, K. (2024). Effects of phosphorus and potassium fertilization and fruit canopy position on sugar accumulation in Mangifera indica cv. ‘Kent’ pulp. Journal of Food, Nutrition and Diet Science, 2(1), 41−48. https://doi.org/10.55976/fnds.22024123041-48

Olarewaju, O. O., Magwaza, L. S., Fajinmi, O. O., Fawole, O. A., Plačková, L., & Doležal, K. (2022). Changes in cytokinins and auxins levels in the rind of ‘Nules Clementine’ mandarin as related to the fruit position on the tree and the susceptibility to non-chilling rind breakdown disorder. South African Journal of Botany, 151(Part A), 667−674. https://doi.org/10.1016/j.sajb.2022.10.046

Olarewaju, O. O., Magwaza, L. S., Fawole, O. A., Tesfay, S. Z., & Opara, U. L. (2018). Comparative effects of canopy position on physicochemical properties of ‘Marsh’ grapefruit during non-chilling postharvest cold storage. Scientia Horticulturae, 241, 1–7. https://doi.org/10.1016/j.scienta.2018.06.074

Orduz-Rodríguez, J. O. (2012). Cítricos (Citrus spp.). In G. Fischer (Ed.), Manual para el cultivo de frutales en el trópico (pp. 393−420). Produmedios, Bogotá.

Page, M. J., McKenzie, J, E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., ..., & Moher, D. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. British Medical Journal, 372(71). https://doi.org/10.1136/bmj.n71

Quijada, O., Castellano, G., Casanova, A., Güerere Pereira, P., & Camacho, R. (2012). Evaluación del raleo de frutos malformados e inducción floral sobre el rendimiento y la calidad en el cultivo de mango (Mangifera indica L.), variedad Irwin en la planicie de Maracaibo, estado Zulia, Venezuela. Revista Científica UDO Agrícola, 12(2), 290−297. http://saber.udo.edu.ve/index.php/udoagricola/article/view/3057

Quintero, O. C. (2012). Feijoa (Acca sellowiana Berg). In G. Fischer (Ed.), Manual para el cultivo de frutales en el trópico (pp. 443−473). Produmedios, Bogotá.

Páez Redondo, A. (2003). Deshoje, raleo de frutos y raleo de plantas enfermas, estrategias de manejo sanitario en papaya. Corporación Colombiana de Investigación Agropecuaria – CORPOICA, PRONATTA. https://repository.agrosavia.co/handle/20.500.12324/16593

Paull, R. E., & Duarte, O. (2011). Tropical fruits (2nd ed., Vol. 1). CAB International. https://www.cabidigitallibrary.org/doi/book/10.1079/9781845936723.0000

Paull, R. E., & Duarte, O. (2012). Tropical fruits (2nd ed., Vol. 2.). CAB International. https://www.cabidigitallibrary.org/doi/book/10.1079/9781845937898.0000

Rey, F., Rodrigo, M. J., Diretto, G., & Zacarías, L. (2021). Effect of fruit shading and cold storage on tocopherol biosynthesis and its involvement in the susceptibility of Star Ruby grapefruit to chilling injury. Food Chemistry: Molecular Sciences, 3, Article 100037. https://doi.org/10.1016/j.fochms.2021.100037

Sakhidin, Silva, J. A. T., & Suparto, S. R. (2018). Effect of position of fruits in a tree and number of fruits per panicle on growth and quality of citrus. Journal of Horticultural Research, 26(1), 61–65. https://doi.org/10.2478/johr-2018-0007

Santos Neto, J. P., Leite, G. W. P., Oliveira, G. S., Cunha Júnior, L. C., Gratão, P. L, Morais, C. L. M., & Teixeira, G. H. A. (2018). Cold storage of ‘Palmer’ mangoes sorted based on dry matter content using portable near infrared (VIS-NIR) spectrometer. Journal of Food Processing and Preservation, 42(3), Article e13644. https://doi.org/10.1111/jfpp.13644

Serna-Escolano, V., Giménez, M. J., Serrano, M., Valero, D., García-Pastor, M. E., Dobón-Suarez, A., Gutiérrez-Pozo, M., Giménez-Berenguer, M., & Zapata, P. J. (2024). Fruit position on tree canopy affects fruit quality traits in ‘Sanguinelli’ blood oranges. Horticulturae, 10(9), Article 949. https://doi.org/10.3390/horticulturae10090949

Shezi, S., Magwaza, L. S., Mashilo, J., Tesfay, S. Z., & Mditshwa, A. (2020). Photochemistry and photoprotection of ‘Gem’ avocado (Persea americana Mill.) leaves within and outside the canopy and the relationship with fruit maturity. Journal of Plant Physiology, 246–247, Article 153130. https://doi.org/10.1016/j.jplph.2020.153130

Shezi, S., Magwaza, L. S., Tesfay, S. Z., & Mditshwa, A. (2020). Biochemical changes in response to canopy position of avocado fruit (cv. ‘Carmen’ and ‘Hass’) during growth and development and relationship with maturity. Scientia Horticulturae, 265, Article 109227. https://doi.org/10.1016/j.scienta.2020.109227

Singh, U., Bihari, C., Chowdhury, S., & Bijewar, A. L. (2024). The dynamics of source-sink relationships in fruit tree physiology. The Agriculture Magazine, 3(12), 683−687. https://theagricultureonline.com/wp-content/uploads/2024/09/August-2024-issue.pdf

Sulusoglu Durul, M., & Efe, I. (2023). Effects of canopy position on fruit quality of kiwifruit (cv. Hayward). MAS Journal of Applied Sciences, 8(4), 813–823. https://doi.org/10.5281/zenodo.8407078

Taîbi, A., Rivallan, R., Broussolle, V., Pallet, D., Lortal, S., Meile, J.-C., & Constancias, F. (2021). Terroir is the main driver of the epiphytic bacterial and fungal communities of mango carposphere in Réunion Island. Frontiers in Microbiology, 11, Article 619226. https://doi.org/10.3389/fmicb.2020.619226

Taiz, L., Zeiger, E., Moller, I. A., & Murphy, A. (2017). Fisiologia e desenvolvimento vegetal (6th ed.). Artmed, Porto Alegre.

Tamta, A., Kumar, R., Mishra, D. S., & Kumar, P. (2012). Biochemical changes in guava fruits during storage as affected by different methods of harvesting from different position of tree. HortFlora Research Spectrum, 1(2), 145−148. https://paper.researchbib.com/view/paper/1991

Tavarini, S., Degl’Innocenti, E., Remorini, D., Massai, R., &. Guidi, L. (2009). Polygalacturonase and β-galactosidase activities in Hayward kiwifruit as affected by light exposure, maturity stage and storage time. Scientia Horticulturae, 120, 342–347. https://doi.org/10.1016/j.scienta.2008.11.013

Thakre, M., Verma, M. K., Singh, K., Awasthi, O. P., Verghese, E., & Sharma, V. K. (2015). Effect of nutrition, harvesting date and fruit canopy position on yield and quality of Kinnow mandarin (Citrus nobilis × Citrus deliciosa). The Indian Journal of Agricultural Sciences, 85(11), 1455–1460. https://epubs.icar.org.in/index.php/IJAgS/article/view/53700/22756

Timilsina, K., & Tripathi, K. M. (2019). Chemical quality attributes of mandarin (Citrus reticulata Blanco) as affected by altitude and fruit bearing position in Kavre, Nepal. Archives of Agriculture and Environmental Science, 4(3), 319−325.

Tinyane, P. P., Soundy, P., & Sivakumar, D. (2018). Growing ‘Hass’ avocado fruit under different coloured shade netting improves the marketable yield and affects fruit ripening. Scientia Horticulturae, 230, 43-49. https://doi.org/10.1016/j.scienta.2017.11.020

Trad, M., Gaaliche, B., Renard, C. M. G. C., & Mars, M. (2013). Inter- and intra-tree variability in quality of figs. Influence of altitude, leaf area and fruit position in the canopy. Scientia Horticulturae, 162, 49−54. https://doi.org/10.1016/j.scienta.2013.07.032

Ullah, M. A., & Joyce, D. C. (2024). Avocado (Persea americana cv. ‘Hass’) fruit mineral composition at canopy level towards sustainable quality. Sustainability, 16(2), Article 750. https://doi.org/10.3390/su16020750

Verreynne, J. S., Rabe, E., & Theron, K. I. (2004). Effect of bearing position on fruit quality of mandarin types. South African Journal of Plant and Soil, 21(1), 1−7. https://doi.org/10.1080/02571862.2004.10635014

Wahid, A., Gelani, S., Ashraf, M., & Foolad, M. R. (2007). Heat tolerance in plants: An overview. Environmental and Experimental Botany, 61(3), 199−223. https://doi.org/10.1016/j.envexpbot.2007.05.011

Wang, Y., Wang, W., Fu, H., Yang, Z., & Lu, H. (2022). Detachment patterns and impact characteristics of litchi fruit during vibrational harvesting. Scientia Horticulturae, 295, Article 110836. https://doi.org/10.1016/j.scienta.2021.110836

Wlosek-Stañgret, C. R., Canteros, B. I., Venialgo, C. D., & Prikhodiuk, D. (2016). Differences in soluble solids in Duncan and Parana grapefruit due to fruit section and position in the tree. Citrus Research & Technology, 37(1). https://www.citrusrt.ccsm.br/article/doi/10.4322/crt.ICC027

Youryon, P., & Supapvanich, S. (2019). Effect of canopy positions on physicochemical quality of mandarin fruit cv. ‘Shogun’ during storages. International Journal of Agricultural Technology, 15(1), 183−194. https://www.researchgate.net/publication/330358130_Effect_of_canopy_positions_on_physicochemical_quality_of_Mandarin_Fruit_cv_’Shogun’_during_Storages

Yu, X., White, N., Lisle, A., Cao, S. F., Zhang, Y., Joyce, D. C., & Hofman, P. J. (2016). 3D modelling of mango fruit skin blush in the tree canopy. Acta Horticulturae, 1111, 341–346. https://doi.org/10.17660/ActaHortic.2016.1111.49

Zabedah, M., Yusoff, A., Ridzwan, A. H., Aishah, H., & Fauzi, R. (2007). Effect of fruit canopy position on microenvironment, physical and chemical development of starfruit (Averrhoa carambola) cv. ‘B10’ under protected cultivation. Acta Horticulturae, 761, 243−247. https://doi.org/10.17660/ActaHortic.2007.761.31

Zabedah, M., Yusoff, A. M., Ridzwan, H. M., Fauzi, R. M., & Hassan, S. A. (2009). Effects of fruit canopy position on chemical composition and fruit colour development of starfruit cultivated under netted structure. Journal of Tropical Agriculture and Food Science, 37(2), 135−142.

How to Cite

APA

Fischer, G., Balaguera-López, H. E. & Álvarez-Herrera, J. G. (2026). The position in the canopy affects the quality of tropical and subtropical fruits. Agronomía Colombiana, 44(1), e122292. https://doi.org/10.15446/agron.colomb.v44n1.122292

ACM

[1]
Fischer, G., Balaguera-López, H.E. and Álvarez-Herrera, J.G. 2026. The position in the canopy affects the quality of tropical and subtropical fruits. Agronomía Colombiana. 44, 1 (Jan. 2026), e122292. DOI:https://doi.org/10.15446/agron.colomb.v44n1.122292.

ACS

(1)
Fischer, G.; Balaguera-López, H. E.; Álvarez-Herrera, J. G. The position in the canopy affects the quality of tropical and subtropical fruits. Agron. Colomb. 2026, 44, e122292.

ABNT

FISCHER, G.; BALAGUERA-LÓPEZ, H. E.; ÁLVAREZ-HERRERA, J. G. The position in the canopy affects the quality of tropical and subtropical fruits. Agronomía Colombiana, [S. l.], v. 44, n. 1, p. e122292, 2026. DOI: 10.15446/agron.colomb.v44n1.122292. Disponível em: https://revistas.unal.edu.co/index.php/agrocol/article/view/122292. Acesso em: 21 feb. 2026.

Chicago

Fischer, Gerhard, Helber Enrique Balaguera-López, and Javier Giovanni Álvarez-Herrera. 2026. “The position in the canopy affects the quality of tropical and subtropical fruits”. Agronomía Colombiana 44 (1):e122292. https://doi.org/10.15446/agron.colomb.v44n1.122292.

Harvard

Fischer, G., Balaguera-López, H. E. and Álvarez-Herrera, J. G. (2026) “The position in the canopy affects the quality of tropical and subtropical fruits”, Agronomía Colombiana, 44(1), p. e122292. doi: 10.15446/agron.colomb.v44n1.122292.

IEEE

[1]
G. Fischer, H. E. Balaguera-López, and J. G. Álvarez-Herrera, “The position in the canopy affects the quality of tropical and subtropical fruits”, Agron. Colomb., vol. 44, no. 1, p. e122292, Jan. 2026.

MLA

Fischer, G., H. E. Balaguera-López, and J. G. Álvarez-Herrera. “The position in the canopy affects the quality of tropical and subtropical fruits”. Agronomía Colombiana, vol. 44, no. 1, Jan. 2026, p. e122292, doi:10.15446/agron.colomb.v44n1.122292.

Turabian

Fischer, Gerhard, Helber Enrique Balaguera-López, and Javier Giovanni Álvarez-Herrera. “The position in the canopy affects the quality of tropical and subtropical fruits”. Agronomía Colombiana 44, no. 1 (January 1, 2026): e122292. Accessed February 21, 2026. https://revistas.unal.edu.co/index.php/agrocol/article/view/122292.

Vancouver

1.
Fischer G, Balaguera-López HE, Álvarez-Herrera JG. The position in the canopy affects the quality of tropical and subtropical fruits. Agron. Colomb. [Internet]. 2026 Jan. 1 [cited 2026 Feb. 21];44(1):e122292. Available from: https://revistas.unal.edu.co/index.php/agrocol/article/view/122292

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

19

Downloads

Download data is not yet available.