Published
The position in the canopy affects the quality of tropical and subtropical fruits
La posición en el dosel afecta la calidad de frutos tropicales y subtropicales
DOI:
https://doi.org/10.15446/agron.colomb.v44n1.122292Keywords:
fruit acidity, antioxidants, physiological disorders, cacao diseases, solar radiation, soluble solids (en)acidez del fruto, antioxidantes, desórdenes fisiológicos, enfermedades, radiación solar, sólidos solubles (es)
Downloads
The position of tropical and subtropical fruits in the canopy is essential for determining their quality, as it is strongly influenced by solar radiation, which acts directly on the outer canopy or indirectly on the inner canopy. The objective of this review was to examine the role of fruit position within the tree canopy on fruit quality, with an emphasis on tropical and subtropical species. In general, fleshy fruits on the outside of the canopy, which are well exposed to sunlight, are distinguished by their greater firmness and content of total soluble solids, sugars, ascorbic acid, antioxidant activity, phenolics, carotenoids, flavonoids, and color, but also by H2O2 and O2−. Meanwhile, fruits inside the canopy not only accumulate higher amounts of the antioxidants peroxidase (POD), ascorbate peroxidase (APX), superoxide dismutase (SOD), and catalase (CAT), but also acidity. Fruit position also influences disease incidence, mainly due to shade and higher humidity within the canopy. At the same time, physiological disorders such as epidermal discoloration, cracking, or wrinkling are more common in fruits exposed to high radiation. The practices that influence the fruit’s exposure to light include pruning, thinning, bagging, and shading nets. Pruning branches and thinning fruits promote light penetration and overall fruit quality. Fruit bagging particularly improves its phytosanitary condition, while shading nets protect the outer fruits from sunburn. The sun-exposed position of the fruits accelerates their ripening, indicating that the canopy position is of great importance in determining the optimal time for harvesting.
La posición de los frutos tropicales y subtropicales en el dosel es muy importante para la determinación de su calidad, siendo influenciada en alto grado por la radiación solar, ya sea de forma directa, en la parte externa de la copa, o indirecta, en la parte interna del árbol. El objetivo de esta revisión fue estudiar el papel que desempeña la posición del fruto en la copa del árbol sobre la calidad del fruto con énfasis en especies tropicales y subtropicales. En general, los frutos en el exterior de la copa, con buena incidencia de la radiación, se distinguen por su mayor firmeza y contenido de sólidos solubles totales, azúcares, ácido ascórbico, actividad antioxidante, fenoles, carotenos, flavonoides y color, pero también de H2O2 y O2−. Mientras que los frutos en el interior de la copa no acumulan solamente una mayor cantidad de los antioxidantes peroxidasa (POD), ascorbato peroxidasa (APX), superoxido dismutasa (SOD) y catalasa (CAT), sino también acidez. La posición del fruto influye también en la presencia de enfermedades especialmente por la sombra y mayor humedad en el interior de la copa, mientras que fisiopatías como decoloración, rajado o arrugamiento de la epidermis se observan más en frutos expuestos a alta radiación. Los manejos que influyen en la exposición del fruto a la luz son especialmente la poda, el raleo y el embolsado del fruto, además del sombrío del árbol. La poda de ramas y el raleo de frutos fomentan la entrada de la luz y la calidad en general. El embolsado del fruto mejora especialmente su estado fitosanitario, mientras las polisombras protegen los frutos externos de las quemaduras del sol. La posición soleada del fruto adelanta su maduración, lo que significa que la posición del fruto tiene una gran importancia en la elección del momento óptimo para la cosecha.
References
Abobatta, W. F. (2021). Fruit orchards under climate change conditions: adaptation strategies and management. Journal of Applied Biotechnology and Bioengineering, 8(3), 99‒102. https://doi.org/10.15406/jabb.2021.08.00260
Agustí, M. (2010). Fruticultura. Ediciones Mundi-Prensa, Madrid. https://books.google.com.co/books?id=h9K-xQMXoAQC&printsec=frontcover&hl=es&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false
Akmal, A., Santosa, E., Poerwanto, R., & Dewi, E. S. (2023). The effect of fruit position and bagging treatment on Gamboge disorder in mangosteen (Garcinia mangostana L.). Acta Agriculturae Slovenica, 119(1), 1–9. https://doi.org/10.14720/aas.2023.119.1.2136
Al-Douri, E. F. S., Al-Jubouri, S. H. A., & Owain, M. A. (2021). Effects of position within tree canopy on physical and chemical traits of orange fruits. International Journal of Agricultural and Statistical Sciences, 17(Sup1), 1655−1660. https://www.researchgate.net/publication/358742383_effects_of_position_within_tree_canopy_on_physical_and_chemical_traits_of_orange_fruits
Alvarez-Herrera, J., Balaguera-López, H., & Fischer, G. (2012). Effect of irrigation and nutrition with calcium on fruit cracking of the cape gooseberry (Physalis peruviana L.) in the three strata of the plant. Acta Horticulturae, 928, 163−170. https://doi.org/10.17660/ActaHortic.2012.928.19
Álvarez-Herrera, J. G., Fischer, G., & Jaime-Guerrero, M. (2024). Preharvest calcium and irrigation regime affects postharvest quality of cape gooseberry fruit (Physalis peruviana L.). Journal of Applied Botany and Food Quality, 97, 15−21. https://doi.org/10.5073/JABFQ.2024.097.002
Anderson, N. T., Walsh, K. B., Koirala, A., Wang, Z., Amaral, M. H., Dickinson, G. R., Sinha, P., & Robson, A. J. (2021). Estimation of fruit load in Australian mango orchards using machine vision. Agronomy, 11(9), Article 1711. https://doi.org/10.3390/agronomy11091711
Aregay, N., Belew, D., Zenebe, A., Grima, A., Haile, M., & Gebresamuel, G. (2021). Influences of rootstock and agro-climatic condition on physico-chemical and bioactive compounds of Gunda Gundo orange (Citrus sinensis L. Osbeck) in the Northern Ethiopia. Horticultural Plant Journal, 7(6), 509–519. https://doi.org/10.1016/j.hpj.2021.06.001
Arjona, C., & Santinoni, L. A. (2007). Poda de árboles frutales. In G. O. Sozzi (Ed.), Árboles frutales – Ecofisiología, cultivo y aprovechamiento (pp. 245−282). Editorial Facultad de Agronomía, Universidad de Buenos Aires, Argentina.
Asrey, R., Pal, R. K., Sagar, V. R., & Patel, V. B. (2007). Impact of tree age and canopy position on fruit quality of guava. Acta Horticulturae, 735, 259−262. https://doi.org/10.17660/ActaHortic.2007.735.34
Balaguera-López, H. E., Fischer, G., & Yahia, E. M. (2024). Environmental conditions during preharvest influence bioactive compounds in fruits: A review with emphasis on tropical and subtropical species. Agronomía Colombiana, 42(3), Article e116951. https://doi.org/10.15446/agron.colomb.v42n3.116951
Casierra-Posada, F., & Fischer, G. (2012). Poda de árboles frutales. In Fischer, G. (Ed.), Manual para el cultivo de frutales en el trópico (pp. 169–185). Produmedios, Bogotá.
Chander, S., & Kurian, R. M. (2019). Effect of crop load, fruit position and shoot vigour on yield and quality of Annona atemoya × Annona squamosa in India. The Journal of Horticultural Science and Biotechnology, 94(4), 507−512. https://doi.org/10.1080/14620316.2019.1592712
Colli-Cortés, P. M., Sandoval-Villa, M., Rodríguez-Mendoza, N., & Guerra-Ramírez, D. (2020). La conductividad eléctrica de la solución nutritiva modifica rendimiento y calidad de frutos de Physalis peruviana. Revista Mexicana Ciencias Agrícolas, 11(4), 953−960. https://cienciasagricolas.inifap.gob.mx/index.php/agricolas/article/view/2108
Cooper, T., Gargiullo, A., Retamales, J., & Streif, J. (2005). Investigation on early softening of kiwi fruit. Acta Horticulturae, 682, 1159−1164. https://doi.org/10.17660/ActaHortic.2005.682.153
Costa, G., Blanke, M. M., & Widmer, A. (2013). Principles of thinning in fruit tree crops – needs and novelties. Acta Horticulturae, 989, 17−26. https://doi.org/10.17660/ActaHortic.2013.998.1
Cronje, P. J. R., Barry, G. H., & Huysamer, M. (2013). Canopy position affects pigment expression and accumulation of flavedo carbohydrates of ‘Nules Clementine’ mandarin fruit, thereby affecting rind condition. Journal of the American Society for Horticultural Science, 138(3), 217–224. https://doi.org/10.21273/JASHS.138.3.217
Diedhiou, P. M., Mbaye, N., Dramé, A., & Samb, P. I. (2007). Alteration of post harvest diseases of mango Mangifera indica through production practices and climatic factors. African Journal of Biotechnology, 6(9), 1087−1094. https://www.ajol.info/index.php/ajb/article/view/57113
El-Sayed, S. A. (2016). Some factors affecting orange fruit splitting of Washington Navel orange under Kaferelshikh conditions. B. The effect of climatic conditions and fruit position on the tree canopy. Journal of Plant Production, 7(3), 339−342. https://jpp.journals.ekb.eg/article_45357_250502105a17574080415413578d3c53.pdf
Fischer, G. (Ed.). (2012). Manual para el cultivo de frutales en el trópico. Produmedios, Bogotá.
Fischer, G., Balaguera-López, H. E., & Álvarez-Herrera, J. (2021). Causes of fruit cracking in the era of climate change. A review. Agronomía Colombiana, 39(2), 196–207. https://doi.org/10.15446/agron.colomb.v39n2.97071
Fischer, G., Balaguera-López, H. E., & Melgarejo, L. M. (2024). Crop physiology of Physalis peruviana. In M. F. Ramadan (Ed.), Handbook of goldenberry (Physalis peruviana): Cultivation, processing and functionality (pp. 101−119). Academic Press. https://doi.org/10.1016/B978-0-443-15433-1.00010-8
Fischer, G., Balaguera-López, H. E., Parra-Coronado, A., & Magnitskiy, S. (2024). Adaptation of fruit trees to different elevations in the tropical Andes. In S. Tripathi, R. Bhadouria, P. Srivastava, R. Singh, & R. S. Devi (Eds.), Ecophysiology of tropical plants - Recent trends and future perspectives (pp. 193−208). CRC Press. https://doi.org/10.1201/9781003335054
Fischer, G., Orduz-Rodríguez, J. O., & Amarante, C. V. T. (2022). Sunburn disorder in tropical and subtropical fruits. A review. Revista Colombiana de Ciencias Hortícolas, 16(3), Article e15703. https://doi.org/10.17584/rcch.2022v16i3.15703
Fischer, G., & Parra-Coronado, A. (2020). Influence of some environmental factors on the feijoa (Acca sellowiana [Berg] Burret): A review. Agronomía Colombiana, 38(3), 388–397. https://doi.org/10.15446/agron.colomb.v38n3.88982
Fischer, G., Parra-Coronado, A., & Balaguera-López, H. E. (2022). Altitude as a determinant of fruit quality with emphasis on the Andean tropics of Colombia. A review. Agronomía Colombiana, 40(2), 212–227. https://doi.org/10.15446/agron.colomb.v40n2.101854
Gasparin, E., Souza, E. G., Uribe-Opazo, M. A., Santos, R. N., Bier, V. A., & Rocha, D. M. (2017). 3D thematic maps of the chemical parameters of orange fruits. Acta Scientiarum Technology, 39(4), 417−423. https://doi.org/10.4025/actascitechnol.v39i4.29575
González, M., & Cuevas, J. (2008). Optimal crop load and positioning of fruit in cherimoya (Annona cherimola Mill.) trees. Scientia Horticulturae, 115(2), 129–134. https://doi.org/10.1016/j.scienta.2007.08.002
Gutiérrez-Villamil, D. A., Magnitskiy, S., & Balaguera-López, H. E. (2024). Physiological and molecular functions of brassinosteroids during fruit development, ripening, and postharvest damage of horticultural products: A review. Postharvest Biology and Technology, 214, Article 112984. https://doi.org/10.1016/j.postharvbio.2024.112984
Hamza, D. M. (2019). Evaluation of fruit positions on tree, chilling injury sensitivity, and antioxidant enzyme activities of (Mangifera indica L. ‘Ewas’) mangos during cold storage. Journal of Plant Production, 10(12), 1103−1110. https://doi.org/10.21608/jpp.2019.77747
Hosomi, A., Miwa, Y., & Mano, T. (2015). Shoot growth and fruit production of ‘Masui Dauphine’ fig trees having high limb position with downward shoots. Journal of the Japanese Society for Horticultural Science, 82(3), 215–221. https://doi.org/10.2503/jjshs1.82.215
Inglese, P., Costanza, P., Gugliuzza, G., Inglese, G., & Liguori G. (2010). Influence of within-tree and environmental factors on fruit quality of cactus pear (Opuntia ficus-indica) in Italy. Fruits, 65(3), 179−189. https://www.cabidigitallibrary.org/doi/10.1051/fruits/2010012
Interdonato, R., Rosa, M., Nieva, C. B., González, J. A., Hilal, M., & Prado, F. E. (2011). Effects of low UV-B doses on the accumulation of UV-B absorbing compounds and total phenolics and carbohydrate metabolism in the peel of harvested lemons. Environmental and Experimental Botany, 70(2-3), 204−211. https://doi.org/10.1016/j.envexpbot.2010.09.006
Jiménez, J., Chiamolera, F. M., Hueso, J. J., & Cuevas, J. (2022). Long preharvest deficit irrigation as a tool to reduce purple spot incidence in ‘Algerie’ loquat. Scientia Horticulturae, 304, Article 111314. https://doi.org/10.1016/j.scienta.2022.111314
Joas, J., Vulcain, E., & Léchaudel, M. (2013). Effect of fruit position in the canopy on physiological age and physicochemical composition of mango ‘Cogshall’. Acta Horticulturae, 992, 123−128. https://doi.org/10.17660/ActaHortic.2013.992.14
Kawphaitoon, S., Isarangkool Na Ayutthaya, S., & Techawongstien, S. (2016). Effect of fruit position on fruit quality of ‘Num Dok Mai Sithong’ mango. Acta Horticulturae, 1111, 335–340. https://doi.org/10.17660/ActaHortic.2016.1111.48
Khandaker, M. M., Amran, N. Q., & Ismail, S. Z. (2017). Effect of canopy position on growth, quality and quantity of Syzygium samarangense (wax apple var. Jambu Madu) fruits. Australian Journal of Crop Science, 11(7), 838−843. https://doi.org/10.21475/ajcs.17.11.07.pne485
Kimeu, E. N., Mutui, T. M., & Opile, W. R. (2012). Influence of fruit canopy position on postharvest quality and longevity of avocado (Persea americana Mill.). Proceedings of Moi University’s 6th Annual International Conference. Moi University, Eldoret, Kenya. https://www.researchgate.net/publication/315481451_Influence_of_Fruit_Canopy_Position_on_Post-harvest_Quality_and_Longevity_of_Avocado_Persea_americana_Mill
Kohout, M., & Crane, J. H. (2004). The influence of within tree position on ‘Arkin’ carambola (Averrhoa carambola L.) fruit quality and number. Proceedings of the Florida State Horticultural Society, 117, 220−223.
Ladaniya, M. S. (2008). Preharvest factors affecting fruit quality and postharvest life. In M. S. Ladaniya (Ed.), Citrus fruit, biology, technology and evaluation (pp. 79–101). Academic Press. https://doi.org/10.1016/B978-012374130-1.50006-1
Lammerich, S., Kunz, A., Damerow, L., & Blanke, M. (2020). Mechanical crop load management (CLM) improves fruit quality and reduces fruit drop and alternate bearing in European plum (Prunus domestica L.). Horticulturae, 6(3), Article 52. https://doi.org/10.3390/horticulturae6030052
Léchaudel, M., & Joas, J. (2007). An overview of preharvest factors influencing mango fruit growth, quality and postharvest behaviour. Brazilian Journal of Plant Physiology, 19(4), 287−298. https://doi.org/10.1590/S1677-04202007000400004
Léchaudel, M., Lopez-Lauri, F., Vidal, V., Sallanon, H., & Joas, J. (2013). Response of the physiological parameters of mango fruit (transpiration, water relations and antioxidant system) to its light and temperature environment. Journal of Plant Physiology, 170(6), 567−576. https://doi.org/10.1016/j.jplph.2012.11.009
Llanos, A. K., & Apaza, W. E. (2021). Distribution of stem-end rot on the canopy in ‘Hass’ avocado trees in two coastal areas in Peru. Peruvian Journal of Agronomy, 5(2), 60–70. https://doi.org/10.21704/pja.v5i2.1771
Lo’ay, A. A. (2010). Influence of mango maturity and location on its behavior during cold storage. Journal of Plant Production, 1(10), 1409−1418. https://jpp.journals.ekb.eg/article_86588_389145eab40344d214aa6ce41da20d64.pdf
Lo’ay, A. A., Mostafa, N. A., Al-Qahtani, S. M., Al-Harbi, N. A., Hassan, S., & Abdein, M. A. (2021). Influence of the position of mango fruit on the tree (Mangifera indica L. cv. Zibda’) on chilling sensitivity and antioxidant enzyme activity. Horticulturae, 7(12), Article 515. https://doi.org/10.3390/horticulturae7120515
López, R., Cano, F. J., Martin‐StPaul, N. K., Cochard, H., & Choat, B. (2021). Coordination of stem and leaf traits define different strategies to regulate water loss and tolerance ranges to aridity. New Phytologist, 230(2), 497–509. https://doi.org/10.1111/nph.17185
Magwaza, L. S., Mditshwa, L., Tesfay, S. Z., & Opara, U. L. (2017). An overview of preharvest factors affecting vitamin C content of citrus fruit. Scientia Horticulturae, 216, 12–21. https://doi.org/10.1016/j.scienta.2016.12.021
Magwaza, L. S., Opara, U. L., Cronje, P. J. R., Landahl, S., & Terry, L. A. (2013). Canopy position affects rind biochemical profile of ‘Nules Clementine’ mandarin fruit during postharvest storage. Postharvest Biology and Technology 86, 300–308. https://doi.org/10.1016/j.postharvbio.2013.07.029
Martínez-Vega, R. R., Fischer, G., Herrera, A., Chaves, B., & Quintero, O. C. (2008). Características físico-químicas de frutos de feijoa influenciadas por la posición en el canopi. Revista Colombiana de Ciencias Hortícolas, 2(1), 21−32. https://doi.org/10.17584/rcch.2008v2i1.1170
Miranda, D. (2012). Establecimiento de huertos frutícolas. In G. Fischer (Ed.), Manual para el cultivo de frutales en el trópico (pp. 99−119). Produmedios, Bogotá.
Montanaro, G., Dichio, B., Xiloyannis, C., & Celano, G. (2006). Light influences transpiration and calcium accumulation in fruit of kiwifruit plants (Actinidia deliciosa var. deliciosa). Plant Science, 170(3), 520–527. https://doi.org/10.1016/j.plantsci.2005.10.004
Muchie, A., & Assefa, F. (2021). Impact of climate change on horticultural crops production and quality: a review. American Journal of Bioscience and Bioengineering, 9(6), 156−161. https://doi.org/10.11648/j.bio.20210906.12
Musacchi, S., & Serra, S. (2018). Apple fruit quality: Overview on pre-harvest factors. Scientia Horticulturae, 234, 409-430. https://doi.org/10.1016/j.scienta.2017.12.057
Neves, C. G., Amaral, D. O. J., Paula, M. F. B., Nascimento, L. S., Costantino, G., Passos, O. S., Santos, M. A., Ollitrault, P., Gesteira, A. S., Luro, F., & Micheli, F. (2018). Characterization of tropical mandarin collection: Implications for breeding related to fruit quality. Scientia Horticulturae, 239, 289–299. https://doi.org/10.1016/j.scienta.2018.05.022
Nordey, T., Léchaudel, M., Genard, M., & Joas, J. (2014). Spatial and temporal variations in mango colour, acidity, and sweetness in relation to temperature and ethylene gradients within the fruit. Journal of Plant Physiology, 171(17), 1555–1563. https://doi.org/10.1016/j.jplph.2014.07.009
Nuncio-Jáuregui, N., Calín-Sánchez, A., Carbonell-Barrachina, A., & Hernández, F. (2014). Changes in quality parameters, proline, antioxidant activity and color of pomegranate (Punica granatum L.) as affected by fruit position within tree, cultivar and ripening stage. Scientia Horticulturae, 165, 181–189. https://doi.org/10.1016/j.scienta.2013.11.021
Olale, K. (2024). Effects of phosphorus and potassium fertilization and fruit canopy position on sugar accumulation in Mangifera indica cv. ‘Kent’ pulp. Journal of Food, Nutrition and Diet Science, 2(1), 41−48. https://doi.org/10.55976/fnds.22024123041-48
Olarewaju, O. O., Magwaza, L. S., Fajinmi, O. O., Fawole, O. A., Plačková, L., & Doležal, K. (2022). Changes in cytokinins and auxins levels in the rind of ‘Nules Clementine’ mandarin as related to the fruit position on the tree and the susceptibility to non-chilling rind breakdown disorder. South African Journal of Botany, 151(Part A), 667−674. https://doi.org/10.1016/j.sajb.2022.10.046
Olarewaju, O. O., Magwaza, L. S., Fawole, O. A., Tesfay, S. Z., & Opara, U. L. (2018). Comparative effects of canopy position on physicochemical properties of ‘Marsh’ grapefruit during non-chilling postharvest cold storage. Scientia Horticulturae, 241, 1–7. https://doi.org/10.1016/j.scienta.2018.06.074
Orduz-Rodríguez, J. O. (2012). Cítricos (Citrus spp.). In G. Fischer (Ed.), Manual para el cultivo de frutales en el trópico (pp. 393−420). Produmedios, Bogotá.
Page, M. J., McKenzie, J, E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., ..., & Moher, D. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. British Medical Journal, 372(71). https://doi.org/10.1136/bmj.n71
Quijada, O., Castellano, G., Casanova, A., Güerere Pereira, P., & Camacho, R. (2012). Evaluación del raleo de frutos malformados e inducción floral sobre el rendimiento y la calidad en el cultivo de mango (Mangifera indica L.), variedad Irwin en la planicie de Maracaibo, estado Zulia, Venezuela. Revista Científica UDO Agrícola, 12(2), 290−297. http://saber.udo.edu.ve/index.php/udoagricola/article/view/3057
Quintero, O. C. (2012). Feijoa (Acca sellowiana Berg). In G. Fischer (Ed.), Manual para el cultivo de frutales en el trópico (pp. 443−473). Produmedios, Bogotá.
Páez Redondo, A. (2003). Deshoje, raleo de frutos y raleo de plantas enfermas, estrategias de manejo sanitario en papaya. Corporación Colombiana de Investigación Agropecuaria – CORPOICA, PRONATTA. https://repository.agrosavia.co/handle/20.500.12324/16593
Paull, R. E., & Duarte, O. (2011). Tropical fruits (2nd ed., Vol. 1). CAB International. https://www.cabidigitallibrary.org/doi/book/10.1079/9781845936723.0000
Paull, R. E., & Duarte, O. (2012). Tropical fruits (2nd ed., Vol. 2.). CAB International. https://www.cabidigitallibrary.org/doi/book/10.1079/9781845937898.0000
Rey, F., Rodrigo, M. J., Diretto, G., & Zacarías, L. (2021). Effect of fruit shading and cold storage on tocopherol biosynthesis and its involvement in the susceptibility of Star Ruby grapefruit to chilling injury. Food Chemistry: Molecular Sciences, 3, Article 100037. https://doi.org/10.1016/j.fochms.2021.100037
Sakhidin, Silva, J. A. T., & Suparto, S. R. (2018). Effect of position of fruits in a tree and number of fruits per panicle on growth and quality of citrus. Journal of Horticultural Research, 26(1), 61–65. https://doi.org/10.2478/johr-2018-0007
Santos Neto, J. P., Leite, G. W. P., Oliveira, G. S., Cunha Júnior, L. C., Gratão, P. L, Morais, C. L. M., & Teixeira, G. H. A. (2018). Cold storage of ‘Palmer’ mangoes sorted based on dry matter content using portable near infrared (VIS-NIR) spectrometer. Journal of Food Processing and Preservation, 42(3), Article e13644. https://doi.org/10.1111/jfpp.13644
Serna-Escolano, V., Giménez, M. J., Serrano, M., Valero, D., García-Pastor, M. E., Dobón-Suarez, A., Gutiérrez-Pozo, M., Giménez-Berenguer, M., & Zapata, P. J. (2024). Fruit position on tree canopy affects fruit quality traits in ‘Sanguinelli’ blood oranges. Horticulturae, 10(9), Article 949. https://doi.org/10.3390/horticulturae10090949
Shezi, S., Magwaza, L. S., Mashilo, J., Tesfay, S. Z., & Mditshwa, A. (2020). Photochemistry and photoprotection of ‘Gem’ avocado (Persea americana Mill.) leaves within and outside the canopy and the relationship with fruit maturity. Journal of Plant Physiology, 246–247, Article 153130. https://doi.org/10.1016/j.jplph.2020.153130
Shezi, S., Magwaza, L. S., Tesfay, S. Z., & Mditshwa, A. (2020). Biochemical changes in response to canopy position of avocado fruit (cv. ‘Carmen’ and ‘Hass’) during growth and development and relationship with maturity. Scientia Horticulturae, 265, Article 109227. https://doi.org/10.1016/j.scienta.2020.109227
Singh, U., Bihari, C., Chowdhury, S., & Bijewar, A. L. (2024). The dynamics of source-sink relationships in fruit tree physiology. The Agriculture Magazine, 3(12), 683−687. https://theagricultureonline.com/wp-content/uploads/2024/09/August-2024-issue.pdf
Sulusoglu Durul, M., & Efe, I. (2023). Effects of canopy position on fruit quality of kiwifruit (cv. Hayward). MAS Journal of Applied Sciences, 8(4), 813–823. https://doi.org/10.5281/zenodo.8407078
Taîbi, A., Rivallan, R., Broussolle, V., Pallet, D., Lortal, S., Meile, J.-C., & Constancias, F. (2021). Terroir is the main driver of the epiphytic bacterial and fungal communities of mango carposphere in Réunion Island. Frontiers in Microbiology, 11, Article 619226. https://doi.org/10.3389/fmicb.2020.619226
Taiz, L., Zeiger, E., Moller, I. A., & Murphy, A. (2017). Fisiologia e desenvolvimento vegetal (6th ed.). Artmed, Porto Alegre.
Tamta, A., Kumar, R., Mishra, D. S., & Kumar, P. (2012). Biochemical changes in guava fruits during storage as affected by different methods of harvesting from different position of tree. HortFlora Research Spectrum, 1(2), 145−148. https://paper.researchbib.com/view/paper/1991
Tavarini, S., Degl’Innocenti, E., Remorini, D., Massai, R., &. Guidi, L. (2009). Polygalacturonase and β-galactosidase activities in Hayward kiwifruit as affected by light exposure, maturity stage and storage time. Scientia Horticulturae, 120, 342–347. https://doi.org/10.1016/j.scienta.2008.11.013
Thakre, M., Verma, M. K., Singh, K., Awasthi, O. P., Verghese, E., & Sharma, V. K. (2015). Effect of nutrition, harvesting date and fruit canopy position on yield and quality of Kinnow mandarin (Citrus nobilis × Citrus deliciosa). The Indian Journal of Agricultural Sciences, 85(11), 1455–1460. https://epubs.icar.org.in/index.php/IJAgS/article/view/53700/22756
Timilsina, K., & Tripathi, K. M. (2019). Chemical quality attributes of mandarin (Citrus reticulata Blanco) as affected by altitude and fruit bearing position in Kavre, Nepal. Archives of Agriculture and Environmental Science, 4(3), 319−325.
Tinyane, P. P., Soundy, P., & Sivakumar, D. (2018). Growing ‘Hass’ avocado fruit under different coloured shade netting improves the marketable yield and affects fruit ripening. Scientia Horticulturae, 230, 43-49. https://doi.org/10.1016/j.scienta.2017.11.020
Trad, M., Gaaliche, B., Renard, C. M. G. C., & Mars, M. (2013). Inter- and intra-tree variability in quality of figs. Influence of altitude, leaf area and fruit position in the canopy. Scientia Horticulturae, 162, 49−54. https://doi.org/10.1016/j.scienta.2013.07.032
Ullah, M. A., & Joyce, D. C. (2024). Avocado (Persea americana cv. ‘Hass’) fruit mineral composition at canopy level towards sustainable quality. Sustainability, 16(2), Article 750. https://doi.org/10.3390/su16020750
Verreynne, J. S., Rabe, E., & Theron, K. I. (2004). Effect of bearing position on fruit quality of mandarin types. South African Journal of Plant and Soil, 21(1), 1−7. https://doi.org/10.1080/02571862.2004.10635014
Wahid, A., Gelani, S., Ashraf, M., & Foolad, M. R. (2007). Heat tolerance in plants: An overview. Environmental and Experimental Botany, 61(3), 199−223. https://doi.org/10.1016/j.envexpbot.2007.05.011
Wang, Y., Wang, W., Fu, H., Yang, Z., & Lu, H. (2022). Detachment patterns and impact characteristics of litchi fruit during vibrational harvesting. Scientia Horticulturae, 295, Article 110836. https://doi.org/10.1016/j.scienta.2021.110836
Wlosek-Stañgret, C. R., Canteros, B. I., Venialgo, C. D., & Prikhodiuk, D. (2016). Differences in soluble solids in Duncan and Parana grapefruit due to fruit section and position in the tree. Citrus Research & Technology, 37(1). https://www.citrusrt.ccsm.br/article/doi/10.4322/crt.ICC027
Youryon, P., & Supapvanich, S. (2019). Effect of canopy positions on physicochemical quality of mandarin fruit cv. ‘Shogun’ during storages. International Journal of Agricultural Technology, 15(1), 183−194. https://www.researchgate.net/publication/330358130_Effect_of_canopy_positions_on_physicochemical_quality_of_Mandarin_Fruit_cv_’Shogun’_during_Storages
Yu, X., White, N., Lisle, A., Cao, S. F., Zhang, Y., Joyce, D. C., & Hofman, P. J. (2016). 3D modelling of mango fruit skin blush in the tree canopy. Acta Horticulturae, 1111, 341–346. https://doi.org/10.17660/ActaHortic.2016.1111.49
Zabedah, M., Yusoff, A., Ridzwan, A. H., Aishah, H., & Fauzi, R. (2007). Effect of fruit canopy position on microenvironment, physical and chemical development of starfruit (Averrhoa carambola) cv. ‘B10’ under protected cultivation. Acta Horticulturae, 761, 243−247. https://doi.org/10.17660/ActaHortic.2007.761.31
Zabedah, M., Yusoff, A. M., Ridzwan, H. M., Fauzi, R. M., & Hassan, S. A. (2009). Effects of fruit canopy position on chemical composition and fruit colour development of starfruit cultivated under netted structure. Journal of Tropical Agriculture and Food Science, 37(2), 135−142.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2026 Agronomía Colombiana

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
© Centro Editorial de la Facultad de Ciencias Agrarias, Universidad Nacional de Colombia
Reproduction and quotation of material appearing in the journal is authorized provided the following are explicitly indicated: journal name, author(s) name, year, volume, issue and pages of the source. The ideas and observations recorded by the authors are their own and do not necessarily represent the views and policies of the Universidad Nacional de Colombia. Mention of products or commercial firms in the journal does not constitute a recommendation or endorsement on the part of the Universidad Nacional de Colombia; furthermore, the use of such products should comply with the product label recommendations.
The Creative Commons license used by Agronomia Colombiana journal is: Attribution - NonCommercial - ShareAlike (by-nc-sa)

Agronomia Colombiana by Centro Editorial of Facultad de Ciencias Agrarias, Universidad Nacional de Colombia is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional License.
Creado a partir de la obra en http://revistas.unal.edu.co/index.php/agrocol/.







