Determination of the minimum dry matter index for the optimum harvest of 'Hass' avocado fruits in Colombia
Determinación del índicemínimo de materia seca para la óptimacosecha del aguacate 'Hass' en Colombia
DOI:
https://doi.org/10.15446/agron.colomb.v32n3.46031Keywords:
Persea americana Mill., oil percentage, maturity index, quality, region, Antioquia (en)Persea americana Mill., porcentaje de aceite, índice de madurez, calidad, región, Antioquia. (es)
Downloads
Colombia se ha convertido en un importante productor de aguacate 'Hass' en los últimos tres años. Sin embargo, no se ha establecido aún un contenido mínimo de materia seca para cosecha. El objetivo de este estudio fue determinar la correlación entre el porcentaje de aceite y material seca para definir un índice mínimo de cosecha para el avocado 'Hass' cultivados en Colombia. Se recogieron muestras de frutos de aguacate 'Hass' durante más de tres años en quince fincas diferentes en el departamento de Antioquia para determinar el porcentaje de materia seca y aceite de la fruta durante la temporada. Se estableció una relación lineal simples entre el contenido de aceite y materia seca para el departamento de Antioquia. Las ecuaciones para todas las fincas estudiadas presentaron un buen coeficiente de correlación, que osciló entre 0,70 en la finca Cartucho del municipio de Retiro y 0,99 en las fincas Gacamayas y Paraíso de los municipios de Entrerrios y Retiro, respectivamente. Utilizando como referencia el 11,2% para el estándar mínimo de aceite, las fincas que registraron un porcentaje de materia seca más alto para cosecha fueron Cartucho del Retiro (26%), seguida de Piedras Blancas y Santa Cruz para el municipio de Venecia (25%), mientras que las fincas Cebadero del Retiro, Coconi del municipio de La Ceja y Guacamayas de Entrerrios, alcanzaron este mismo porcentaje con 22% de materia seca, lo que puede ser considerado una ventaja comercial. A partir de estos resultados de contenido de aceite un índice mínimo de materia seca de 23,5% fue propuesto como indicador de la madurez para cosecha de aguacate 'Hass' cultivado en Colombia. Este índice de cosecha deberá ser refinado con el tiempo y con la adición de muestras de más regiones y datos climáticos.
Doi: 10.15446/agron.colomb.v32n3.46031
1 La Selva Research Center, Corporacion Colombiana
de Investigacion Agropecuaria (Corpoica). Rionegro (Colombia). cpassaro@gmail.com
2 Westfalia Technological Services. Limpopo (South
Africa).
Received for publication: 6 October, 2014. Accepted for publication: 27 November, 2014.
ABSTRACT
Colombia has become an important producer of 'Hass' avocado in the last three years; however, a minimum dry matter content has not been established as a maturity index for harvest. The aim of this study was to determine the correlation between oil percentage and dry matter content in order to establish a minimum harvest index for 'Hass' avocado fruits grown in Colombia. Samples were collected for maturity determinations over three years of 'Hass' avocado fruit cultivation from fifteen different orchards in the department of Antioquia in order to determine the dry matter and oil percentage of fruits throughout the season. A simple linear relationship between oil content and dry matter was thus established. The equations for all of the studied orchards presented a good correlation coefficient, ranging between 0.70 on the Cartucho orchard in the municipality of Retiro and 0.99 on the Gacamayas and Paraiso orchards in the municipality of Entrerrios and Retiro. Using the minimal oil standard of 11.2% as a reference, the orchards that were found to have a high dry matter percentage at harvest were Cartucho in Retiro (26%), followed by Piedras Blancas and Santa Cruz in the municipality of Venecia (25%); while the 'Hass' avocado fruit from the Cebadero orchard in Retiro, Coconi in the municipality of La Ceja and Guacamayas in Entrerrios reached this oil standard at 22% dry matter, which could be a commercial advantage. Based on these oil content results, a minimal dry matter index of 23.5% was proposed as a harvest maturity indicator for 'Hass' avocado grown in Colombia. This harvesting index will need to be refined over time and with the addition of samples from more regions and climatic data profiles.
Keywords: Persea americana Mill., oil percentage, maturity index, quality, region, Antioquia.
RESUMEN
Colombia se ha convertido en un importante productor de aguacate 'Hass' en los últimos tres años. Sin embargo, no se ha establecido aún un contenido mínimo de materia seca para cosecha. El objetivo de este estudio fue determinar la correlación entre el porcentaje de aceite y material seca para definir un índice mínimo de cosecha para el avocado 'Hass' cultivados en Colombia. Se recogieron muestras de frutos de aguacate 'Hass' durante más de tres años en quince fincas diferentes en el departamento de Antioquia para determinar el porcentaje de materia seca y aceite de la fruta durante la temporada. Se estableció una relación lineal simples entre el contenido de aceite y materia seca para el departamento de Antioquia. Las ecuaciones para todas las fincas estudiadas presentaron un buen coeficiente de correlación, que osciló entre 0,70 en la finca Cartucho del municipio de Retiro y 0,99 en las fincas Gacamayas y Paraíso de los municipios de Entrerrios y Retiro, respectivamente. Utilizando como referencia el 11,2% para el estándar mínimo de aceite, las fincas que registraron un porcentaje de materia seca más alto para cosecha fueron Cartucho del Retiro (26%), seguida de Piedras Blancas y Santa Cruz para el municipio de Venecia (25%), mientras que las fincas Cebadero del Retiro, Coconi del municipio de La Ceja y Guacamayas de Entrerrios, alcanzaron este mismo porcentaje con 22% de materia seca, lo que puede ser considerado una ventaja comercial. A partir de estos resultados de contenido de aceite un índice mínimo de materia seca de 23,5% fue propuesto como indicador de la madurez para cosecha de aguacate 'Hass' cultivado en Colombia. Este índice de cosecha deberá ser refinado con el tiempo y con la adición de muestras de más regiones y datos climáticos.
Key words: Persea americana Mill., porcentaje de aceite, índice de madurez, calidad, región, Antioquia.
Introduction
Colombia exported several containers of 'Hass' avocado (Persea americana Mill.) to Europe in the last few years. The country, during that time, had about 6,300 ha of 'Hass' avocado production spread over 9 provinces. The national production amounted to 27,532 t, with an average yield of 4.03 t ha-1 and 19 kg/tree. 'Hass' avocado production made up 25.4% of the cultivar spread in the nation (Mejía, 2012).
Avocado is a climacteric fruit that does not ripen on the tree, so it must be harvested during the suitable physiological maturity stage to achieve the edible characteristics of taste and firmness (Gil, 2000; Gamble et al., 2010). It is very hard to visually determine the appropriate maturity stage in the 'Hass' avocado for harvesting because the fruit does not exhibit any notable external change in appearance (Kassim et al., 2013). Thus, it is not uncommon to find 'Hass' avocado fruits in the market at the expected maturity stage with an uncharacteristic color and a shriveled peel, especially early in the season (Osuna-García et al., 2010; Pedreschi et al., 2014).
During the maturation process, there is an increase in the oil content of the fruit, a moisture reduction and an increase in palatability (Ozdemir and Topuz, 2004; Osuna-García et al., 2010). A popular method for determining oil content in the avocado is the Soxhlet method (Lee, 1981). However, it is slow, expensive and difficult to perform; thus, people prefer to use the indirect method of using the percentage of dry matter of fruit pulp as an indication of maturity. This method is based on the high correlation between a decrease in fruit moisture content and an increase in dry matter or an increase in the oil content of fruit (Lee et al., 1983; Woolf et al., 2004).
The use of the percentage of dry matter as a maturity indicator for avocado is widely accepted and minimum values have been established as a legal standard for each cultivar in most countries. The minimum requirement of dry matter varies from 19 to 25%, depending on the cultivar (19.0% for Fuerte, 20.8% for Hass and 24.2% for Gwen) and the country (21% for Australia, 21.6-22.8% for USA and 23.0% for Mexico, South America and South Africa) (Hofman et al., 2002; Orhevba and Jinadu, 2011; Kassim et al., 2013).
Fruits harvested with dry matter levels below the recommended minimum will ripen irregularly and will not fully develop their quality attributes. Similarly, fruits harvested with a high dry matter undergo rapid ripening and have a reduced shelf life (Wu et al., 2011). Studies by Whiley et al. (1996) indicated that early harvesting of late-maturing 'Hass' at 25 to 30% dry matter resulted in high productivity; whereas, harvesting at 35% dry matter reduced yields, also leading to alternate bearing.
The oil content in avocados depends on several factors, such as the cultivar (Chen et al., 2009; Dodd et al., 2010; Orhevba and Jinadu, 2011), agro-ecological conditions of growth (Landahl et al., 2009; Kassim et al., 2013; Wedding et al., 2013; Donetti and Terry, 2014) and the fruit development stage (Ozdemir and Topuz, 2004; Osuna-García et al., 2010; Villa-Rodríguez et al., 2011).
Starting in
Lee et al. (1983) examined the relationship between dry weight, oil and sensory perception. They concluded that regional harvest dates were not appropriate. There was also discussion as to whether the same dry matter level means the same "taste acceptability" in different countries or, even possibly, in different regions within a country.
In Colombia, genetic and agro-ecological variability are very high, hindering homogeneous fruit production and management and the prediction of the correct harvest date. Bearing these conditions in mind, it is rather challenging to make Colombian 'Hass' fruits competitive and to create synergy with regional countries such as Mexico and Chile.
The correlation between oil and dry matter percentage for 'Hass' avocado fruit has not been established; however, in relation to the growing area, the determination of the minimum percentages of oil and/or dry matter should help determine when to harvest. Limits on harvest maturity should be set in order to achieve standardization of fruit quality for an export-based industry.
The aim of this study was to determine the correlation between oil percentage and dry matter content to establish a minimum harvest index for 'Hass' avocado fruits grown in Colombia. This will be a useful tool for farmers targeting the export market and aiming to deliver fruits at the optimum commercial maturity and quality, using adequate transport, storage and shelf life.
Materials and methods
Plant material
To determine the relationship between the dry matter and oil percentage of 'Hass' avocado in different municipalities of the department of Antioquia, Colombia, we selected different orchards at different altitudes above sea level (Tab. 1). In each orchard, three trees of the same age and with a normal level of production were selected in a homogeneous area of the plot. Eight fruits of different maturity stages, determined by the size and bright of the peel, were harvested to build a maturation curve. At least two harvests were done for each orchard and the evaluation was carried out between 2011 and 2013 (Tab. 1).

After harvest, the fruits were immediately brought to
the Postharvest Laboratory of the
Dry matter
The dry matter (DM) was determined by the Lee method
(Lee, 1981). The samples were dried at
Oil percentage
The oil percentage of the dry samples was determined by the Horwitz (1980) and Lee methods (Lee, 1981). A 5-10 g sample of dry avocado pulp was used to extract the lipids by Soxhlet for 6-8 h using petroleum ether as a solvent. The oil percentage of the avocado pulp was calculated with the following equation and expressed as % (w/w).

The dry matter and oil content values were further used to estimate the correlation coefficient and a linear regression model for each orchard.
Statistical analysis
The results were analyzed by the Statgraphics® Centurion XVI v. 15.2 (StatPoint®, Herndon, VA). A simple linear regression model was applied for determining the relationship between the oil and dry matter percentages. Then an analysis of variance (ANOVA) test was performed to determine the representativeness of the model with a LSD test at 95% level of confidence.
Results and discussion
The results showed a positive correlation between the dry matter and oil percentages of the fruit pulp for all the studied orchards during the three years of evaluation (Figs. 1 and 2). A close relationship between oil content and dry matter content was thus confirmed (Tab. 2). An increased lipid concentration in fruit as a result of a reduced percentage of water has been reported by many authors (Chen et al., 2009; Gamble et al. 2010; Villa-Rodríguez et al., 2011).



Fruit samples from all of the analyzed orchards presented a good correlation coefficient, with the lowest at 0.84 on the Cartucho orchard in Retiro and the highest at 0.99 on the Gacamayas and Paraiso orchards in Entrerrios and Retiro. These correlation values are similar to those reported by other authors for avocado fruits (Olaeta et al., 1986; Chen et al., 2009).
The degree of correlation obtained between the oil content and dry matter of avocado fruit pulp was important because the direct estimation of oil percentage of avocado fruits is difficult, slow and expensive. With the current results, we can indirectly and reliably estimate the oil content of fruits using dry matter values in a linear regression equation, which is practical and easy (Lee, 1981). The regression equation for each orchard is presented in Tab. 2. With this equation, a farmer can estimate the oil content of a fruit sample based on the determined dry matter percentage.
The dry matter percentage is often used as a maturity index in most avocado producing areas in the world. In the valleys of the central coast of Peru, 'Hass' avocado is usually harvested with a minimum oil content of 8-9% and with a 20-21% dry matter content (Franciosi, 2003). The 'Hass' Avocado Committee of Chile authorizes the commercial harvest of 'Hass' fruit with a minimal dry matter content of 23% (Waissbluth and Valenzuela, 2007).
Law number 422 of California, established in 1925, specified 8% as the minimal oil fruit content before harvesting could commence (Anon, 1925). Nevertheless, the oil content of fruit that was considered acceptable for consumption differed among cultivars and the 8% requirement was too low to serve as a good maturity standard for many cultivars according (Lee et al., 1983; Chen et al., 2009; Dodd et al., 2010). In addition, while the date of acceptable taste of fruit grown at the same location was not significantly different from year to year, it varied significantly among and within the widespread avocado production areas.
Morton (1987), based on experiences in Mexico, stated that fruit reaches a good taste when the fruit has a minimum oil content of 8% and dry matter of 21%. Olaeta et al. (1986) defined the minimal oil content for 'Hass' avocado in Chile as 10%. After the eighties, California (USA) started using higher minimal oil percentages and discerning between cultivars; for example: 10.0% for Fuerte and 11.2% for Hass (Lee et al., 1983).
It is also important to note that fruit quality starts to deteriorate when dry matter is too high. Picking overly-mature fruits results in poor flavor and increased fruit diseases and flesh disorders, as well as reduced yields of the next crop (Whiley et al., 1996; Osuna-García et al., 2010; Wu et al., 2011). Fruit should not be left on trees beyond the normal picking period. For this reason, a maximum cut-off for harvesting 'Hass' avocado fruits should be defined. Thorp et al. (1997), studying the postharvest quality of New Zealand‐grown 'Hass' avocado, observed that fruit harvested with a dry matter above 26% had severe rot.
Prior to the current research study, Colombian growers and fruit handlers had no standard index defined for the commercial harvest of 'Hass' avocado. In this study, we used the standards of other countries as a reference; for example, dry matter between 21.5 and 23% and an oil content of 11.2% to see when the different orchards reach the physiological mature stage for harvest (Figs. 1 and 2).
The standard oil percentage was considered to be a better harvest indicator for avocado because it relates well with fruit flavor. As can be seen in Fig. 1, none of the studied orchards with a dry matter of 21.5% reached an oil content of 11.2%, nor did the studied orchards in Fig. 2. From both figures, we can see that all of the studied orchards reached the same oil content, but with different accumulation rates (slope of the straight), reaching the physiological mature index at different times.
When we compared the different orchards for the physiological standard of oil content (11.2%), the percentage of dry matter ranged from 22 to 26% (Tab. 2). It is interesting to note that 'Hass' avocado fruit from the Cebadero orchard in Retiro, Coconi in La Ceja and Guacamayas in Entrerrios reached this oil standard earlier (for 22% dry matter) when compared to the other orchards, which could be a commercial advantage. The orchards with a high dry matter percentage for harvest in this study were Cartucho in Retiro (26%), followed by Piedras Blancas and Santa Cruz in Venecia (25%).
More evaluations over time and for more orchards are needed for a better understanding of the effect of altitude and climate on physiological maturity and variables such as PAR radiation, solar radiation and accumulated precipitation must be considered in the evaluation.
Different authors (Kaiser et al., 1992; Kruger, 1999; Landahl et al., 2009; Donetti and Terry, 2014) reported that the oil and moisture contents of 'Hass' and 'Fuerte' avocado, at the same date, vary year by year; probably because of the climatic conditions for a specific year and the rainfall and temperature variation of the seasons. They observed that the accumulation of dry matter percentage can be higher in seasons with higher rainfall and longer exposure to solar radiation. Woolf et al. (1999) confirmed that sun-exposed 'Hass' avocado fruits had higher contents of dry matter, potassium, calcium and magnesium. These fruits took longer to mature and the side exposed to the sunlight had higher firmness as compared to the unexposed side.
Waissbluth and Valenzuela (2007) inferred that, in Chile, fruit maturity is more related to altitude than to the north/south orientation. According to Ferreyra and Defilippi (2012), the orchards on the coast of Chile take 55 d longer to reach 23% dry matter than the ones in the central valley zone due to climatic conditions and also probably due to agronomic practices (nutrition, pruning, orchard age, orchard density, and others). The same authors established the maximum limit of dry matter for a good shelf life and fruit quality at 27.5% (> 27.5% high risk and < 27.5% low risk).
The linear model with all the data collected between 2011 and 2013 from different orchards of Antioquia is shown in Fig. 3. The model exhibited a statistical significance at 95% for the relationship between oil and dry matter and a good fit, explaining 93.4% of the oil content variability. The coefficient of 0.95 indicated a strong relationship between the two variables. The equation in Fig. 3 can be used by any grower in Antioquia, although the model needs to be refined with more data over time (harvest seasons and years) and with fruit from more orchards to be more accurate. However, according to this model, the oil content standard of 11.2% corresponded to a dry matter of 23.5%. This could be considered the minimal index at which one can harvest 'Hass' avocado in Antioquia and guarantee good taste and fruit quality, despite the variation that might exist between orchards as seen in Tab. 2.

It is also important to define a maximum harvest index of dry matter percentage related to shelf life and fruit quality during transport and storage. Colombia must define clear rules for establishing the adequate grade and harvest date according to the cultivar and producing region. Until now, there has been no scientific evidence and, consequently, harvesting has been done based on past (empirical) agricultural experience: namely fruit color and size. A protocol for sampling orchards to define a dry matter index for 'Hass' avocado at harvest must now be defined by governmental entities.
In addition to the issues involved in simply measuring dry matter, an important area which requires greater understanding is the relationship between oil content (dry matter) and various flavor attributes of avocados and not just an "overall consumer acceptability". According to Obenland et al. (2012), neither dry matter nor oil percentage are adequate in of themselves to fully explain the differences in the eating quality of avocados; additional means of assessing eating quality would be desirable. The development of sensory descriptors and their relationship with aroma volatiles for 'Hass' avocado in Colombia could be useful for better linking maturity changes with flavor. This might help in examining regional effects in terms of oil content levels and flavor (Gamble et al., 2010; Paull and Duarte, 2011; Yahia and Woolf, 2011). A correlation superior to 0.93% between fruit taste and oil percentage was observed by Olaeta et al. (1986) when studying different avocado cultivars (Fuerte, Bacon, Edranol, Hass, Butano and Negra de La Cruz).
Conclusions
The oil content of the fruits showed a positive highly significant correlation (superior to 0.80) with the percentage of dry matter for all of the studied orchards. An equation to estimate oil percentage in relation to dry matter percentage was defined with a good fit for each studied orchard. A simple linear model was defined for Antioquia to determine oil content in relation to dry matter percentage with a very high correlation coefficient. This is a very useful tool for 'Hass' avocado producers because the determination of oil content is very expensive. In this way, they can predict when the fruits will meet the required optimum postharvest quality. Using the minimal oil standard of 11.2% as a reference, the minimal dry matter index for harvesting 'Hass' avocado in Colombia was defined as 23.5%. Nevertheless, more evaluations over time (harvest seasons and years) and with more regions and climatic data are needed to develop a more accurate model. As Colombia is a country with a very high climate variability over short distances, a model of oil and dry matter percentage for each producing region should be developed. The minimal oil content needed to reach physiological maturity and a good flavor for 'Hass' avocado must also be defined for Colombian 'Hass' fruits grown in different regions.
Acknowledgments
The research for this paper was financially supported by the Secretaria de Agricultura y Desarrollo Rural of Antioquia through project No. 2010.SS.1800.09 and by the Ministerio de Agricultura y Desarrollo Rural of Colombia through project No. 2012-211. Thanks are given to professor Juan Carlos Perez Naranjo of the Universidad Nacional de Colombia for proofreading this article.
Literature cited
Anon. 1925. Standardization committee report California Avocado Association Annual Report. California Avocado Association, Pasadena, CA. pp. 46-47.
Chen, N.J., M.M. Wall, R.E. Paull, and P.A. Follett. 2009. Variation in 'Sharwil' avocado maturity during the harvest season and resistance to fruit fly infestation. HortScience 44, 1655-1661.
Dodd, M., P. Cronje, M. Taylor, M. Huysamer, F. Kruger, E. Lotz, and K. Van der Merwe. 2010. A review of the postharvest handling of fruits in South Africa over the past twenty five years. South Afr. J. Plant Soil. 27, 97-116. Doi: 10.1080/02571862.2010.10639974
Donetti, M. and L.A. Terry. 2014. Biochemical markers defining growing area and ripening stage of imported avocado fruit cv. Hass. J. Food Compos. Anal. 34, 90-98. Doi: 10.1016/j.jfca.2013.11.011
Ferreyra E., R., and B. Defilippi B. 2012. Factores de precosecha que afectan la postcosecha de palta Hass: clima, suelo y manejo. INIA Bull. No. 248. Centro Regional de Investigación La Cruz, Instituto de Investigaciones Agropecuarias, La Cruz, Chile.
Franciosi, R. 2003. El Palto: producción, cosecha y post-cosecha. Ediciones Cimagraf, Lima, Peru.
Gamble, J., F.R. Harker, S.R. Jaeger, A. White, C. Bava, M. Beresford, B. Stubbings, M. Wohlers, P.J. Hofman, R. Marques, and A. Woolf. 2010. The impact of dry matter, ripeness and internal defects on consumer perceptions of avocado quality and intentions to purchase. Postharvest Biol. Tec. 57, 35-43. Doi: 10.1016/j.postharvbio.2010.01.001
Gil S., G.F. 2000. Fruticultura: La producción de fruta. Frutas de clima templado y subtropical y uva de vino. Ediciones UniversidadCatolica de Chile, Santiago.
Hofman, P.J., Y. Fuchs, and D.L. Milne. 2002. Harvesting, packing, postharvest technology, transport and processing. pp. 363-391. In: Whiley, A.W., B. Schaffer, and B.N. Wolstenholme (eds.). The avocado: botany, production and uses. CAB International, London, UK. Doi: 10.1079/9780851993577.0363
Horwitz, W. 1980. Official methods of analysis of the AOAC. 13th ed. The Association of Official Analytical Chemists (AOAC), Washington DC. pp. 376-384.
Kaiser, C., M. Smith, and B. Wolstenholme. 1992. Overview of lipids in the avocado fruit, with particular reference to Natal Midlands. South African Avocado Growers' Association Yearbook 15, 78-82.
Kassim, A., T.S. Workneh, and C.N. Bezuidenhout. 2013. A review on postharvest handling of avocado fruit. Afr. J. Agric. Res. 8, 2385-2402. Doi: 10.5897/AJAR12.1248
Kruger, F.J., N.J.F. Claassens, M. Kritzinger, and V.E. Claassens. 1999. A short review of recent research on the impact of climatic conditions on the postharvest quality of South African export avocados. Rev. Chapingo Ser. Hortic. 58, 339-345.
Landahl, S., M.D. Meyer, and L.A. Terry, 2009. Spatial and temporal analysis of textural and biochemical changes of imported avocado cv. Hass during fruit ripening. J. Agric. Food Chem. 57, 7039-7047. Doi: https://doi.org/10.1021/jf803669x
Lee, S.K. 1981. A review and background of the avocado maturity standard. Calif. Avocado Soc. Yearbook 65, 101-109.
Lee, S.K., R.E. Young, P.M. Schiffman, Coogins, C.W. Jr. 1983. Maturity studies of avocado fruit based on picking dates and dry weigth. J. Amer. Soc. Hort. Sci. 108, 390-394.
Mejía, A.E. 2012. Estado del arte - cadena del aguacate. Dirección de Cadenas Productivas, Ministerio de Agricultura y Desarrollo Rural, Bogota.
Morton, J.F. 1987. Lauraceae: avocado and related species. pp. 91-102. In: Morton, J.F. (ed.). Fruits of warm climates. Julia F. Morton; Creative Resource Systems, Winterville, NC.
Obenland, D., S. Collin, J. Sievert, F. Negmb, and M.L. Arpaia. 2012. Influence of maturity and ripening on aroma volatiles and flavor in 'Hass' avocado. Postharvest Biol. Technol. 71, 41-50. Doi: 10.1016/j.postharvbio.2012.03.006
Olaeta, J.A., I.F. Gardiazabal, and O. Martínez de U. 1986. Variación estacional del contenido de aceite y su relación con la palatabilidad en frutos de palto (Persea americana Mill). Agric. Téc. 46, 365-367.
Orhevba, B.A. and A.O. Jinadu, 2011. Determination of physico-chemical properties and nutritional contents of avocado pear (Persea americana M.). Acad. Res. Int. 1, 372-380.
Osuna-Garcia, J.A., G. Doyon, S. Salazar-Garcia, R. Goenaga, and I.J.L. González-Durán. 2010. Effect of harvest date and ripening degree on quality and shelf life of Hass avocado in Mexico. Fruits 65, 367-375. Doi: 10.1051/fruits/2010031
Ozdemir, F. and A. Topuz. 2004. Changes in dry matter, oil content and fatty acids composition of avocado during harvesting time and post-harvesting ripening period. Food Chem. 86, 79-83. Doi: 10.1016/j.foodchem.2003.08.012
Paull, R.E. and O. Duarte. 2011. Postharvest technology. pp. 101-122. In: Paull, R.E. and O. Duarte (eds.). Tropical fruits. Vol. 1: Crop production and science in horticulture. CABI, Wallingford, UK. Doi: 10.1079/9781845936723.0101
Pedreschi, R., P. Muñoz, P. Robledo, C. Becerra, B.G. Defilippi, H. Van Eekelen, R. Mumm, E. Westra, and R.C.H. de Vos. 2014. Metabolomics analysis of postharvest ripening heterogeneity of 'Hass' avocado. Postharvest Biol. Tec. 92, 172-179. Doi: 10.1016/j.postharvbio.2014.01.024
Thorp, T.G., D. Hutchinga, T. Lowe, and K.B. Marsh. 1997. Survey of fruit mineral concentrations and postharvest quality of New Zealand‐grown 'Hass' avocado (Persea americana Mill.). New Zeal. J. Crop Hort. Sci. 25, 251-260. Doi: 10.1080/01140671.1997.9514014
Villa-Rodríguez, J.A., F.J. Molina-Corral, J.F. Ayala-Zavala, G.I. Olivas, and G.A. González-Aguilar. 2011. Effect of maturity stage on the content of fatty acids and antioxidant activity of 'Hass' avocado. Food Res. Int. 44, 1231-1237. Doi: 10.1016/j.foodres.2010.11.012
Waissbluth, R. and J. Valenzuela. 2007. Determination of the minimum percentage of dry matter to authorize the harvest of Hass avocado pears for export. In: Proc. VI World Avocado Congress. Viña Del Mar, Chile.
Wedding, B.B., C. Wright, S. Grauf, R.D. White, B. Tilse, and P. Gadek. 2013. Effects of seasonal variability on FT-NIR prediction of dry matter content for whole Hass avocado fruit. Postharvest Biol. Tec. 75, 9-16.
Whiley, A.W., T.S. Rasmussen, J.B. Saranah, and B.N. Wolstenholme. 1996. Delayed harvest effects on yield, fruit size and starch cycling in avocado (Persea americana Mill.) in subtropical environments. II. The late-maturing cv. Hass. Sci. Hortic. 66, 35-49. Doi: 10.1016/0304-4238(96)00908-9
Woolf, A.B., I.B. Ferguson, L.C. Requejo-Tapia, L. Boyd, W.A. Laing, and A. White. 1999. Impact of sun exposure on harvest quality of 'Hass' avocado fruit. Rev. Chapingo Ser. Hortic. 5, 353-358.
Woolf, A.B., A. White, M.L. Arpaia, and K.C. Gross. 2004. Avocado. In: Gross, K.C., C.W. Wang, and M. Salveit (eds.). The commercial storage of fruits, vegetables and florist and nursery stocks.Agriculture Handbook No. 66 (HB-66) USDA, ARS, Washington, DC.
Wu, C.T., S.F. Roan, T.C. Hsiung, I.Z. Chen, J.J. Shyr, and A. Wakana. 2011. Effect of harvest maturity and heat pretreatment on the quality of low temperature storage avocados in Taiwan. J. Fac. Agric. Kyushu Univ. 56, 255-262.
Yahia, E.M. and A.B. Woolf. 2011. Avocado (Persea americana Mill.). pp. 125-185. In: Yahia, E. (ed.). Postharvest biology and technology of tropical and subtropical fruits: açai to citrus. Vol. 2. Woodhead Publishing, Cambridge, UK. Doi: 10.1533/9780857092762.125
References
Anon. 1925. Standardization committee report California Avocado Association Annual Report. California Avocado Association, Pasadena, CA. pp. 46-47.
Chen, N.J., M.M. Wall, R.E. Paull, and P.A. Follett. 2009. Variation in 'Sharwil' avocado maturity during the harvest season and resistance to fruit fly infestation. HortScience 44, 1655-1661.
Dodd, M., P. Cronje, M. Taylor, M. Huysamer, F. Kruger, E. Lotz, and K. Van der Merwe. 2010. A review of the postharvest handling of fruits in South Africa over the past twenty five years. South Afr. J. Plant Soil. 27, 97-116. Doi: 10.1080/02571862.2010.10639974
Donetti, M. and L.A. Terry. 2014. Biochemical markers defining growing area and ripening stage of imported avocado fruit cv. Hass. J. Food Compos. Anal. 34, 90-98. Doi: 10.1016/j.jfca.2013.11.011
Ferreyra E., R., and B. Defilippi B. 2012. Factores de precosecha que afectan la postcosecha de palta Hass: clima, suelo y manejo. INIA Bull. No. 248. Centro Regional de Investigación La Cruz, Instituto de Investigaciones Agropecuarias, La Cruz, Chile.
Franciosi, R. 2003. El Palto: producción, cosecha y post-cosecha. Ediciones Cimagraf, Lima, Peru.
Gamble, J., F.R. Harker, S.R. Jaeger, A. White, C. Bava, M. Beresford, B. Stubbings, M. Wohlers, P.J. Hofman, R. Marques, and A. Woolf. 2010. The impact of dry matter, ripeness and internal defects on consumer perceptions of avocado quality and intentions to purchase. Postharvest Biol. Tec. 57, 35-43. Doi: 10.1016/j.postharvbio.2010.01.001
Gil S., G.F. 2000. Fruticultura: La producción de fruta. Frutas de clima templado y subtropical y uva de vino. Ediciones UniversidadCatolica de Chile, Santiago.
Hofman, P.J., Y. Fuchs, and D.L. Milne. 2002. Harvesting, packing, postharvest technology, transport and processing. pp. 363-391. In: Whiley, A.W., B. Schaffer, and B.N. Wolstenholme (eds.). The avocado: botany, production and uses. CAB International, London, UK. Doi: 10.1079/9780851993577.0363
Horwitz, W. 1980. Official methods of analysis of the AOAC. 13th ed. The Association of Official Analytical Chemists (AOAC), Washington DC. pp. 376-384.
Kaiser, C., M. Smith, and B. Wolstenholme. 1992. Overview of lipids in the avocado fruit, with particular reference to Natal Midlands. South African Avocado Growers' Association Yearbook 15, 78-82.
Kassim, A., T.S. Workneh, and C.N. Bezuidenhout. 2013. A review on postharvest handling of avocado fruit. Afr. J. Agric. Res. 8, 2385-2402. Doi: 10.5897/AJAR12.1248
Kruger, F.J., N.J.F. Claassens, M. Kritzinger, and V.E. Claassens. 1999. A short review of recent research on the impact of climatic conditions on the postharvest quality of South African export avocados. Rev. Chapingo Ser. Hortic. 58, 339-345.
Landahl, S., M.D. Meyer, and L.A. Terry, 2009. Spatial and temporal analysis of textural and biochemical changes of imported avocado cv. Hass during fruit ripening. J. Agric. Food Chem. 57, 7039-7047. Doi: https://doi.org/10.1021/jf803669x
Lee, S.K. 1981. A review and background of the avocado maturity standard. Calif. Avocado Soc. Yearbook 65, 101-109.
Lee, S.K., R.E. Young, P.M. Schiffman, Coogins, C.W. Jr. 1983. Maturity studies of avocado fruit based on picking dates and dry weigth. J. Amer. Soc. Hort. Sci. 108, 390-394.
Mejía, A.E. 2012. Estado del arte - cadena del aguacate. Dirección de Cadenas Productivas, Ministerio de Agricultura y Desarrollo Rural, Bogota.
Morton, J.F. 1987. Lauraceae: avocado and related species. pp. 91-102. In: Morton, J.F. (ed.). Fruits of warm climates. Julia F. Morton; Creative Resource Systems, Winterville, NC.
Obenland, D., S. Collin, J. Sievert, F. Negmb, and M.L. Arpaia. 2012. Influence of maturity and ripening on aroma volatiles and flavor in 'Hass' avocado. Postharvest Biol. Technol. 71, 41-50. Doi: 10.1016/j.postharvbio.2012.03.006
Olaeta, J.A., I.F. Gardiazabal, and O. Martínez de U. 1986. Variación estacional del contenido de aceite y su relación con la palatabilidad en frutos de palto (Persea americana Mill). Agric. Téc. 46, 365-367.
Orhevba, B.A. and A.O. Jinadu, 2011. Determination of physico-chemical properties and nutritional contents of avocado pear (Persea americana M.). Acad. Res. Int. 1, 372-380.
Osuna-Garcia, J.A., G. Doyon, S. Salazar-Garcia, R. Goenaga, and I.J.L. González-Durán. 2010. Effect of harvest date and ripening degree on quality and shelf life of Hass avocado in Mexico. Fruits 65, 367-375. Doi: 10.1051/fruits/2010031
Ozdemir, F. and A. Topuz. 2004. Changes in dry matter, oil content and fatty acids composition of avocado during harvesting time and post-harvesting ripening period. Food Chem. 86, 79-83. Doi: 10.1016/j.foodchem.2003.08.012
Paull, R.E. and O. Duarte. 2011. Postharvest technology. pp. 101-122. In: Paull, R.E. and O. Duarte (eds.). Tropical fruits. Vol. 1: Crop production and science in horticulture. CABI, Wallingford, UK. Doi: 10.1079/9781845936723.0101
Pedreschi, R., P. Muñoz, P. Robledo, C. Becerra, B.G. Defilippi, H. Van Eekelen, R. Mumm, E. Westra, and R.C.H. de Vos. 2014. Metabolomics analysis of postharvest ripening heterogeneity of 'Hass' avocado. Postharvest Biol. Tec. 92, 172-179. Doi: 10.1016/j.postharvbio.2014.01.024
Thorp, T.G., D. Hutchinga, T. Lowe, and K.B. Marsh. 1997. Survey of fruit mineral concentrations and postharvest quality of New Zealand‐grown 'Hass' avocado (Persea americana Mill.). New Zeal. J. Crop Hort. Sci. 25, 251-260. Doi: 10.1080/01140671.1997.9514014
Villa-Rodríguez, J.A., F.J. Molina-Corral, J.F. Ayala-Zavala, G.I. Olivas, and G.A. González-Aguilar. 2011. Effect of maturity stage on the content of fatty acids and antioxidant activity of 'Hass' avocado. Food Res. Int. 44, 1231-1237. Doi: 10.1016/j.foodres.2010.11.012
Waissbluth, R. and J. Valenzuela. 2007. Determination of the minimum percentage of dry matter to authorize the harvest of Hass avocado pears for export. In: Proc. VI World Avocado Congress. Viña Del Mar, Chile.
Wedding, B.B., C. Wright, S. Grauf, R.D. White, B. Tilse, and P. Gadek. 2013. Effects of seasonal variability on FT-NIR prediction of dry matter content for whole Hass avocado fruit. Postharvest Biol. Tec. 75, 9-16.
Whiley, A.W., T.S. Rasmussen, J.B. Saranah, and B.N. Wolstenholme. 1996. Delayed harvest effects on yield, fruit size and starch cycling in avocado (Persea americana Mill.) in subtropical environments. II. The late-maturing cv. Hass. Sci. Hortic. 66, 35-49. Doi: 10.1016/0304-4238(96)00908-9
Woolf, A.B., I.B. Ferguson, L.C. Requejo-Tapia, L. Boyd, W.A. Laing, and A. White. 1999. Impact of sun exposure on harvest quality of 'Hass' avocado fruit. Rev. Chapingo Ser. Hortic. 5, 353-358.
Woolf, A.B., A. White, M.L. Arpaia, and K.C. Gross. 2004. Avocado. In: Gross, K.C., C.W. Wang, and M. Salveit (eds.). The commercial storage of fruits, vegetables and florist and nursery stocks.Agriculture Handbook No. 66 (HB-66) USDA, ARS, Washington, DC.
Wu, C.T., S.F. Roan, T.C. Hsiung, I.Z. Chen, J.J. Shyr, and A. Wakana. 2011. Effect of harvest maturity and heat pretreatment on the quality of low temperature storage avocados in Taiwan. J. Fac. Agric. Kyushu Univ. 56, 255-262.
Yahia, E.M. and A.B. Woolf. 2011. Avocado (Persea americana Mill.). pp. 125-185. In: Yahia, E. (ed.). Postharvest biology and technology of tropical and subtropical fruits: açai to citrus. Vol. 2. Woodhead Publishing, Cambridge, UK. Doi: 10.1533/9780857092762.125
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Thiresia-Teresa Tzatzani, Giasemi Morianou, Safiye Tül, Nektarios N. Kourgialas. (2023). Air Temperature as a Key Indicator of Avocado (Cvs. Fuerte, Zutano, Hass) Maturation Time in Mediterranean Climate Areas: The Case of Western Crete in Greece. Agriculture, 13(7), p.1342. https://doi.org/10.3390/agriculture13071342.
2. Khayelihle Ncama, Lembe S. Magwaza, Carlos A. Poblete-Echeverría, Hélène H. Nieuwoudt, Samson Z. Tesfay, Asanda Mditshwa. (2018). On-tree indexing of ‘Hass’ avocado fruit by non-destructive assessment of pulp dry matter and oil content. Biosystems Engineering, 174, p.41. https://doi.org/10.1016/j.biosystemseng.2018.06.011.
3. Sbulelo Mwelase, Asanda Mditshwa, Lembe Samukelo Magwaza, Samson Zeray Tesfay. (2022). Maturity Indexing and Postharvest Performance of Newly Developed ‘Lamb Hass’ Avocado Fruit. International Journal of Fruit Science, 22(1), p.453. https://doi.org/10.1080/15538362.2022.2054906.
4. Lucas Esteban Cano-Gallego, Sara Isabel Bedoya-Ramírez, Jorge Alonso Bernal-Estrada, Carlos Felipe Barrera-Sánchez, Oscar de Jesús Córdoba-Gaona. (2023). Yield and fruit quality of avocado grown at different planting densities in Colombia. Pesquisa Agropecuária Brasileira, 58 https://doi.org/10.1590/s1678-3921.pab2023.v58.03146.
5. Santiago Benjumea-Orozco, Pedro Lizarazo-Peña, Aníbal O. Herrera. (2024). Effect of phosphine dose and exposure time on postharvest quality of Hass avocado (Persea americana Mill.). Agronomía Colombiana, 42(3), p.e117960. https://doi.org/10.15446/agron.colomb.v42n3.117960.
6. Thiresia-Teresa Tzatzani, Georgios Psarras, Dario Scuderi, Emmanouil Kokolakis, Ioannis E. Papadakis. (2022). Effect of Organic Fertilizers on Avocado Trees (Cvs. Fuerte, Hass, Lamb Hass) in Western Crete, a Cool Subtropical Region. Sustainability, 14(19), p.12221. https://doi.org/10.3390/su141912221.
7. Elhadi M. Yahia, Gustavo Adolfo González-Aguilar, José de Jesús Ornelas-Paz, Ivan Luzardo-Ocampo, Maria Concetta Strano. (2025). Identification and Characterization of Phytochemicals in Avocado (Persea americana Mill, var. Hass) Fruit at Different Maturation and Ripening Stages. Journal of Food Quality, 2025(1) https://doi.org/10.1155/jfq/7181926.
8. Juan Camilo Henao-Rojas, Jaime Horacio Lopez, Nelson Walter Osorio, Joaquín Guillermo Ramírez-Gil. (2019). Fruit quality in Hass avocado and its relationships with different growing areas under tropical zones. Revista Ceres, 66(5), p.341. https://doi.org/10.1590/0034-737x201966050003.
9. Camilo Astudillo, Pablo Rodriguez. (2018). Parámetros fisicoquímicos del aguacate Persea americana Mill. cv. Hass (Lauraceae) producido en Antioquia (Colombia) para exportación. Ciencia y Tecnología Agropecuaria, 19(2) https://doi.org/10.21930/rcta.vol19_num2_art:694.
10. S. Mwelase, A. Mditshwa, L.S. Magwaza, S.Z. Tesfay, J. Mashilo. (2022). Relationship between photosynthetic efficiency and maturity of ‘Lamb Hass’ avocado fruit. Acta Horticulturae, (1349), p.85. https://doi.org/10.17660/ActaHortic.2022.1349.13.
11. Lucas Esteban Cano-Gallego, Jorge Alonso Bernal Estrada, Juan David Hernández Arredondo, Guillermo Antonio Correa-Londoño, Oscar de Jesús Córdoba-Gaona. (2023). Graft compatibility effects on cv. Hass avocado fruit growth. Ciência e Agrotecnologia, 47 https://doi.org/10.1590/1413-7054202347014022.
12. Oscar de Jesús Córdoba-Gaona, Sara Isabel Bedoya-Ramírez, Ruby Alejandra Loaiza-Ruiz, Carlos Felipe Barrera-Sánchez, Lucas Esteban Cano-Gallego. (2025). Influence of plant density on fruit and foliar nutritional composition for Hass avocado in Colombia. Revista Facultad Nacional de Agronomía Medellín, 78(1), p.10921. https://doi.org/10.15446/rfnam.v78n1.112610.
13. Giuliana Garofalo, Marialetizia Ponte, Gabriele Busetta, Marcella Barbera, Ilenia Tinebra, Daniela Piazzese, Elena Franciosi, Antonino Di Grigoli, Vittorio Farina, Adriana Bonanno, Raimondo Gaglio, Luca Settanni. (2024). Microbial dynamics and quality characteristics of spontaneously fermented salamis produced by replacing pork fat with avocado pulp. Food Microbiology, 122, p.104536. https://doi.org/10.1016/j.fm.2024.104536.
14. Luis Martín Marín-Obispo, Raúl Villarreal-Lara, Dariana Graciela Rodríguez-Sánchez, Armando Del Follo-Martínez, María de la Cruz Espíndola Barquera, Jesús Salvador Jaramillo-De la Garza, Rocío I. Díaz de la Garza, Carmen Hernández-Brenes. (2021). Insights into Drivers of Liking for Avocado Pulp (Persea americana): Integration of Descriptive Variables and Predictive Modeling. Foods, 10(1), p.99. https://doi.org/10.3390/foods10010099.
15. Maya Salameh, Diana Nacouzi, Georgette Lahoud, Imad Riachy, Walid El Kayal. (2022). Evaluation of Postharvest Maturity Indices of Commercial Avocado Varieties Grown at Various Elevations Along Lebanon's Coast. Frontiers in Plant Science, 13 https://doi.org/10.3389/fpls.2022.895964.
16. Pablo Rodríguez, Jairo Villamizar, Luis Londoño, Thierry Tran, Fabrice Davrieux. (2023). Quantification of Dry Matter Content in Hass Avocado by Near-Infrared Spectroscopy (NIRS) Scanning Different Fruit Zones. Plants, 12(17), p.3135. https://doi.org/10.3390/plants12173135.
17. Nana Millicent Duduzile Buthelezi, Samson Zeray Tesfay, Khayelihle Ncama, Lembe Samukelo Magwaza. (2019). Destructive and non-destructive techniques used for quality evaluation of nuts: A review. Scientia Horticulturae, 247, p.138. https://doi.org/10.1016/j.scienta.2018.12.008.
18. Angie Homez-Jara, Henry Cardenas-Roa, Miguel Montealegre, Loong-Tak Lim, Maria G. Corradini, Henry Alexander Váquiro-Herrera, Angelica Sandoval-Aldana. (2023). Postharvest Treatments of Hass Avocado (Persea americana Mill.) and Estimation of Its Quality Using Hyperspectral Imaging (HSI). ACS Food Science & Technology, 3(5), p.932. https://doi.org/10.1021/acsfoodscitech.3c00084.
19. Jaime Horacio López-Hoyos, Juan Camilo Henao-Rojas, Nelson Walter Osorio-Vega, Joaquín Guillermo Ramírez-Gil. (2024). Edaphoclimatic variation and harvest seasonality as determining factors of multidimensional quality in avocado cv. hass grown in the tropics. Heliyon, 10(14), p.e34280. https://doi.org/10.1016/j.heliyon.2024.e34280.
20. Süleyman BAYRAM, Seyla TEPE. (2018). Edranol, Ettinger ve Wurtz avokado çeşitlerinin hasat dönemleri boyunca meyvelerinin bazı fiziksel ve kimyasal değişimlerinin belirlenmesi. Derim, 35(2), p.96. https://doi.org/10.16882/derim.2018.339252.
21. Jhon Jairo Vega Díaz, Angélica Piedad Sandoval Aldana, Deici Viviana Reina Zuluaga. (2021). Prediction of dry matter content of recently harvested ‘Hass’ avocado fruits using hyperspectral imaging. Journal of the Science of Food and Agriculture, 101(3), p.897. https://doi.org/10.1002/jsfa.10697.
22. S. Mwelase, A. Mditshwa, L.S. Magwaza, S.Z. Tesfay. (2022). Relationship of on-tree fruit colour change to maturity and postharvest behaviour of ‘Lamb-Hass’ avocado fruit. Acta Horticulturae, (1349), p.95. https://doi.org/10.17660/ActaHortic.2022.1349.14.
23. Hafid Elmi AHMED, Hakan ENGİN. (2023). Somali Koşullarında Yetiştirilen Farklı Papaya Çeşitlerinin Fenolojik Özellikleri ve Verim Performansları. ÇOMÜ Ziraat Fakültesi Dergisi, 11(1), p.1. https://doi.org/10.33202/comuagri.1106517.
24. Pedro Xavier, Pedro Miguel Rodrigues, Cristina L. M. Silva. (2024). Shelf-Life Management and Ripening Assessment of ‘Hass’ Avocado (Persea americana) Using Deep Learning Approaches. Foods, 13(8), p.1150. https://doi.org/10.3390/foods13081150.
25. Süleyman BAYRAM, Seyla TEPE. (2019). Determination of some physicochemical properties in fruits of some avocado (Persea americana Mill.) cultivars during the harvesting periods. Derim, 36(1), p.1. https://doi.org/10.16882/derim.2019.410329.
26. Amit Khanal, Muhammad Asad Ullah, Priya Joyce, Neil White, Andrew Macnish, Eleanor Hoffman, Donald Irving, Richard Webb, Daryl Joyce. (2024). Fruit Sorting Based on Maturity Reduces Internal Disorders in Vapor Heat-Treated ‘B74’ Mango. Horticulturae, 10(12), p.1257. https://doi.org/10.3390/horticulturae10121257.
27. Hongbin Yang, Fuqiang Wang, Yingqin Li, Yake Guo, Xiuhua Tang, Shuailei Gu, Haihong Chen, Chaohai Pang, Yanxia Li, Jiali Zhang, Weihong Ma, Jiashui Wang. (2024). Metabolomics analyses provide insights into the nutritional quality profiling in 95 avocado germplasms grown in China. Food Chemistry: X, 24, p.101971. https://doi.org/10.1016/j.fochx.2024.101971.
28. Lembe Samukelo Magwaza, Samson Z. Tesfay. (2015). A Review of Destructive and Non-destructive Methods for Determining Avocado Fruit Maturity. Food and Bioprocess Technology, 8(10), p.1995. https://doi.org/10.1007/s11947-015-1568-y.
29. J. Merheb, G. Lahoud, S. Fahd, H.A. Yehia, I.B. Rached, J. Kahwaji, C. Berbari, M. El Riachy, F. As-sadi, M. Massaad, F. Obrien, L. Chalak. (2020). Preliminary assessment of maturity and picking dates of avocado under Lebanese growing conditions. Acta Horticulturae, (1299), p.361. https://doi.org/10.17660/ActaHortic.2020.1299.54.
30. Paula A. Nevado-Velasquez, Joaquín Guillermo Ramírez-Gil, Claudia García, Diego A. Castellanos, A.A. Lopera, V.D. Nonato Bezzon, Carlos Paucar. (2023). Synthesis and application of Ag-doped TiO2 nanoparticles with antifungal activity and ethylene inhibition in postharvest of avocado cv. Hass. Biocatalysis and Agricultural Biotechnology, 54, p.102901. https://doi.org/10.1016/j.bcab.2023.102901.
31. Pablo Rodriguez, Juan Camilo Henao, Guillermo Correa, Ana Aristizabal. (2018). Identification of Harvest Maturity Indicators for ‘Hass’ Avocado Adaptable to Field Conditions. HortTechnology, 28(6), p.815. https://doi.org/10.21273/HORTTECH04025-18.
32. Süleyman BAYRAM, Seyla TEPE. (2020). Determination of harvesting time of Bacon, Fuerte and Zutano avocado cultivars in Antalya conditions. Mediterranean Agricultural Sciences, 33(1), p.1. https://doi.org/10.29136/mediterranean.600148.
33. J.P. Vasconez, H. Admoni, F. Auat Cheein. (2021). A methodology for semantic action recognition based on pose and human-object interaction in avocado harvesting processes. Computers and Electronics in Agriculture, 184, p.106057. https://doi.org/10.1016/j.compag.2021.106057.
34. 晶 金. (2025). Impact of Different Cold Chain Conditions on the Quality of Hass Avocados and Validation of Shelf-Life Prediction Models. Modeling and Simulation, 14(02), p.245. https://doi.org/10.12677/mos.2025.142148.
35. Joaquín Guillermo Ramírez-Gil, Jaime Horacio López, Juan Camilo Henao-Rojas. (2019). Causes of Hass Avocado Fruit Rejection in Preharvest, Harvest, and Packinghouse: Economic Losses and Associated Variables. Agronomy, 10(1), p.8. https://doi.org/10.3390/agronomy10010008.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2014 Agronomía Colombiana

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
© Centro Editorial de la Facultad de Ciencias Agrarias, Universidad Nacional de Colombia
Reproduction and quotation of material appearing in the journal is authorized provided the following are explicitly indicated: journal name, author(s) name, year, volume, issue and pages of the source. The ideas and observations recorded by the authors are their own and do not necessarily represent the views and policies of the Universidad Nacional de Colombia. Mention of products or commercial firms in the journal does not constitute a recommendation or endorsement on the part of the Universidad Nacional de Colombia; furthermore, the use of such products should comply with the product label recommendations.
The Creative Commons license used by Agronomia Colombiana journal is: Attribution - NonCommercial - ShareAlike (by-nc-sa)

Agronomia Colombiana by Centro Editorial of Facultad de Ciencias Agrarias, Universidad Nacional de Colombia is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional License.
Creado a partir de la obra en http://revistas.unal.edu.co/index.php/agrocol/.







