Published

2016-05-01

Greenhouse gas balance related to conventional and sustainable fruit production systems in the Highlands region of Pasto, Colombia

Balance de gases de efecto invernadero relacionado a sistemas convencionales y sostenibles de producción de frutas en la región del Altiplano de Pasto, Colombia

DOI:

https://doi.org/10.15446/agron.colomb.v34n2.55417

Keywords:

biomass C, climate change, mitigation practices, GHG emissions, potential sinks, soil C. (en)
C de la biomasa, cambio climático, prácticas mitigadoras de GEI, potenciales sumideros, C del suelo (es)

Authors

  • Hernando Criollo E. Universidad de Nariño
  • Amanda Silva P. Universidad de Los Llanos
  • Hernando Delgado H. Universidad de Los Llanos
This research focused on the greenhouse gas (GHG) emissions and potential sinks associated with conventional and sustainable fruit production systems in the Highlands region of Pasto, Nariño, Colombia. Based on the IPCC (2006) methodologies, the annual emission balance for a 6-year production cycle included agricultural sources and gasoline consumption related to the main agricultural activities and the potential for soil C accumulation and biomass C fixation in all of the studied systems. The multivariate analysis showed that positive GHG balance emissions would be achieved in all sustainable fruit production systems, as compared to conventional fruit production systems with greater impact on (SS1): Rubusglaucus Benth. associated with Acacia decurrens trees and live coverage of kikuyu Pen-nisetum clandestinum grass. According to the results of this study, (SS1) showed the beneficial total GHG balance emission accounting for -21,079 kg of atmospheric CO2eq ha-1 yr-1 divided into -4,587 kg CO2eq ha-1 yr-1 and -17,102 kg CO2eq ha-1 yr-1 due an annual soil and biomass C sequestration potential that could help offset its emissions (610 kg CO2eq ha-1 yr-1).
Este trabajo se enfoca en las emisiones de gases de efecto invernadero (GEI) y los sumideros potenciales asociados a sistemas convencionales y sostenibles de producción de frutas en la región del Altiplano de Pasto, Nariño, Colombia. Basados en las metodologías del IPCC (2006), el balance de las emisiones anuales para un ciclo de producción media de 6 años incluyó las fuentes agrícolas y el consumo de gasolina relacionado con las principales actividades agrícolas y el potencial para acumular C en el suelo y fijar C en la biomasa en todos los sistemas estudiados. El análisis multivariado mostró que un positivo balance de emisiones de GEI puede ser alcanzada con todos los sistemas sostenibles de producción de frutales comparados con los sistemas convencionales de producción con gran impacto en (SS1): Rubus glaucus Benth. asociado con árboles de Acacia decurrens y cobertura viva de pasto kikuyo Pennisetum clan-destinum. Basado en los resultados de este estudio, el sistema (SS1) mostró benéfico balance del total de las emisiones de GEI contabilizando -21,079 kg CO2eq atmosférico por ha-1 por año, dividido en -4,587 kg CO2eq ha-1 año-1 y -17,102 kg CO2eq ha-1 año-1, debido al potencial de secuestro anual de C en el suelo y la biomasa que puede contrarrestar en parte las emisiones del sistema (610 kg CO2eq ha-1año-1).

Doi: https://doi.org/10.15446/agron.colomb.v34n2.55417

Greenhouse gas balance related to conventional and sustainable fruit production systems in the Highlands region of Pasto, Colombia

Balance de gases de efecto invernadero relacionado a sistemas convencionales y sostenibles de producción de frutas en la región del Altiplano de Pasto, Colombia

Hernando Criollo E.1, Amanda Silva P2, and Hernando Delgado H.2

1 Grupo de Investigación Producción de Frutales Andinos, Faculty of Agricultural Sciences, Universidad de Nariño. Pasto (Colombia).
2 Grupo de Investigación Innovacion en Sistemas Agricolas y Forestales (ISAF), Faculty of Agricultural Sciences and Natural Resources, Universidad de Los Llanos (Unillanos). Villavicencio (Colombia). asilvap@unillanos.edu.co

Received for publication: 27 January, 2016. Accepted for publication: 30 June, 2016.


ABSTRACT

This research focused on the greenhouse gas (GHG) emissions and potential sinks associated with conventional and sustainable fruit production systems in the Highlands region of Pasto, Nariño, Colombia. Based on the IPCC (2006) methodologies, the annual emission balance for a 6-year production cycle included agricultural sources and gasoline consumption related to the main agricultural activities and the potential for soil C accumulation and biomass C fixation in all of the studied systems. The multivariate analysis showed that positive GHG balance emissions would be achieved in all sustainable fruit production systems, as compared to conventional fruit production systems with greater impact on (SS1): Rubusglaucus Benth. associated with Acacia decurrens trees and live coverage of kikuyu Pen-nisetum clandestinum grass. According to the results of this study, (SS1) showed the beneficial total GHG balance emission accounting for -21,079 kg of atmospheric CO2eq ha-1 yr-1 divided into -4,587 kg CO2eq ha-1 yr-1 and -17,102 kg CO2eq ha-1 yr-1 due an annual soil and biomass C sequestration potential that could help offset its emissions (610 kg CO2eq ha-1 yr-1).

Key words: Biomass C, climate change, mitigation practices, GHG emissions, potential sinks, soil C.


RESUMEN

Este trabajo se enfoca en las emisiones de gases de efecto invernadero (GEI) y los sumideros potenciales asociados a sistemas convencionales y sostenibles de producción de frutas en la región del Altiplano de Pasto, Nariño, Colombia. Basados en las metodologías del IPCC (2006), el balance de las emisiones anuales para un ciclo de producción media de 6 años incluyó las fuentes agrícolas y el consumo de gasolina relacionado con las principales actividades agrícolas y el potencial para acumular C en el suelo y fijar C en la biomasa en todos los sistemas estudiados. El análisis multivariado mostró que un positivo balance de emisiones de GEI puede ser alcanzada con todos los sistemas sostenibles de producción de frutales comparados con los sistemas convencionales de producción con gran impacto en (SS1): Rubus glaucus Benth. asociado con árboles de Acacia decurrens y cobertura viva de pasto kikuyo Pennisetum clan-destinum. Basado en los resultados de este estudio, el sistema (SS1) mostró benéfico balance del total de las emisiones de GEI contabilizando -21,079 kg CO2eq atmosférico por ha-1 por año, dividido en -4,587 kg CO2eq ha-1 año-1 y -17,102 kg CO2eq ha-1 año-1, debido al potencial de secuestro anual de C en el suelo y la biomasa que puede contrarrestar en parte las emisiones del sistema (610 kg CO2eq ha-1año-1).

Palabras clave: C de la biomasa, cambio climático, prácticas mitigadoras de GEI, potenciales sumideros, C del suelo.


Introduction

The agricultural sector represents a significant source of greenhouse gas (GHG) worldwide due to direct and indirect emissions of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). Estimates have shown that agriculture contributes to the enhanced GHG effect by emitting around 7.1 Gt of CO2eq, or ∼18% of total global anthropogenic GHG emissions (Gerber et al., 2013).

Agricultural sources are responsible for 38.09% of Colombia's GHG total emission (62 million t of CO2 per year). The main partition of emission of GHG are 49.8% for CO2, 30.1°% for CH4 and 19.1°% for N2O, being those two last gases mainly related to agricultural sources (Pedraza et al., 2009).

Worldwide, the systems that are exposed to intensive uses has higher utilization of agricultural inputs as soluble fertilizers, mainly nitrogen and pesticides (Smith et al., 1997; Lal, 2004; Tubiello et al., 2013), practices that results in direct and indirect GHG emissions (Lal, 2004).

Pesticide manufacturing represents about 9% of the energy used for arable crops (IPCC, 2006; Lal, 2004). It is assumed that due course all the carbon included in the pesticide will be broken down and emitted to the atmosphere as carbon dioxide (IPCC, 2006).

Agroforestry systems can have a major effect on the productivity of fruit production systems, where nitrogen is often a limiting factor in production systems (Nair et al., 2009). Agroforestry systems can substantially reduce the use of synthetic fertilizers through the biological nitrogen fixation (BNF) of leguminous tress (Nair et al., 2009; Naranjo et al., 2012).

Agroforestry is based on principles of sustainable production and diversification (Nair et al., 2009; Naranjo et al., 2012); an agroforestry system retains soil and biomass carbon stocks (Lal, 2011). Moreover, the soil carbon stock is related to management soil factors as land use, residue inputs of soil C and soil tillage practices (Albrecht and Kandji, 2003; IPCC, 2006).

Lal (2011) estimated that 89% of the agriculture sector's total GHG mitigation potential is from soil organic carbon (SOC) sequestration. Carbon sequestration has the potential to offset fossil fuel emissions by 0.4 to 1.2 gigatons of carbon per year (Lal, 2011).

The objective of this study is to estimate the GHG balance related to conventional and sustainable fruit production systems in the Highlands region of Pasto, Colombia, in order to identify the fruit production system that emits less GHG emissions and has greater potential to mitigation GHG emissions (soil and biomass C sequestration).

Materials and methods

Location and production systems

The systems considered in our study refer to the fruit production located in the highlands region of Pasto, state of Nariño, South-West Colombia. Geographical coordinates of 0°37' to 2°47'N and 79°03' to 76°47'W. It is one of the highest plateaus of the country located between 2,400 to 2,800 m a.s.l.

Three types of conventional fruit production systems were found in the various degraded areas of the Highlands region of Pasto, Colombia, were as follows:

Monoculture of Rubus glaucus Benth. (S1); monoculture of Physalis peruviana (S2) and monoculture of Solanum quitoense Lam. (S3). The cultivation of these systems had used the conventional type. On the other hand, three types of sustainable fruit production systems were found in the various areas of the highlands region of Pasto, were as follows: Agroforestry system of Rubus glaucus Benth. (SS1); agroforestry system of Physalis peruviana (SS2); agroforestry system of Solanum quitoense Lam (SS3). The cultivation of these systems had been associated with Acacia decurrens trees as living fence and live coverage of kikuyu Pennisetum clandestinum grass. In this study, data was collected from 20 actual farms for each one of the systems considered. Tab. 1 presents the details associated with the agronomic parameters of the fruit production systems considered in this study. All of the systems were run in a 06-year cycle (Tab. 1).

Characterization of production systems

Emission sources and sinks and amount of supplies

Table 2 presents the sequence of sources and potential sinks related to the main greenhouse gases (CO2, CH4 and N2O) associated to each of the production systems under analysis in this study.

Table 3 and Figure 1 present the agricultural supplies and fuel consumption due to agricultural activities conducted in each of the studied systems corresponding to variables from 1 to 8 and analysis de continuous variables in multivariate analysis.

Emission factors

N2O from soil management and CO2 from agricultural activities

The direct plus indirect emissions from N fertilizer applications and above ground residues were estimated by using the IPCC (2006) methodology. Emission factor regarding lime was assumed as 0.477 kg CO2eq kg-1 (dolomite) (IPCC, 2006). Emission factors associated with the manufacturing, transport and storage of potassium and phosphate fertilizers were 0.2 kg CO2eq kg-1 for P and 0.15 kg CO2eq kg-1 for K, as proposed by Lal (2004). For pesticides, the emission factor EF depends on the type of pesticide applied (Helsel, 1992) to control pests and diseases in all systems.

An emission factor considered as 2.33 kg CO2eq L-1 of gasoline, under tropical conditions (IPCC, 2006).

Greenhouse gas emissions variables were expressed in CO2 equivalent units to account for global warming potential of each gas in accordance with IPCC (2006), assuming a 100-year time horizon (298 for N2O and 1 for CO2) (Table 4, variables from 9 to 19).

Soil and biomass C pools

The estimative of potential sinks either in soil or in biomass is presented in Tab. 5 (kg CO2eq ha-1 yr-1) considering the 6-year cycle.

Reference values for the soil C stock in conventional S1, S2 and S3 fruit production systems of Highlands region of Pasto, Colombia, was based on soil analysis, being these 156.76, 51.84, 169.8 t C ha-1 in the top 30 cm layer. These values were used for estimating changes in final soil carbon stocks (V21) (Tab. 5) by converting from conventional to sustainable fruit production systems.

Ratios of gains/losses of soil C (V22) (Tab. 5) in the studied fruit production systems were estimated by using specific methodology proposed by IPCC (2006), which takes into account factors related to soil management practices: land use (FLU), tillage practices (FMG) and residue inputs (FI) for a time-period of 20 years (IPCC, 2006). In addition to the intensity of management adopted (for instance, high, medium and low inputs) those factors take into account climate and soil type in the specific region. Rates of gains/ losses of soil C were multiplied by 3.66 to convert it from C to CO2eq (V23) (Tab. 5).

Accumulation rate of C in biomass was estimated only in sustainable fruit production system. The increase in biomass C stock was assumed as 4.5 t C ha-1 year-1, considering the wood component, based on the IPCC (2006) methodology for Acacia ssp in South America. The accumulation rate of C in biomass of Pennisetum clandestinum grass of 0.16 t C ha-1 year-1 was calculated of Giraldo et al. (2008); these rates were expressed in kgCO2eq and related to (V24) variable (Tab. 5).

Total GHG balance

The results of total GHG balance emission (V25) considering the potential for soil C gain/loss and biomass C fixation are reported on Tab. 5.

Statistical analysis

A Principal Components Multivariate Analysis was performed in order to reduce the number of explanatory variables, using variables that were not collinear. A numerical classification of farms was then performed using cluster analysis method with the same variables identificated. All analyses were conducted with SAS® software.

Results and discussion

Correlation between variables

The correlation matrix description of emission sources and total GHG emissions variables under different fruit production systems of Highlands region of Pasto, Colombia indicated that the variables (V12) (CO2 from agricultural activities), (V20) (total GHG emissions) and (V25) (GHG balance emissions) considered independently, demonstrated positive correlation with others variables. The (V12) variable (CO2 from agricultural activities) was best explained by the (V4) variable (lime) (r= 0.95), the (V13) variable (CO2 from lime) (r=0.95) and the (V14) variable (CO2 from P) (r=0.90).

According to the Intergovernmental Panel on Climate Change IPCC (2006), CO 2 emissions from all lime added in the year of application although the effect of liming usually lasts for a few years (after the new addition of lime), depending on climate, soil and cultivation practices (IPCC, 2006). For instance, all C in lime is eventually released as CO2 to the atmosphere (IPCC, 2006). Emission factors of phosphates and potassic fertilizers are associated with manufacturing, transportation, storage and application. On agroforestry systems, nutrient recycling is higher, reducing dependence on lime, phosphate and potassic fertilizers (Nair et al., 2009).

On the other hand, the (V20) variable (total GHG emissions) was increased when increased the (V3) variable (N from crop residues) (r=-0.89) and the (V11) variable due to N2O from N crop residues emissions (r=-0.88). Soil C losses in terms of CO2 emissions can be as high as the annual C sequestration rates due to N2O from N crop residues emissions occasioned by conventional tillage (La Scala et al., 2008). N2O is a gaseous by-product of nitrification that is ultimately released into the atmosphere (IPCC, 2006).

The variables that were highly correlated with the (V25) variable (total GHG balance emissions) were the (V22) variable (rates of gains/losses soil C) (r=-0.99) and the (V24) variable (biomass C fixation) (r=0.95).

Soil carbon sequestration is a process in which CO2 is removed from the atmosphere and stored in the soil carbon pool, primarily mediated by plants through photosynthesis (Lal, 2011). Sustainable fruit production systems showed a large potential of sequestering carbon in soil and biomass, as observed by Giraldo et al. (2008) in an agroforestry system located in an Andean region of Colombia; which suggests the importance of the agroforestry fruit systems evaluated through on GHG mitigation.

Multivariate analyses

To make a distinction between the systems analyzed, principal components were generated (Factor 1 and Factor 2). The PCA considered the first two factors with a cumulative value of 66.84 % for the variables analyzed (Table 6) was negatively associated with the variables V1 (N synthetic fertilizers) (r=-0.93), V4 (lime) (r=-0.97), V9 (N2O from N synthetic fertilizers) (r=-0.93), V13 (CO2 from Lime) (r=-0.98), V18 (CO2 from agricultural activities) (r=-0.93), and the V20 (total GHG emissions) (r=-0.95), being the most sensitive variables in these analyses (Tab. 6).

However, these variables can also be observed in the vector diagram, where the variables are closer to the axis of this factor to demonstrate that most can influence the distinction between the types of fruit systems evaluated (Fig. 3). Diagram generated for the projection vectors demonstrated that the (V22) variable (rate soil C gains/losses) (r=0.85) was that most positivity influence the distinction between the types of fruit production systems (Fig. 3).

Despite the huge potential for mitigation of GHG emissions, especially in sustainable fruit production systems, it is important to point that soil C accumulation could be lost rapidly, depending on the soil management decisions made at those sites. For instance, Conant et al. (2001) reviewed about 115 studies in 17 countries on the effects by conversion from agricultural crops to agroforestry system on soil C accumulation. This author considered values of soil C sequestration rates ranged from -0.2 to 3.0 t C ha-1 yr-1 respectively.

It could be concluded that better soil management is possible through the use of agroforestry systems as demonstrated also by Nair et al. (2009) and Giraldo et al. (2008).

For factor 2, the variables V2 (N organic fertilizer) (r=0.91) and V21 (Soil final C stock) (r=0.86) explained 16.9 % of the variation (Tab. 6). The increase in soil C stock is subject to greater amounts of crop residues returned to the soil (Albrecht and Kandji, 2003) and minimal soil disturbance (Johnson et al., 2010) (Tab. 6).

The cluster analysis performed with the same variables as the principal components analysis identified three groups (Fig. 4).

The cluster analysis showed that the first cluster consisted of conventional (S3) and (S2) fruit systems, with no statistical differences; in the (S3) system, characterization with continuous variables of cluster or categories showed that the variables that had greater weight was total GHG balance emissions (V25) (4,407 kg CO2eq ha-1 yr-1) (P= 0.046) (Fig. 4), due to that has on its favor the highest soil C losses (V23) (P= 0.048) (7,523 kg CO2eq ha-1 yr1) and an additional potential for GHG emissions (V20) (P= 0.037) equivalent to 1,470 kg CO2eq ha-1 yr-1, statistically equating to (S2) system (Figure 4) with total GHG balance emissions (V25) of 5,544 kg CO2eq ha-1 yr-1, further emissions would be expected according to our estimations due also to potential of soil C losses (V23) and total GHG emissions (4,404 and 1,104 kg CO2eq ha-1 yr-1) (V20).

The multivariate analyses also showed that N from the synthetic fertilizers (V10) significantly influenced the formation of this cluster (P= 0.029). The use of N synthetic fertilizers in agriculture in Colombia is 137 kg ha-1, almost double the intensity in South American, with an average of 74 kg ha-1 (World Bank, 2008), resulting in higher direct and indirect N2O emissions (Smith et al, 1997).

The formation of the cluster 2 as showed in Fig. 5, agroforestry system of Rubus glaucus Benth. (SS1) can neutralize higher emissions (-21,079 kg CO2eq ha-1 yr-1) (V25), as according to our results has, in addition to the higher potential soil C accumulation (-4,587 kg CO2eq ha-1 yr-1) (V23) and lower total GHG emissions (610 kg CO2eq ha-1 yr-1) (V20), results from this study are compared with relevant studies of Naranjo et al. (2012). It was statistically similar to agroforestry system of Physalis peruviana (SS2) (Fig. 4) accounting for total GHG balance emission reduction of -20,846 kg CO2eq ha-1 yr-1 (V25).

But in turn the agroforestry system of Physalis peruviana (SS2) was statistically equals to monoculture of Rubus glaucus Benth. (S1) (Fig. 4), although it is a system that does not neutralize GHG emissions but if it emits less GHG to the atmosphere (4,407 kg CO2eq ha-1 yr-1) than the other two conventional (S2) and (S3) fruit production systems.

The cluster analysis in Fig. 4 showed an intermediate cluster to the agroforestry system of Solanum quitoense Lam. (SS3) system, accounting for a total GHG balance emissions reduction of -19,519 kg CO2eq ha-1 yr-1 (V25); statistically it may be equal to sustainable fruit production (SS1) and (SS2) systems, but also to the conventional fruit production (S1) system.

It is important to point that differences in management practices by adoption from conventional (S1) monoculture of Rubus glaucus Benth. to sustainable (SS1) agroforestry system of Rubus glaucus Benth. could significantly affect subsequent trends in increases of soil carbon accumulation and potential for mitigation of the GHG emissions.

Conclusion

Sustenaible fruit production systems (agroforestry) have the potential to offset GHG emissions, representing an important alternative to the recovery of degraded areas of conventional fruit production systems in Highlands region of Pasto, Colombia because they are able to maintain biomass C and soil organic matter through the addition of litter and crop residues in the soil.


Literature cited

Albrecht, A. and S.T. Kandji. 2003. Carbon sequestration in tropical agroforestry systems. Agric. Ecosyst. Environ. 99, 15-27. Doi: 10.1016/S0167-8809(03)00138-5.

Angulo, R. 2006. Lulo el cultivo: Solanum quitoense Lam. Fundación Universidad de Bogotá, Jorge Tadeo Lozano, Bogotá.

Angulo, R. 2011. Uchuva Physalis peruviana. Bayer Crop Science, Bogotá.

Conant, R.T., K. Paustian, and E.T. Elliott. 2001. Grassland management and conversion into grassland: effects on soil carbon. Ecol. Appl. 11, 343-355. Doi: 10.1890/1051-0761(2001)011[0343:GM ACIG]2.0.CO;2.

Pedraza G., A., M. Cabrera L., M. Duarte O., M.M. Gutiérrez A., P.S. Lamprea Q., and R.J. Lozano P. 2009. Visión general del inventario nacional de fuentes y sumideros de gases de efecto invernadero. pp. 14-50. In: Instituto de Hidrología, Meteorología y Estudios Ambientales - IDEAM. Inventario nacional de fuentes y sumideros de gases de efecto invernadero 2000 - 2004. Bogotá.

Gerber P.J., H. Steinfeld, B. Henderson, A. Mottet, C. Opio, J. Dijkman, A. Falcucci, and G. Tempio. 2013. Tackling climate change through livestock - A global assessment of emissions and mitigation opportunities. FAO, Rome.

Giraldo, A., M. Zapata, and E. Montoya. 2008. Carbon capture and flow in a silvopastoral system of the Colombian Andean zone. Arch. Latinoam. Prod. Anim. 16, 241-245.

Giraldo, L., J. Botero., J.Y. Saldarriaga, and P. David. 1995. Efecto de tres densidades de árboles en el potencial forrajero de un sistema silvopastoril natural en la región Atlántica de Colombia. Rev. Agrof. Amer. 2, 14-19.

Helsel, Z.R. 1992. Energy and alternatives for fertilizer and pesticide use. pp. 177-201. In: Fluck, R.C. (ed.). Energy in farm production. Elsevier, Amsterdam. Doi: 10.1016/B978-0-444-88681-1.50018-1.

IPCC, Intergovernmental Panel on Climate Change. 2006. IPCC 2006 Guidelines for national greenhouse gas inventories. In: Eggleston, H.S., L. Buendía, K. Miwa, T. Ngara, and K. Tanabe (eds.). Agriculture, forestry and other land use. Nacional Greenhouse Gas Inventories Programme; Institute for Global Environmental Strategies (IGES), Hayama, Japan.

Johnson, M., R. Edwards, and O. Masera. 2010. Improved stove programs need robust methods to estimate carbon offsets. Clim. Change 102, 641-649. Doi: 10.1007/s10584-010-9802-0.

Lal, R. 2004. Carbon emission from farm operations. Environ. Intl. 30, 981-990. Doi: 10.1016/j.envint.2004.03.005.

Lal, R. 2011. Sequestering carbon in soils of agro-ecosystems. Food Policy 36, 533-539. Doi: 10.1016/j.foodpol.2010.12.001

La Scala, A., K. Lopes, D. Bolonhezi, D.W. Archer, and D.C. Reicosky. 2008. Short-temporal changes of soil carbon losses after tillage described by a first-order decay model. Soil Till. 99, 108-118. Doi: 10.1016/j.still.2008.01.006.

Nair, P.K., B.M. Kumar, and V.D Nair. 2009. Agroforestry as a strategy for carbon sequestration. J. Plant Nutr. Soil Sci. 172, 10-23. Doi: 10.1002/jpln.200800030.

Naranjo, J.F., C.A. Cuartas, E. Murgueitio, J. Chará, and R. Baraho-na. 2012. Balance de gases de efecto invernadero en sistemas silvopastoriles intensivos con Leucaena leucocephala en Colombia. Livest. Res. Rural Dev. 24, 1-12.

Silva, A., C. Bucheli, A. Castillo, O. Checa, and T.L. Lagos. 2015. Respuesta de Physalis peruviana a la fertilización con diferentes dosis de N, P y K en el Altiplano de Pasto. Acta Agron. 64, 330-335. Doi: 10.15446/acag.v64n4.44290.

Smith, K.A., I.P. Taggart, and H. Tsuruta. 1997. Emissions of N2O and NO associated with nitrogen fertilization in intensive agriculture, and the potential for mitigation. Soil Use Manage. 13, 297-304. Doi: 10.1111/j.1475-2743.1997.tb00601.x.

Tubiello, F.N., M. Salvatore, S. Rossi, A. Ferrara, N. Fitton, and P. Smith. 2013. The FAOSTAT database of greenhouse gas emissions from agriculture. Environ. Res. Lett. 8, 015009. Doi: 10.1088/1748-9326/8/1/015009.

World Bank. 2008. Colombia, Costa Rica and Nicaragua: integrated silvopastoral approaches to ecosystem management project. Washington, DC.

References

Albrecht, A. and S.T. Kandji. 2003. Carbon sequestration in tropical agroforestry systems. Agric. Ecosyst. Environ. 99, 15-27. Doi: 10.1016/S0167-8809(03)00138-5.

Angulo, R. 2006. Lulo el cultivo: Solanum quitoense Lam. Fundación Universidad de Bogotá, Jorge Tadeo Lozano, Bogotá.

Angulo, R. 2011. Uchuva Physalis peruviana. Bayer Crop Science, Bogotá.

Conant, R.T., K. Paustian, and E.T. Elliott. 2001. Grassland management and conversion into grassland: effects on soil carbon. Ecol. Appl. 11, 343-355. Doi: 10.1890/1051-0761(2001)011[0343:GM ACIG]2.0.CO;2.

Pedraza G., A., M. Cabrera L., M. Duarte O., M.M. Gutiérrez A., P.S. Lamprea Q., and R.J. Lozano P. 2009. Visión general del inventario nacional de fuentes y sumideros de gases de efecto invernadero. pp. 14-50. In: Instituto de Hidrología, Meteorología y Estudios Ambientales - IDEAM. Inventario nacional de fuentes y sumideros de gases de efecto invernadero 2000 - 2004. Bogotá.

Gerber P.J., H. Steinfeld, B. Henderson, A. Mottet, C. Opio, J. Dijkman, A. Falcucci, and G. Tempio. 2013. Tackling climate change through livestock - A global assessment of emissions and mitigation opportunities. FAO, Rome.

Giraldo, A., M. Zapata, and E. Montoya. 2008. Carbon capture and flow in a silvopastoral system of the Colombian Andean zone. Arch. Latinoam. Prod. Anim. 16, 241-245.

Giraldo, L., J. Botero., J.Y. Saldarriaga, and P. David. 1995. Efecto de tres densidades de árboles en el potencial forrajero de un sistema silvopastoril natural en la región Atlántica de Colombia. Rev. Agrof. Amer. 2, 14-19.

Helsel, Z.R. 1992. Energy and alternatives for fertilizer and pesticide use. pp. 177-201. In: Fluck, R.C. (ed.). Energy in farm production. Elsevier, Amsterdam. Doi: 10.1016/B978-0-444-88681-1.50018-1.

IPCC, Intergovernmental Panel on Climate Change. 2006. IPCC 2006 Guidelines for national greenhouse gas inventories. In: Eggleston, H.S., L. Buendía, K. Miwa, T. Ngara, and K. Tanabe (eds.). Agriculture, forestry and other land use. Nacional Greenhouse Gas Inventories Programme; Institute for Global Environmental Strategies (IGES), Hayama, Japan.

Johnson, M., R. Edwards, and O. Masera. 2010. Improved stove programs need robust methods to estimate carbon offsets. Clim. Change 102, 641-649. Doi: 10.1007/s10584-010-9802-0.

Lal, R. 2004. Carbon emission from farm operations. Environ. Intl. 30, 981-990. Doi: 10.1016/j.envint.2004.03.005.

Lal, R. 2011. Sequestering carbon in soils of agro-ecosystems. Food Policy 36, 533-539. Doi: 10.1016/j.foodpol.2010.12.001

La Scala, A., K. Lopes, D. Bolonhezi, D.W. Archer, and D.C. Reicosky. 2008. Short-temporal changes of soil carbon losses after tillage described by a first-order decay model. Soil Till. 99, 108-118. Doi: 10.1016/j.still.2008.01.006.

Nair, P.K., B.M. Kumar, and V.D Nair. 2009. Agroforestry as a strategy for carbon sequestration. J. Plant Nutr. Soil Sci. 172, 10-23. Doi: 10.1002/jpln.200800030.

Naranjo, J.F., C.A. Cuartas, E. Murgueitio, J. Chará, and R. Baraho-na. 2012. Balance de gases de efecto invernadero en sistemas silvopastoriles intensivos con Leucaena leucocephala en Colombia. Livest. Res. Rural Dev. 24, 1-12.

Silva, A., C. Bucheli, A. Castillo, O. Checa, and T.L. Lagos. 2015. Respuesta de Physalis peruviana a la fertilización con diferentes dosis de N, P y K en el Altiplano de Pasto. Acta Agron. 64, 330-335. Doi: 10.15446/acag.v64n4.44290.

Smith, K.A., I.P. Taggart, and H. Tsuruta. 1997. Emissions of N2O and NO associated with nitrogen fertilization in intensive agriculture, and the potential for mitigation. Soil Use Manage. 13, 297-304. Doi: 10.1111/j.1475-2743.1997.tb00601.x.

Tubiello, F.N., M. Salvatore, S. Rossi, A. Ferrara, N. Fitton, and P. Smith. 2013. The FAOSTAT database of greenhouse gas emissions from agriculture. Environ. Res. Lett. 8, 015009. Doi: 10.1088/1748-9326/8/1/015009.

World Bank. 2008. Colombia, Costa Rica and Nicaragua: integrated silvopastoral approaches to ecosystem management project. Washington, DC.

How to Cite

APA

Criollo E., H., Silva P., A. and Delgado H., H. (2016). Greenhouse gas balance related to conventional and sustainable fruit production systems in the Highlands region of Pasto, Colombia. Agronomía Colombiana, 34(2), 277–284. https://doi.org/10.15446/agron.colomb.v34n2.55417

ACM

[1]
Criollo E., H., Silva P., A. and Delgado H., H. 2016. Greenhouse gas balance related to conventional and sustainable fruit production systems in the Highlands region of Pasto, Colombia. Agronomía Colombiana. 34, 2 (May 2016), 277–284. DOI:https://doi.org/10.15446/agron.colomb.v34n2.55417.

ACS

(1)
Criollo E., H.; Silva P., A.; Delgado H., H. Greenhouse gas balance related to conventional and sustainable fruit production systems in the Highlands region of Pasto, Colombia. Agron. Colomb. 2016, 34, 277-284.

ABNT

CRIOLLO E., H.; SILVA P., A.; DELGADO H., H. Greenhouse gas balance related to conventional and sustainable fruit production systems in the Highlands region of Pasto, Colombia. Agronomía Colombiana, [S. l.], v. 34, n. 2, p. 277–284, 2016. DOI: 10.15446/agron.colomb.v34n2.55417. Disponível em: https://revistas.unal.edu.co/index.php/agrocol/article/view/55417. Acesso em: 21 aug. 2024.

Chicago

Criollo E., Hernando, Amanda Silva P., and Hernando Delgado H. 2016. “Greenhouse gas balance related to conventional and sustainable fruit production systems in the Highlands region of Pasto, Colombia”. Agronomía Colombiana 34 (2):277-84. https://doi.org/10.15446/agron.colomb.v34n2.55417.

Harvard

Criollo E., H., Silva P., A. and Delgado H., H. (2016) “Greenhouse gas balance related to conventional and sustainable fruit production systems in the Highlands region of Pasto, Colombia”, Agronomía Colombiana, 34(2), pp. 277–284. doi: 10.15446/agron.colomb.v34n2.55417.

IEEE

[1]
H. Criollo E., A. Silva P., and H. Delgado H., “Greenhouse gas balance related to conventional and sustainable fruit production systems in the Highlands region of Pasto, Colombia”, Agron. Colomb., vol. 34, no. 2, pp. 277–284, May 2016.

MLA

Criollo E., H., A. Silva P., and H. Delgado H. “Greenhouse gas balance related to conventional and sustainable fruit production systems in the Highlands region of Pasto, Colombia”. Agronomía Colombiana, vol. 34, no. 2, May 2016, pp. 277-84, doi:10.15446/agron.colomb.v34n2.55417.

Turabian

Criollo E., Hernando, Amanda Silva P., and Hernando Delgado H. “Greenhouse gas balance related to conventional and sustainable fruit production systems in the Highlands region of Pasto, Colombia”. Agronomía Colombiana 34, no. 2 (May 1, 2016): 277–284. Accessed August 21, 2024. https://revistas.unal.edu.co/index.php/agrocol/article/view/55417.

Vancouver

1.
Criollo E. H, Silva P. A, Delgado H. H. Greenhouse gas balance related to conventional and sustainable fruit production systems in the Highlands region of Pasto, Colombia. Agron. Colomb. [Internet]. 2016 May 1 [cited 2024 Aug. 21];34(2):277-84. Available from: https://revistas.unal.edu.co/index.php/agrocol/article/view/55417

Download Citation

CrossRef Cited-by

CrossRef citations2

1. Amanda Silva‐Parra, Juan Manuel Trujillo‐González, Eric C. Brevik. (2021). Greenhouse gas balance and mitigation potential of agricultural systems in Colombia: A systematic analysis. Greenhouse Gases: Science and Technology, 11(3), p.554. https://doi.org/10.1002/ghg.2066.

2. Fernando Ramírez. (2023). Latin American Blackberries Biology. , p.167. https://doi.org/10.1007/978-3-031-31750-7_11.

Dimensions

PlumX

Article abstract page views

935

Downloads

Download data is not yet available.