Published

2017-01-01

Effect of air drying process on the physicochemical, antioxidant, and microstructural characteristics of tomato cv. Chonto

Efecto del proceso de secado por aire caliente en las características fisicoquímicas, antioxidantes y microestructurales de tomate cv. Chonto

DOI:

https://doi.org/10.15446/agron.colomb.v35n1.57727

Keywords:

Colour, texture, microstructure, dehydration, antioxidant activity, total carotenoids, phenols (en)
Color, textura, calidad, microestructura, deshidratación, actividad antioxidante, carotenoides totales, fenoles (es)

Downloads

Authors

  • Diana Catalina Moreno G. Universidad ECCI
  • Amanda Consuelo Diaz-Moreno Universidad Nacional de Colombia - Sede Bogotá - Instituto de Ciencia y Tecnología de Alimentos (ICTA)

The tomato is a Solanaceae plant which globally has the second highest production rate, making it one of the most important vegetative products in global production and consumption. Furthermore, the tomato is valued for its antioxidant components, most notably vitamin C, phenolic components and carotenoids such as lycopene and β-carotene. The present study aimed to evaluate the influence of three drying temperatures (50, 60 and 70°C) on the physicochemical, microstructural, and antioxidant characteristics of the tomato. The study analyzed the parameters for color using the coordinates CIE L* a* b* and texture analysis using the methodology of TPA for instrumental analysis and PCA for data analysis, antioxidant capacity and content were measured by spectrophotometric methods and microestructure by Scanning Electron Microscope. The results showed changes in color for the tomato samples treated with 70°C. In addition, the texture of the samples treated at 60°C presented significant differences from the samples dried at 50 and 70°C regarding the fracturability, having a crispier texture and good balance between masticability and hardness. The total carotenoid content increased with the drying process, while the total phenol content decreased. The antioxidant activity was not affected by the temperature variation with respect to the fresh tomato.

El tomate es una planta solanácea, tiene la segunda producción más alta en el mundo, convirtiéndolo en uno de los productos de origen vegetal más importantes por consumo y producción mundial. Apreciado por sus componentes antioxidantes entre los cuales se destacan la vitamina C, los compuestos fenólicos y algunos carotenoides como el licopeno y el β-caroteno. Este trabajo evaluó la influencia de tres temperaturas de secado (50, 60 y 70°C) sobre las características fisicoquímicas, microestructurales y antioxidantes del tomate. Se analiza color mediante las coordenadas CIE L* a* b* y análisis de textura utilizando la metodología TPA (análisis de perfil de textura), la capacidad antioxidante y el contenido de fenoles y carotenoides fue medido por espectrofotometría y microestructura mediante microscopía electrónica de barrido. Los resultados muestran cambios de color en las muestras de tomate a 70°C, en textura las muestras a 60°C presenta diferencia significativa en la fracturabilidad con respecto a las muestras a 50 y 70°C indicando una textura más crocante y un buen balance entre masticabilidad y dureza. El contenido total de carotenoides aumentó con el proceso de secado, mientras que el contenido de fenoles totales disminuyó. La actividad antioxidante no fue afectada por la variación de la temperatura con respecto al tomate fresco.

References

Abano, E.E., H. Ma, and W. Qu. 2011. Influence of air temperature on the drying kinetics and quality of tomato slices. J. Food Process. Tech. 2(05), 1-9. Doi: 10.4172/2157-7110.1000123.

Albanese, D., G. Adiletta, M.D. Acunto, L. Cinquanta, and M. Di Matteo. 2014. Tomato peel drying and carotenoids stability of the extracts. Int. J. Food Sci. Tech. 49(1), 2458-2463. Doi: 10.1111/ijfs.12602.

Al-Muhtaseb, A.H., M. Al-Harahsheh, M. Hararah, and T.R.A. Magee. 2010. Drying characteristics and quality change of unutilized-protein rich-tomato pomace with and without osmotic pre-treatment. Ind. Crops Prod. 31(1), 171-177. Doi: 10.1016/j.indcrop.2009.10.002.

Arslan, D. and M.M Ózcan. 2011. Drying of tomato slices: changes in drying kinetics, mineral contents, antioxidant activity and color parameters. CyTA-J. Food 9(3), 229-236. Doi: 10.1080/19476337.2010.522734.

Askari, G. R., Z. Emam-Djomeh, and M. Tahmabi. 2009. Effect of various drying methods on texture and color of tomato halves. J. Texture Studies 40(4), 371-389. Doi: 10.1111/j.1745-4603.2009.00187.x.

Azeez, L., S.A. Adebisi, A.O. Oyedeji, R.O. Adetoro, and K.O. Tijani. 2017. Bioactive compounds contents, drying kinetics and mathematical modelling of tomato slices influenced by drying temperatures and time. J. Saudi Soc. Agric. Sci.17(3). Doi: 10.1016/j.jssas.2017.03.002.

Barringer, S.A. 2008. Vegetables: Tomato pocessing. Blackwell Publishing, New York, USA. Doi: 10.1002/9780470290118.ch29.

Chang, C.H., H.Y. Lin, C.Y. Chang, and Y.C. Liu. 2006. Comparisons on the antioxidant properties of fresh, freeze-dried and hotairdried tomatoes. J. Food Eng. 77(3), 478-485. Doi:10.1016/j.jfoodeng.2005.06.061.

Das Purkayastha, M., A. Nath, B.C. Deka, and C.L. Mahanta. 2013. Thin layer drying of tomato slices. J. Food Sci.Tech. 50(4), 642-653. Doi: 10.1007/s13197-011-0397-x.

Dos Santos, E.O., M. Michelon, E. Furlong, J. Fernandes, S. Kalil, and C. Veiga. 2012. Evaluation of the composition of culture medium for yeast biomass production using. Braz. J. Microbiol. 43(2), 432-440. Doi: 10.1590/S1517-83822012000200002.

Dumas, Y., M. Dadomo, G. Di Lucca, and P. Grolier. 2003. Effects of environmental factors and agricultural techniques on antioxidantcontent of tomatoes. J. Sci. Food Agric. 83(5), 369-382. Doi: 10.1002/jsfa.1370.

Fellows, P.J. 2009. Food processing technology. 3rd ed. Woodhead Publishing Series in Food Science, Technology and Nutrition, Cambridge, UK. Doi: 10.1533/9781845696344.3.481.

Fuentes, E., O. Forero-Doria, G. Carrasco, L. Santos, M. Alarcón, and I. Palomo. 2013. Effect of tomato industrial processing on phenolic profile and antiplatelet activity. Molecules 18(1),11526-11536. Doi: 10.3390/molecules180911526.

Giovanelli, G., B. Zanoni, V. Lavelli, and R. Nani. 2002. Water sorption, drying and antioxidant properties of dried tomato products. J. Food Eng. 52(2), 135-141. Doi: 10.1016/S0260-8774(01)00095-4.

Gobbi, S. 2009. Osmo-air-drying to obtain dried crispy fruits: optimization and modelling of processing and product shelf life. Università degli studi di Milano, Milan, Italy.

Gümüs, Ö.A. 2015. Drying effects on the antioxidant properties of tomatoes and ginger. Food Chem. 173, Doi: 10.1016/j.foodchem.2014.09.162.

Hawlader, M.N.A., C.O. Perera, and M. Tian. 2006. Properties of modified atmosphere heat pump dried foods. J. Food Eng. 74(3), 392-401. Doi: 10.1016/j.jfoodeng.2005.03.028.

Heuvelink. 2005. Tomatoes. CABI Publishing, Wallingford, UK.

Jangam, S.V., C.L. Law, and A.S. Mujumdar. 2010. Classification and selection of dryers for foods. Drying of foods, vegetables and fruits. CRC Press, Boca Raton, FL, USA.

Kerkhofs, N.S., C.F. Lister, and G.P. Savage. 2005. Change in colour and antioxidant content of tomato cultivars following forced-air drying. Plant Foods Human Nutr. 60(3), 117-121. Doi: 10.1007/s11130-005-6839-8.

Kotíková, Z., J. Lachman, A. Hejtmánková, and K. Hejtmánková. 2011. Determination of antioxidant activity and antioxidant content in tomato varieties and evaluation of mutual interac-tions between antioxidants. LWT-Food Sci. Tech. 44(8), 1703-1710. Doi: 10.1016/j.lwt.2011.03.015.

Marjanovi, M., Z. Jovanovi, R. Stiki, and B. Vuceli. 2015. The effect of partial root-zone drying on tomato fruit growth. Procedia Environ. Sci. 29, 87. Doi: 10.1016/j.proenv.2015.07.172.

Mechlouch R.F., E. Walid, Z. Manel, H. Hédia, C. Mabrouka, B.A. Amira, and C. Foued. 2012. Effect of different drying methods on the physico-chemical properties of tomato variety ‘Rio Grande’. Int. J. Food Eng. 8(2),1-13. Doi: 10.1515/1556-3758.2678.

Motamedzadegan, A. and H.S. Tabarestani. 2010. Tomato processing, quality, and nutrition. pp. 739-757. In: Sinja, N.K. (ed.). Handbook of vegetables and vegetable processing. Wiley-Blackwell, New York, USA. Doi: 10.1002/9780470958346.ch37.

Pinela, J., M.A. Prieto, M.F. Barreiro, A. Maria, M.B.P.P. Oliveira, T.P. Curran, and C.F.R. Ferreira. 2017. Valorisation of tomato wastes for development of nutrient-rich antioxidant ingredients: A sustainable approach towards the needs of the today’s society. Innovative Food Sci. Emerg.Technol. Doi: 10.1016/j.ifset.2017.02.004.

Ruiz Celma, A., F. Cuadros, and F. Lopez-Rodriguez. 2009. Characterisation of industrial tomato by-products from infrared drying process. Food Bioprod. Process. 87(4), 282-291. Doi: 10.1016/j.fbp.2008.12.003.

Saad, A., A. Ibrahim, and N. El-bialee. 2016. Internal quality assessment of tomato fruits using image color analysis. Agric. Eng. Int. 18(1), 339-353.

Sahlin, E., G.P. Savage, and C.E. Lister. 2004. Investigation of the antioxidant properties of tomatoes after processing. J. Food Comp. Analysis, 17(5), 635-647. Doi: 10.1016/j.jfca.2003.10.003.

Shi, J. and S. Xue. 2009. Stability of lycopene during food processing and storage. pp. 17-36. In: Preedy, V.R. and R.R. Watson (eds.). Lycopene. Nutritional, medicinal and therapeutic properties. Science Publishers, Pakistan. Doi: 10.1201/b10196-4.

Takeoka, G. R., L. Dao, S. Flessa, D.M. Gillespie, W.T. Jewell, B. Huebner, and S.E. Ebeler. 2001. Processing effects on lycopene content and antioxidant activity of tomatoes. J. Agric. Food Chem. 49(8), 3713-3717. Doi: 10.1021/jf0102721.

Toor, R.K. and G.P. Savage. 2005. Antioxidant activity in different fractions of tomatoes. Food Res. Int. 38(5), 487-494. Doi: 10.1016/j.foodres.2004.10.016.

Ulrichs, C., G. Fischer, C, Büttner, and I. Mewis. 2008. Comparison of lycopene, b-carotene and phenolic contents of tomato using conventional and ecological horticultural practices, and arbuscular mycorrhizal fungi (AMF). Agron. Colomb. 26(1), 40-46.

Zanfini, A., G. Corbini, C. La Rosa, and E. Dreassi. 2010. Antioxidant activity of tomato lipophilic extracts and interactions between carotenoids and α-tocopherol in synthetic mixtures. LWT-Food Sci. Tech. 43(1), 67-72. Doi: 10.1016/j.lwt.2009.06.011.

Zapata, L.M., L. Gerard, C. Davies, and M.C. Schvab. 2007. Study of Antioxidants compounds antioxidant activity in tomatoes. Cienc. Docencia Tecnol. 35, 173-193.

How to Cite

APA

Moreno G., D. C. and Diaz-Moreno, A. C. (2017). Effect of air drying process on the physicochemical, antioxidant, and microstructural characteristics of tomato cv. Chonto. Agronomía Colombiana, 35(1), 100–106. https://doi.org/10.15446/agron.colomb.v35n1.57727

ACM

[1]
Moreno G., D.C. and Diaz-Moreno, A.C. 2017. Effect of air drying process on the physicochemical, antioxidant, and microstructural characteristics of tomato cv. Chonto. Agronomía Colombiana. 35, 1 (Jan. 2017), 100–106. DOI:https://doi.org/10.15446/agron.colomb.v35n1.57727.

ACS

(1)
Moreno G., D. C.; Diaz-Moreno, A. C. Effect of air drying process on the physicochemical, antioxidant, and microstructural characteristics of tomato cv. Chonto. Agron. Colomb. 2017, 35, 100-106.

ABNT

MORENO G., D. C.; DIAZ-MORENO, A. C. Effect of air drying process on the physicochemical, antioxidant, and microstructural characteristics of tomato cv. Chonto. Agronomía Colombiana, [S. l.], v. 35, n. 1, p. 100–106, 2017. DOI: 10.15446/agron.colomb.v35n1.57727. Disponível em: https://revistas.unal.edu.co/index.php/agrocol/article/view/57727. Acesso em: 18 apr. 2024.

Chicago

Moreno G., Diana Catalina, and Amanda Consuelo Diaz-Moreno. 2017. “Effect of air drying process on the physicochemical, antioxidant, and microstructural characteristics of tomato cv. Chonto”. Agronomía Colombiana 35 (1):100-106. https://doi.org/10.15446/agron.colomb.v35n1.57727.

Harvard

Moreno G., D. C. and Diaz-Moreno, A. C. (2017) “Effect of air drying process on the physicochemical, antioxidant, and microstructural characteristics of tomato cv. Chonto”, Agronomía Colombiana, 35(1), pp. 100–106. doi: 10.15446/agron.colomb.v35n1.57727.

IEEE

[1]
D. C. Moreno G. and A. C. Diaz-Moreno, “Effect of air drying process on the physicochemical, antioxidant, and microstructural characteristics of tomato cv. Chonto”, Agron. Colomb., vol. 35, no. 1, pp. 100–106, Jan. 2017.

MLA

Moreno G., D. C., and A. C. Diaz-Moreno. “Effect of air drying process on the physicochemical, antioxidant, and microstructural characteristics of tomato cv. Chonto”. Agronomía Colombiana, vol. 35, no. 1, Jan. 2017, pp. 100-6, doi:10.15446/agron.colomb.v35n1.57727.

Turabian

Moreno G., Diana Catalina, and Amanda Consuelo Diaz-Moreno. “Effect of air drying process on the physicochemical, antioxidant, and microstructural characteristics of tomato cv. Chonto”. Agronomía Colombiana 35, no. 1 (January 1, 2017): 100–106. Accessed April 18, 2024. https://revistas.unal.edu.co/index.php/agrocol/article/view/57727.

Vancouver

1.
Moreno G. DC, Diaz-Moreno AC. Effect of air drying process on the physicochemical, antioxidant, and microstructural characteristics of tomato cv. Chonto. Agron. Colomb. [Internet]. 2017 Jan. 1 [cited 2024 Apr. 18];35(1):100-6. Available from: https://revistas.unal.edu.co/index.php/agrocol/article/view/57727

Download Citation

CrossRef Cited-by

CrossRef citations10

1. Obafemi I. Obajemihi, Joshua O. Olaoye, John O. Ojediran, Jun‐Hu Cheng, Da‐Wen Sun. (2020). Model development and optimization of process conditions for color properties of tomato in a hot‐air convective dryer using box–behnken design. Journal of Food Processing and Preservation, 44(10) https://doi.org/10.1111/jfpp.14771.

2. Sabah Mounir, Atef Ghandour, Carmen Téllez-Pérez, Ahmed A. Aly, Arun S. Mujumdar, Karim Allaf. (2021). Phytochemicals, chlorophyll pigments, antioxidant activity, relative expansion ratio, and microstructure of dried okra pods: swell-drying by instant controlled pressure drop versus conventional shade drying. Drying Technology, 39(15), p.2145. https://doi.org/10.1080/07373937.2020.1756843.

3. Magdalena Zalewska, Monika Marcinkowska-Lesiak, Anna Onopiuk. (2022). Application of different drying methods and their influence on the physicochemical properties of tomatoes. European Food Research and Technology, 248(11), p.2727. https://doi.org/10.1007/s00217-022-04081-0.

4. Oluwatoyin Habibat Animashaun, Sunday Samuel Sobowale. (2024). Microwave exposure of tomato varieties before catalytic oven drying and its effect on physicochemical and bioactive components studied by Fourier transform infrared (FTIR) spectroscopy. Food and Humanity, 2, p.100197. https://doi.org/10.1016/j.foohum.2023.12.005.

5. Nikita S. Bhatkar, Shivanand S. Shirkole, Arun S. Mujumdar, Bhaskar N. Thorat. (2021). Drying of tomatoes and tomato processing waste: a critical review of the quality aspects. Drying Technology, 39(11), p.1720. https://doi.org/10.1080/07373937.2021.1910832.

6. Tina Nurkhoeriyati, Boris Kulig, Barbara Sturm, Oliver Hensel. (2021). The Effect of Pre-Drying Treatment and Drying Conditions on Quality and Energy Consumption of Hot Air-Dried Celeriac Slices: Optimisation. Foods, 10(8), p.1758. https://doi.org/10.3390/foods10081758.

7. Gülce Bedis KAYNARCA, Buket AŞKIN. (2020). Portakal Kabuğunun Farklı Yöntemlerle Kurutulması ve Bazı Teknolojik Özelliklerinin İncelenmesi. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 10(4), p.2604. https://doi.org/10.21597/jist.685821.

8. Kinga Dziadek, Aneta Kopeć, Michał Dziadek, Urszula Sadowska, Katarzyna Cholewa-Kowalska. (2022). The Changes in Bioactive Compounds and Antioxidant Activity of Chia (Salvia hispanica L.) Herb under Storage and Different Drying Conditions: A Comparison with Other Species of Sage. Molecules, 27(5), p.1569. https://doi.org/10.3390/molecules27051569.

9. Mihaela Popescu, Petrica Iancu, Valentin Plesu, Costin Sorin Bildea, Fulvia Ancuta Manolache. (2023). Mathematical Modeling of Thin-Layer Drying Kinetics of Tomato Peels: Influence of Drying Temperature on the Energy Requirements and Extracts Quality. Foods, 12(20), p.3883. https://doi.org/10.3390/foods12203883.

10. El-Sayed G. Khater, Adel H. Bahnasawy, Mai H. Abd El-All, Hassan M. M. Mustafa, Ahmed M. Mousa. (2024). Effect of drying system, layer thickness and drying temperature on the drying parameters, product quality, energy consumption and cost of the marjoram leaves. Scientific Reports, 14(1) https://doi.org/10.1038/s41598-024-55007-7.

Dimensions

PlumX

Article abstract page views

464

Downloads

Download data is not yet available.