Published

2008-01-01

Comparison of lycopene, β-carotene and phenolic contents of tomato using conventional and ecological horticultural practices, and arbuscular mycorrhizal fungi (AMF)

Comparación del contenido de licopeno, β-caroteno y fenoles en tomate aplicando un manejo hortícola convencional y ecológico y hongos formadores de micorrizas arbusculares (HFMA)

Keywords:

ecological farming, mycorrhiza, carotenoids, antioxidants, nutraceutic properties, white fly, diatomaceous earth (en)
cultivo orgánico, micorriza, carotenoides, propiedades nutracéuticas, mosca blanca, tierra diatomaceous (es)

Authors

  • Christian Ulrichs Humboldt-Universität zu Berlin
  • Gerhard Fischer Universidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias Agrarias - Departamento de Agronomía https://orcid.org/0000-0001-8101-0507
  • Carmen Büttner Humboldt-Universität zu Berlin
  • Inga Mewis Humboldt-Universität zu Berlin
Tomato fruits are rich in anti-oxidant compounds that have been recognized as benef icial for human health. Horticultural practices can influence the concentration of these secondary metabolites. Arbuscular mycorrhizal fungi (AMF) can increase nutrient and water absorption of plants. The experiment, performed under glasshouse, examined whether organically grown ‘Vitella F1’ tomatoes differed in their fruit content of lycopene, β-carotene and total phenols from that found in conventionally grown tomatoes. Treatments were the cultivation methods: conventional, organic, conventional+AMF and organic+AMF. When comparing the cultivation method, no significant differences for the analyzed nutritional parameters were found; only tomatoes grown organically had slightly lower total phenolic contents. In both cultivation methods, tomato plants inoculated with AMF (Glomus sp.) built higher lycopene content in fruits than those without inoculation. Organic grown tomatoes increased β-carotene and total phenolic contents in fruits as a result of the AMF treatment. AMF applications increased root fresh weight but not shoot fresh weight. The improved growth and nutrient acquisition in tomato demonstrated the potential of AMF colonization for increased antioxidant compounds in fruits. White fly (Trialeurodes vaporariorum) was controlled successfully with application of diatomaceous earth Fossil Shield® 90 in organic treatments as well as with Applaud® in the conventional cultivation methods.

Los frutos de tomate son ricos en compuestos antioxidantes que han sido reconocidos como benéficos para la salud humana y los manejos hortícolas pueden influir la concentración de estos metabolitos secundarios. Los hongos formadores de micorrizas arbusculares (HFMA) pueden influir en la absorción de nutrientes y agua por la planta. El estudio, llevado a cabo en invernadero, examinó si tomates ‘Vitella F1’, cultivados orgánicamente, se diferencian en su contenido de licopeno, β-caroteno y fenoles totales en los frutos de tomates manejados convencionalmente. Los tratamientos fueron los métodos de cultivo: convencional, orgánico, convencional+HFMA y orgánico+HFMA. Comparando los métodos de cultivo, no se encontró ninguna diferencia significativa para los parámetros nutritivos analizados; solamente tomates manejados orgánicamente tuvieron un contenido de fenoles totales un poco menor. En los dos métodos de cultivo, las plantas inoculadas con HFMA (Glomus sp.) formaron contenidos más altos de licopeno en los frutos que los sin inoculación. Los tomates manejados orgánicamente aumentaron su concentración de β-caroteno y de los fenoles totales a consecuencia del tratamiento con HFMA. La aplicación de HFMA aumentó el peso fresco del fruto pero no el del tallo. El aumento del crecimiento y la adquisición de los nutrientes en tomate demostraron el potencial de la colonización con HFMA para incrementar la concentración de compuestos antioxidantes en el fruto. La mosca blanca (Trialeurodes vaporariorum) fue controlada exitosamente con la aplicación de la tierra diatomaceous Fossil Shield® 90 en los tratamientos orgánicos y con Applaud® en el cultivo convencional.

References

Al-Karaki, N. 2000. Growth of mycorrhizal tomato and mineral acquisition under salt stress. Mycorrhiza 10(2), 51-54.

Asami, D.K., Y.J. Hong, D.M. Barrett, and A.E. Mitchell. 2003. Comparison of the total phenolic and ascorbic acid content of freeze-dried and air-dried marionberry, strawberry and corn using conventional, organic, and sustainable agricultural practices. J. Agr. Food Chem. 51, 1027-1038.

Barea, J.M. and P. Jeffries. 1995. Arbuscular mycorrhizas in sustainable soil plant systems. In: Varma A. and B. Hock (eds.). Mycorrhiza: structure, function, molecular biology and biotechnology. Springer-Verlag, Berlin. pp. 521-560.

Brandt, K. and J.P. Molgaard. 2001. Organic agriculture: does it enhance or reduce the nutritional value of plant foods? J. Sci. Food Agric. 81, 924-931.

Clark, M.S., W.R. Howarth, C. Shennan, and K.M. Scow. 1998. Changes in soil chemical properties resulting from organic and low-input farming practices. Agron. J. 90, 662-671.

DiMascio, P., S. Kaiser, and H. Sies. 1989. Lycopene as the most efficient biological carotenoid singlet oxygen quencher. Arch. Biochem. Biophys. 274, 532 - 538.

Dumas, Y., M. Dadomo, G. DiLucca, and P. Grolier. 2002. Review of the influence of major environmental and agronomic factors on the lycopene content of tomato fruit. Acta Hort. 597, 595-601.

Dumas, Y., N. Bertin, C. Borel, P. Bussières, H. Gautier, and M. Génard. 2006. Eco-physiological research to improve tomato fruit quality for processing and human health. Acta Hort. 724, 235-242.

Fanasca, S., G. Colla, G. Maiani, E. Venneria, Y. Rouphael, E. Azzini, and F. Saccardo. 2006. Changes in antioxidant content of tomato fruits in response to cultivar and nutrient solution composition. J. Agric. Food Chem. 54, 4319-4325.

Fester, T., D. Schmidt, S. Lohse, M.H. Walter, G. Giuliano, P.M. Bramley, P.D. Fraser, B. Hause, and D. Strack. 2002. Stimulation of carotenoid metabolism in arbuscular mycorrhizal roots. Planta 216(1), 148-54.

Franceschi, S., E. Bidoli, C. La Vecchia, R. Talamini, B. D'Avanzo, and E. Negri. 1994. Tomatoes and risk of digestive-tract cancers. Intl. J. Cancer 59 (2), 181-184.

Gartner, C., W. Stahl, and H. Sies. 1997. Lycopene is more bioavailable from tomato paste than from fresh tomatoes. Amer. J. Clinical Nutr. 66, 116-122.

Giovannetti, M. and B. Mosse. 1980: An evaluation of techniques for measuring vesicular-arbuscular infection in roots. New Phytologist 84, 489-500.

Heldt, H.W. 2003. Pflanzenbiochemie. 3. Auflage. Spektrum Akademischer Verlag, Heidelberg. 622 p.

Holdon, J.M., A.L. Eldridge, G.R. Beecher, I.M. Buzzard, S. Bhagwat, C.S. Davis, L.W. Douglass, S. Gebhardt, D. Haytowitz, and S. Schakel. 1999. Carotenoid content of U. S. foods: An update of the database. J. Food Composition Analysis 12, 169-196.

Jain, C.K., S. Agarwal, and A.V. Rao. 1999. The effect of dietary lycopene on bioavailability, tissue distribution, in vivo antioxidant properties and Colonic Preneoplasia in rats. Nutr. Res. 19, 1383-1391.

Khachik, F., G.R. Beecher, and J.C. Smith. 1995. Lutein, lycopene, and their oxidative metabolites in chemoprevention of cancer. J. Cell Biochem. Suppl. 22, 236-246.

Kottke, I. 2002. Mycorrhizae-rhizosphere determinants of plant communities. pp. 919-932. In: Waisel, Y., A. Eshel, and U. Kafkafi (eds.). Plant roots the hidden half. 3rd edition. Marcel Dekker, New York. 1120 p.

Lavelli, V., C. Peri, and A. Rizzolo. 2000. Antioxidant activity of tomato products as studied by model reactions using xanthine oxidase, myeloperoxidase, and copper-induced lipid peroxidation. J. Agric. Food. Chem. 48, 1442-1448.

Law, S.E. 2001. Agricultural electrostatic spray application: a review of significant research and development during the 20th century. J. Electrostatics 51-52, 25-42.

Lenucci, M., D. Cadinu, M. Taurino, G. Piro, and G. Dalessandro. 2006. Anitoxidant composition in cherry and high-pigment tomato cultivars. J. Agr.Food Chem. 54, 2606-2613.

Lester, G.E. 2006. Environmental regulation of human health nutrients (ascorbic acid, ß-carotene, and folic acid) in fruits and vegetables. HortScience 41(1), 59-64.

Levy, J., E. Bosin, B. Feldman, Y. Giat, A. Miinster, M. Danilenko, and Y. Sharoni. 1995. Lycopene is a more potent inhibitor of human cancer cell proliferation than either alpha-carotene or beta-carotene. Nutr. Cancer 24(3), 257-266.

López, J., R.M. Ruiz, R. Ballesteros, A. Ciruelos, and R. Ortiz. 2001. Color and lycopene content of several commercial tomato varieties at different harvesting dates. Acta Hort. 542, 243-247.

Manjarrez-Martínez, M.J., R. Ferrera-Cerrato, and M.C. Gonzéz- Chávez. 1999. Efecto de la vermicomosta y la miocorriza asbuscullar en el desarrollo y tasa fotosintética de chile serrano. Terra 17(1), 9-15.

Marschner, H. 2002. Mineral nutrition of higher plants. Academic Press, London. 889 p.

Marschner, H. and B. Dell. 1994. Nutrient uptake in mycorrhizal symbiosis. Plant Soil 159, 89-102.

Mengel, K. and E.A. Kirkby 2001. Principles of plant nutrition. Kluwer Academic Publishers, Dordrecht. 849 p.

Mewis, I. and Ch. Reichmuth. 1999. Diatomaceous earths against the coleoptera granary weevil Sitophilus granarius (Curc.), the confused flour beetle Tribolium confusum (Tenebrionidae), and the Mealworm Tenebrio molitor (Tenebrionidae). Proc. 7th Intl. Work. Conf. Stord Prod. Prot., Beijing (China), 1, 765-780.

Mewis, I. and Ch. Ulrichs. 2001. Wirkungsweise amorpher Diatomeenerden auf die Vorratsschädlinge Sitophilus granarius und Tenebrio molitor. Gesunde Pflanze 53, 110-118.

Mitchell, J.P., C. Shennan, S.R. Grattan, and D.M. May. 1991. Tomato fruit yields and quality under water deficit and salinity. J. Amer. Soc. Hort. Sci. 116(2), 215-221.

Munro, T.L., H.F. Cook, and H.C. Lee. 2002. Sustainability indicators used to compare properties of organic and conventionally managed topsoils. Biol. Agric. Hort. 20, 201-214.

Nagasawa, H., T. Mitamura, S. Sakamoto, and K. Yamamoto. 1995. Effects of lycopene on spontaneous mammary tumour development in SHN virgin mice. Anticancer Res. 15(4), 1173-1178.

Norbaek, R., B.F. Aaboer, I.S. Bleeg, B.T. Christensen, T. Kondo, and K. Brandt. 2003. Flavone c-gylcoside, phenolic acid, and nitrogen contents in leaves of barley subject to organic fertilizer treatments. J. Agric. Food Chem. 51, 809-813.

Öpik, H. and S. Rolfe. 2005. The physiology of flowering plants. 4th edition. Cambridge University Press, Cambridge. pp. 121-122.

Park, J.S., B.P. Chew, and T.S. Wong. 1998. Dietary lutein from marigold extract inhibits mammary tumor development in BALB/c mice. J. Nutrition 128, 1650-1656.

Pauli, E. 2006. Tomaten - Das Leben geniessen. In: http://www. ernestopauli.ch/Essen/Kochtips/ Tomate.htm; consulted: 27 of february, 2006.

Pelz, R., B. Schmidt-Faber, and H. Heseker. 1998. Carotenoid intake in the German National Food Consumption Survey. Z. Ernährungswiss. 37 (4), 319-327.

Phillips, J.M. and D.S. Hayman. 1970. Improved procedure for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. British Mycol. Soc. 55, 159-161.

PNH. 2007. Plan Hortícola Nacional. Corporación Colombiana Internacional, Bogotá.

Prasantha, B.D.R. 2003. Toxicological, biological and physiological effects of diatomaceous earths on the bean weevil Acanthoscelides obtectus (Say) and the cowpea weevil Callosobruchus maculatus (F.) (Coleoptera: Bruchidae). Diss. Humboldt University of Berlin. 157 p.

Roshni, A.M., T. Cassol, N. Li, N. Ali, A.K. Handa, and A.K. Mattoo. 2002. Engineered polyamine accumulation in tomato enhances phytonutrient content, juice quality, and vine life. Nature 20, 613-618.

Schopfer, P. and A. Brennicke. 2006. Pflanzenphysiologie. Elsevier GmbH, Munich. 700 p.

Singleton, V.L. and J.A. Rossi, Jr. 1988. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. J. Food Sci. 53(1), 144-158.

Taiz, L. and E. Zeiger. 2006, Plant physiology. 4th edition. Sinauer Associates, Sunderland, Massachusetts. 764 p.

Toor, R.K., C.E. Lister, and G.P. Savage. 2005. Antioxidant activities of New Zealand-grown tomatoes. Int. J. Food Sci. Nutr. 56(8), 597-605.

Ulrichs, Ch., T. Mucha-Pelzer, E. Scobel, L. Kretschmer, R. Bauer, E. Bauer, and I. Mewis. 2008. Silikate im Pflanzenschutz: Elektrostatische Applikation und Abhängigkeit der Wirksamkeit von der Schichtdicke. Gesunde Pflanzen 60, 29-34.

Wilcox, J.K., G.L. Catignani, and C. Lazarus. 2003. Tomatoes and cardiovascular health. Crit. Rev. Food Sci. Nutr. 43(1), 1-18.

How to Cite

APA

Ulrichs, C., Fischer, G., Büttner, C. & Mewis, I. (2008). Comparison of lycopene, β-carotene and phenolic contents of tomato using conventional and ecological horticultural practices, and arbuscular mycorrhizal fungi (AMF). Agronomía Colombiana, 26(1), 40–46. https://revistas.unal.edu.co/index.php/agrocol/article/view/13915

ACM

[1]
Ulrichs, C., Fischer, G., Büttner, C. and Mewis, I. 2008. Comparison of lycopene, β-carotene and phenolic contents of tomato using conventional and ecological horticultural practices, and arbuscular mycorrhizal fungi (AMF). Agronomía Colombiana. 26, 1 (Jan. 2008), 40–46.

ACS

(1)
Ulrichs, C.; Fischer, G.; Büttner, C.; Mewis, I. Comparison of lycopene, β-carotene and phenolic contents of tomato using conventional and ecological horticultural practices, and arbuscular mycorrhizal fungi (AMF). Agron. Colomb. 2008, 26, 40-46.

ABNT

ULRICHS, C.; FISCHER, G.; BÜTTNER, C.; MEWIS, I. Comparison of lycopene, β-carotene and phenolic contents of tomato using conventional and ecological horticultural practices, and arbuscular mycorrhizal fungi (AMF). Agronomía Colombiana, [S. l.], v. 26, n. 1, p. 40–46, 2008. Disponível em: https://revistas.unal.edu.co/index.php/agrocol/article/view/13915. Acesso em: 12 nov. 2025.

Chicago

Ulrichs, Christian, Gerhard Fischer, Carmen Büttner, and Inga Mewis. 2008. “Comparison of lycopene, β-carotene and phenolic contents of tomato using conventional and ecological horticultural practices, and arbuscular mycorrhizal fungi (AMF)”. Agronomía Colombiana 26 (1):40-46. https://revistas.unal.edu.co/index.php/agrocol/article/view/13915.

Harvard

Ulrichs, C., Fischer, G., Büttner, C. and Mewis, I. (2008) “Comparison of lycopene, β-carotene and phenolic contents of tomato using conventional and ecological horticultural practices, and arbuscular mycorrhizal fungi (AMF)”, Agronomía Colombiana, 26(1), pp. 40–46. Available at: https://revistas.unal.edu.co/index.php/agrocol/article/view/13915 (Accessed: 12 November 2025).

IEEE

[1]
C. Ulrichs, G. Fischer, C. Büttner, and I. Mewis, “Comparison of lycopene, β-carotene and phenolic contents of tomato using conventional and ecological horticultural practices, and arbuscular mycorrhizal fungi (AMF)”, Agron. Colomb., vol. 26, no. 1, pp. 40–46, Jan. 2008.

MLA

Ulrichs, C., G. Fischer, C. Büttner, and I. Mewis. “Comparison of lycopene, β-carotene and phenolic contents of tomato using conventional and ecological horticultural practices, and arbuscular mycorrhizal fungi (AMF)”. Agronomía Colombiana, vol. 26, no. 1, Jan. 2008, pp. 40-46, https://revistas.unal.edu.co/index.php/agrocol/article/view/13915.

Turabian

Ulrichs, Christian, Gerhard Fischer, Carmen Büttner, and Inga Mewis. “Comparison of lycopene, β-carotene and phenolic contents of tomato using conventional and ecological horticultural practices, and arbuscular mycorrhizal fungi (AMF)”. Agronomía Colombiana 26, no. 1 (January 1, 2008): 40–46. Accessed November 12, 2025. https://revistas.unal.edu.co/index.php/agrocol/article/view/13915.

Vancouver

1.
Ulrichs C, Fischer G, Büttner C, Mewis I. Comparison of lycopene, β-carotene and phenolic contents of tomato using conventional and ecological horticultural practices, and arbuscular mycorrhizal fungi (AMF). Agron. Colomb. [Internet]. 2008 Jan. 1 [cited 2025 Nov. 12];26(1):40-6. Available from: https://revistas.unal.edu.co/index.php/agrocol/article/view/13915

Download Citation

Article abstract page views

452

Downloads

Download data is not yet available.