Published

2023-12-31

Physiological effects of Acmella ciliata essential oil on root development of Nicotiana tabacum

Efectos fisiológicos del aceite esencial de Acmella ciliata sobre el desarrollo radical de Nicotiana tabacum

DOI:

https://doi.org/10.15446/agron.colomb.v41n3.54584

Keywords:

alkamides, root elongation, root hairs, bioactivity (en)
alcamidas, elongación radical, pelos radicales, bioactividad (es)

Downloads

Authors

In this study, the essential oil of Acmella ciliata, characterized by the presence of significant amounts of spilanthol, α-phellandrene epoxide, and carvotanacetone, was assessed for its influence on the growth of Nicotiana tabacum cv. Xanthi, with the focus primarily on root hair density and primary root length. Following its extraction through microwave-assisted hydrodistillation, the oil was stored at 4°C in amber vials, distinguishable by its unique yellowish-reddish hue, with a refractive index of 1.3478 and a density of 0.847 g cm-3. Among the various dilutions evaluated, the undiluted oil (T3) and the dilution 1.5:0.5 (Oil:EtOH) (T6) demonstrated the most prominent effects. The T3 and T6 treatments markedly enhanced root hair numbers, with T6 additionally promoving root length compared to other treatments. Considering the presence of bioactive alkamides such as spilanthol in the oil, these compounds may have contributed to the observed root growth modulation. When compared against the positive control, affinin, Acmella ciliata essential oil displayed a more pronounced effect on root hair proliferation, while affinin predominantly boosted primary root elongation. The findings highlight the differential effects of the essential oil on specific plant growth parameters.

En esta investigación, el aceite esencial de Acmella ciliata, caracterizado por la presencia de compuestos significativos como el espilantol, el epóxido de α-felandreno y la carvotanacetona, fue evaluado por su influencia en el crecimiento de Nicotiana tabacum cv. Xanthi, centrándose principalmente sobre la densidad de pelos radicales y la longitud de la raíz primaria. Luego de la extracción mediante hidrodestilación asistida por microondas, el aceite se almacenó a 4°C en viales de ámbar y se distinguió por su único matiz amarillo rojizo, con un índice de refracción de 1.3478 y una densidad de 0.847 g cm-3. Entre las diversas diluciones evaluadas, el aceite sin diluir (T3) y la dilución 1.5:0.5 (Aceite:EtOH) (T6) demostraron los efectos más prominentes. Los tratamientos T3 y T6 aumentaron notablemente el número de pelos radicales, con T6 además promoviendo la longitud de la raíz de manera comparable a otros tratamientos. Considerando la presencia detectada de alcamidas bioactivas como el espilantol en el aceite esencial, es plausible que contribuyeran a la modulación observada del crecimiento de la raíz. En comparación con el control positivo, afinina, el aceite esencial de Acmella ciliata mostró un efecto más pronunciado en la proliferación de pelos radiculares, mientras que la afinina impulsó predominantemente la elongación de la raíz primaria. Los hallazgos destacan los efectos diferenciales del aceite esencial en parámetros específicos del crecimiento vegetal.

References

Bano, A., Waqar, A., Khan, A., & Tariq, H. (2022). Phytostimulants in sustainable agriculture. Frontiers in Sustainable Food Systems, 6, Article 801788. https://doi.org/10.3389/fsufs.2022.801788

Barbosa, A. F., Carvalho, M. G., Smith, R. E., & Sabaa-Srur, A. U. O. (2016). Spilanthol: occurrence, extraction, chemistry and biological activities. Revista Brasileira de Farmacognosia, 26(1), 128–133. https://doi.org/10.1016/j.bjp.2015.07.024

Buitimea-Cantúa, G. V., Marsch-Martinez, N., Ríos-Chavez, P., Méndez-Bravo, A., & Molina-Torres, J. (2020). Global gene expression analyses of the alkamide-producing plant Heliopsis longipes supports a polyketide synthase-mediated biosynthesis pathway. PeerJ, 8, Article 10074. https://doi.org/10.7717/peerj.10074

Dini, M., Raseira, M. C. B., Scariotto, S., Carra, B., Abreu, E. S., Mello-Farias, P., & Cantillano, R. F. F. (2019). Color shade heritability of peach flesh. Journal of Agricultural Science, 11(8), 236–247. https://doi.org/10.5539/jas.v11n8p236

Elufioye, T. O., Habtemariam, S., & Adejare, A. (2020). Chemistry and pharmacology of alkylamides from natural origin. Revista Brasileira de Farmacognosia, 30(5), 622–640. https://doi.org/10.1007/s43450-020-00095-5

Greger, H. (2016). Alkamides: a critical reconsideration of a multifunctional class of unsaturated fatty acid amides. Phytochemistry Reviews, 15, 729–770. https://doi.org/10.1007/s11101-015-9418-0

Işcan, G., Kirimer, N., Demirci, F., Noma, Y., & BaŞer, K .H. C. (2012). Biotransformation of (−)-(R) α-Phellandrene: Antimicrobial activity of its major metabolite. Chemistry & Biodiversity, 9(8), 1525–1532. https://doi.org/10.1002/cbdv.201100283

Ispiryan, A., Bobinaite, R., Urbonaviciene, D., Sermuksnyte-Alesiuniene, K., Viskelis, P., Miceikiene, A., & Viskelis, J. (2023). Physico-chemical properties, fatty acids profile, and economic properties of raspberry (Rubus idaeus L.) seed oil, extracted in various ways. Plants, 12(14), Article 2706. https://doi.org/10.3390/plants12142706

Jalil, S. U., Zahera, M., Khan, M. S., & Ansari, M. I. (2019). Biochemical synthesis of gold nanoparticles from leaf protein of Nicotiana tabacum L. cv. Xanthi and their physiological, developmental, and ROS scavenging responses on tobacco plant under stress conditions. IET Nanobiotechnology, 13(1), 23–29. https://doi.org/10.1049/iet-nbt.2018.5148

Khayyat, S. A, & Selva, R. L. (2018). Recent progress in photochemical reaction on main components of some essential oils. Journal of Saudi Chemical Society, 22(7), 855–875. https://doi.org/10.1016/j.jscs.2018.01.008

Kurotani, K., Hirakawa, H., Shirasawa, K., Tanizawa, Y, Nakamura, Y., Isobe, S., & Notaguchi, M. (2023). Genome sequence and analysis of Nicotiana benthamiana, the model plant for interactions between organisms. Plan & Cell Physiology, 64(2), 248–257. https://doi.org/10.1093/pcp/pcac168

Li, X., Zeng, R., & Liao, H. (2016). Improving crop nutrient efficiency through root architecture modifications. Journal of Integrative Plant Biology, 58(3), 193–202. https://doi.org/10.1111/jipb.12434

Lucchesi, M. E., Smadja, J., Bradshaw, S., Louw, W., & Chemat, F. (2007). Solvent free microwave extraction of Elletaria cardamomum L.: A multivariate study of a new technique for the extraction of essential oil. Journal of Food Engineering, 79(3), 1079–1086. https://doi.org/10.1016/j.jfoodeng.2006.03.029

Luo, M. R. (2016). Encyclopedia of color science and technology. (1st ed.). Springer Publishing Company, Inc. https://doi.org/10.1007/978-1-4419-8071-7

Mukherjee, A., Gaurav, A. K., Singh, S., Yadav, S., Bhowmick, S., Abeysinghe, S., & Verma, J. P. (2022). The bioactive potential of phytohormones: A review. Biotechnology Reports, 35, Article e00748. https://doi.org/10.1016/j.btre.2022.e00748

Okoh, O. O., Sadimenko, A. P., & Afolayan, A. J. (2010). Comparative evaluation of the antibacterial activities of the essential oils of Rosmarinus officinalis L. obtained by hydrodistillation and solvent free microwave extraction methods. Food Chemistry, 120(1), 308–312. https://doi.org/10.1016/j.foodchem.2009.09.084

Ortiz-Rojas, L., Suarez-Botello, J., & Chaves-Bedoya, G. (2017). Response in root development of Arabidopsis thaliana to leaf extract of Moringa oleifera. Revista Colombiana de Ciencias Hortícolas, 11(1), 193–199. https://doi.org/10.17584/rcch.2017v11i1.6131

Ramírez-Chávez, E., López-Bucio, J., Herrera-Estrella, L., & Molina-Torres, J. (2004). Alkamides isolated from plants promote growth and alter root development in Arabidopsis. Plant Physiology, 134(3), 1058–1068. https://doi.org/10.1104/pp.103.034553

Rios-Chávez, P., Ramirez-Chávez, E., Armenta-Salinas, C., & Molina-Torres, J. (2003). Acmella radicans var. radicans: In vitro culture establishment and alkamide content. In Vitro Cellular & Developmental Biology, Plant, 39(1), 37–41. https://doi.org/10.1079/IVP2002354

Ryan, P. R., Delhaize, E., Watt, M., & Richardson, A. E. (2016). Plant roots: understanding structure and function in an ocean of complexity. Annals of Botany, 118(4), 555–-559. https://doi.org/10.1093/aob/mcw192

Sadgrove, N. J., Padilla-González, G. F., & Phumthum, M. (2022). Fundamental chemistry of essential oils and volatile organic compounds, methods of analysis and authentication. Plants, 11(6), Article 789. https://doi.org/10.3390/plants11060789

Silveira, N., Saar, J., Santos, A. D., Barison, A., Sandjo, L. P., Kaiser, M., Schmidt, T. J., & Biavatti, M. W. (2016). A new alkamide with an endoperoxide structure from Acmella ciliata (Asteraceae) and its in vitro antiplasmodial activity. Molecules, 21(6), Article 765. https://doi.org/10.3390/molecules21060765

Tajima, R. (2021). Importance of individual root traits to understand crop root system in agronomic and environmental contexts. Breed Science, 71(1), 13–19. https://doi.org/10.1270/jsbbs.20095

Toplan, G. G., Taskin, T., Iscan, G., Goger, F., Kurkcuoglu, M., Civaş, A., Ecevit-Genç, G., Mat, A., & Başer, K. H. C. (2022). Comparative studies on essential oil and phenolic content with in vitro antioxidant, anticholinesterase, antimicrobial activities of Achillea biebersteinii Afan. and A. millefolium subsp. millefolium Afan. L. growing in Eastern Turkey. Molecules, 27(6), Article 1956. https://doi.org/10.3390/molecules27061956

Torres, F., Leyva, M., Martínez, J., & Stashenko, E. (2007). Estudio de las características del aceite esencial de Cabreriella oppositicordia (Asteraceae). Scientia et Technica, 13(33), 185–186.

Wang, X., & Komatsu, S. (2022). The role of phytohormones in plant response to flooding. International Journal of Molecular Sciences, 23(12), Article 6383. https://doi.org/10.3390/ijms23126383

How to Cite

APA

Méndez-Grateron, L. D., Ortiz-Rojas, L. Y. and Chaves-Bedoya, G. (2023). Physiological effects of Acmella ciliata essential oil on root development of Nicotiana tabacum. Agronomía Colombiana, 41(3), e54584. https://doi.org/10.15446/agron.colomb.v41n3.54584

ACM

[1]
Méndez-Grateron, L.D., Ortiz-Rojas, L.Y. and Chaves-Bedoya, G. 2023. Physiological effects of Acmella ciliata essential oil on root development of Nicotiana tabacum. Agronomía Colombiana. 41, 3 (Sep. 2023), e54584. DOI:https://doi.org/10.15446/agron.colomb.v41n3.54584.

ACS

(1)
Méndez-Grateron, L. D.; Ortiz-Rojas, L. Y.; Chaves-Bedoya, G. Physiological effects of Acmella ciliata essential oil on root development of Nicotiana tabacum. Agron. Colomb. 2023, 41, e54584.

ABNT

MÉNDEZ-GRATERON, L. D.; ORTIZ-ROJAS, L. Y.; CHAVES-BEDOYA, G. Physiological effects of Acmella ciliata essential oil on root development of Nicotiana tabacum. Agronomía Colombiana, [S. l.], v. 41, n. 3, p. e54584, 2023. DOI: 10.15446/agron.colomb.v41n3.54584. Disponível em: https://revistas.unal.edu.co/index.php/agrocol/article/view/54584. Acesso em: 19 jul. 2024.

Chicago

Méndez-Grateron, Lizeth Daniela, Luz Yineth Ortiz-Rojas, and Giovanni Chaves-Bedoya. 2023. “Physiological effects of Acmella ciliata essential oil on root development of Nicotiana tabacum”. Agronomía Colombiana 41 (3):e54584. https://doi.org/10.15446/agron.colomb.v41n3.54584.

Harvard

Méndez-Grateron, L. D., Ortiz-Rojas, L. Y. and Chaves-Bedoya, G. (2023) “Physiological effects of Acmella ciliata essential oil on root development of Nicotiana tabacum”, Agronomía Colombiana, 41(3), p. e54584. doi: 10.15446/agron.colomb.v41n3.54584.

IEEE

[1]
L. D. Méndez-Grateron, L. Y. Ortiz-Rojas, and G. Chaves-Bedoya, “Physiological effects of Acmella ciliata essential oil on root development of Nicotiana tabacum”, Agron. Colomb., vol. 41, no. 3, p. e54584, Sep. 2023.

MLA

Méndez-Grateron, L. D., L. Y. Ortiz-Rojas, and G. Chaves-Bedoya. “Physiological effects of Acmella ciliata essential oil on root development of Nicotiana tabacum”. Agronomía Colombiana, vol. 41, no. 3, Sept. 2023, p. e54584, doi:10.15446/agron.colomb.v41n3.54584.

Turabian

Méndez-Grateron, Lizeth Daniela, Luz Yineth Ortiz-Rojas, and Giovanni Chaves-Bedoya. “Physiological effects of Acmella ciliata essential oil on root development of Nicotiana tabacum”. Agronomía Colombiana 41, no. 3 (September 1, 2023): e54584. Accessed July 19, 2024. https://revistas.unal.edu.co/index.php/agrocol/article/view/54584.

Vancouver

1.
Méndez-Grateron LD, Ortiz-Rojas LY, Chaves-Bedoya G. Physiological effects of Acmella ciliata essential oil on root development of Nicotiana tabacum. Agron. Colomb. [Internet]. 2023 Sep. 1 [cited 2024 Jul. 19];41(3):e54584. Available from: https://revistas.unal.edu.co/index.php/agrocol/article/view/54584

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

112

Downloads

Download data is not yet available.