Effect of Eucalyptus globullus biochar addition on the availability of phosphorus in acidic soil
Efecto de la adición de biocarbonizados de Eucalyptus globullus en la disponibilidad de fósforo en suelos ácidos María Jo
DOI:
https://doi.org/10.15446/agron.colomb.v35n1.58671Keywords:
Biochar amendment, phosphate fertilizers, agricultural soils, desorption, sorption, incubation (en)Enmiendas con biocarbonizados, fertilizantes fosfatados, suelos agrícolas, desorción, adsorción, incubación (es)
Downloads
Phosphorus (P) is one of the primary nutrients limiting crop production. The application of phosphate fertilizers in acidic soils leads to the formation of secondary insoluble compounds that reduces the effectiveness of the fertilizer. The addition of biochar may represent a solution to the problem of nutrients bioavailability, especially P. In this study, tests were performed to determine the effects of amending soil with five different percentages of biochar (0, 5, 10, 20, and 35% w/w) on the phenomena of P sorption and desorption. The effect of soil/ biochar contact treatments on P availability was also examined. Phosphorus sorption was lower in the soils containing biochar compared to normal soil. The accumulated desorption quantity after eight consecutive extractions was 85% higher when 35% biochar was added to the soil than soil alone. Moreover, the application of 35% biochar increased the concentration of soluble P up to 38% after 30 days of incubation. Based on these results, we deduced that biochar induces changes in P retention soil properties that may be beneficial for agricultural soils.
References
Chen, B.L., D.D. Zhou, and L.Z. Zhu. 2008. Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environ. Sci. Technol. 42, 5137-5143. Doi: 10.1021/es8002684.
Chun, Y., G.Y. Sheng, C.T. Chiou, and B.S. Xing. 2004. Compositions and sorptive properties of crop residue-derived chars. Environ. Sci. Technol. 38, 4649-4655. Doi: 10.1021/es035034w.
Daza-Torres, M.C., J.G. Álvarez-Herrera, and J.H. Camacho-Tamayo. 2008. Aplicación de materiales orgánicos e inorgánicos en la adsorción de fósforo en un Oxisol. Rev. Bras. Eng. Agríc. Ambient. 12, 451-457. Doi: 10.1590/S1415-43662008000500002.
De Luca, T.H., M.D. Mackenzie, and M.J. Gundale. 2009. Biochar effects on soil nutrient transformations. pp. 251-270. In: Lehmann, J. and S. Joseph (eds.) Biochar for environmental management: Science and technology. Earthscan Publisher, London, UK.
Denevan, W.M. 1996. A bluff model of riverine settlement in prehistoric Amazonia. Ann. Assoc. Am. Geogr. 86, 654-681. Doi: 10.1111/j.1467-8306.1996.tb01771.x.
Gérard, F. 2016. Clay minerals, iron/aluminum oxides, and their contribution to phosphate sorption in soils - a myth revisited. Geoderma. 262, 213-226. Doi: 10.1016/j.geoderma.2015.08.036.
Guedes, R.S., L.C.A Melo, L. Vergütz, A. Rodríguez-Vila, E.F. Covelo, and A.R. Fernandes. 2016. Adsorption and desorption kinetics and phosphorus hysteresis in highly weathered soil by stirred flow chamber experiments. Soil Tillage Res. 162, 46-54. Doi: 10.1016/j.still.2016.04.018.
Gul, S., J. K. Whalen, B.W. Thomas, V. Sachdeva, and H. Deng. 2015. Physico-chemical properties and microbial responses in biochar-amended soils: mechanisms and future directions. Agric. Ecosyst. Environ. 206, 46-59. Doi. 10.1016/j.agee.2015.03.015.
Icontec. 1998. NTC 4467. Métodos de ensayo productos químicos industriales. Carbón activado. Icontec, Bogotá. Instituto Colombiano de Normas Técnicas y Certificación, Bogotá, Colombia.
Jiménez L.F., M.C. Baquero, and J. J. Díaz. 2006. Carbonizados de origen vegetal (COV) para la generación de antroposoles. Obtención y caracterización fisicoquímica. R. Col. Quim. 35, 177-190.
Lehmann, J. 2007. Bio-energy in the black. Front. Ecol. Environ. 5, 381-387. Doi: 10.1890/1540-9295(2007)5[381:BITB]2.0.CO;2.
Lehmann, J., J.P. Silva, C. Steiner, T. Nehls, W. Zech, and B. Glaser. 2003. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant Soil 249, 343-357. Doi: 10.1023/A:1022833116184.
Malagón, C.D. 2003. Ensayo sobre tipología de suelos colombianos-enfasis en génesis y aspectos ambientales. Rev. Acad. Colomb. Cienc. 27, 319-341.
Mukherjee, A. and A.R. Zimmerman. 2013. Organic carbon and nutrient release from a range of laboratory-produced biochars and biochar-soil mixtures. Geoderma 193/194, 122-130. Doi: 10.1016/j.geoderma.2012.10.002.
Mukherjee, A., A.R. Zimmerman, and W. Harris. 2011.Surface chemistry variations among a series of laboratory-produced biochars. Geoderma 163, 247-255. Doi: 10.1016/j.geoderma.2011.04.021.
Murphy, J. and J.P. Riley. 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta. 27, 31-36. Doi: 10.1016/S0003-2670(00)88444-5.
Murphy, P.N.C. and R.J. Stevens. 2010. Lime and gypsum as source measures to decrease phosphorus loss from soils to water. Water Air Soil Pollut. 212, 101-111. Doi: 10.1007/s11270-010-0325-0.
Navarro, G. and S. Navarro. 2013. Química agrícola química del suelo y de nutrientes esenciales para las plantas. Mundi-Prensa, Madrid, Spain.
Nelson, N.O., S.C. Agudelo, W.Q. Yuan, and J. Gan. 2011. Nitrogen and phosphorus availability in biochar-amended soils. Soil Sci. 176, 218-226. Doi:_10.1097/SS.0b013e3182171eac.
Novak, J.M., I. Lima, B. Xing, J.W. Gaskin, C. Steiner, K. Das, M. Ahmedna, D. Rehrah, D.W. Watts, and W.J. Busscher. 2009. Characterization of designer biochar produced at different temperatures and their effects on a loamy sand. Ann. Environ. Sci. 3, 195-206.
Quesada, C.A., J. Lloyd, L.O. Anderson, N.M. Fyllas, M. Schwarz, and C.I. Czimczik. 2011. Soils of Amazonia with particular reference to the RAINFOR sites. Biogeosci. 8, 11415-11440. Doi: 10.5194/bg-8-1415-2011.
Ranno, S.K., L.S. Silva, L.C. Gatiboni, and A.C. Rhoden, 2007.Capacidade de adsorção de fósforo em solos de várzea do estado do Rio Grande do Sul. R. Bras. Ci. Solo. 31,21-28. Doi: 10.1590/S0100-06832007000100003.
Reddy, K.R., G.A. O'Conner, and P.M. Gale. 1998. Phosphorus sorption capacities of wetland soils and stream sediments impacted by dairy effluent. J. Environ. Qual. 27: 438-447. Doi: 10.2134/jeq1998.00472425002700020027x.
Ren, J., N. Li, L. Li, J.K. An, L. Zhao, and N.Q. Ren. 2015. Granulation and ferric oxides loading enable biochar derived from cotton stalk to remove phosphate from water. Bioresour. Technol. 178, 119-125. Doi: 10.1016/j.biortech.2014.09.071.
Ritcher, A.M. and I.M. Rao. 2005. Role of phosphorus in photosynthetic carbon metabolism. pp. 122-125. En: Pessarakli, M. (ed.) Handbook ofphotosynthesis. CRC Press, Boca Raton, FL, USA. Doi: 10.1201/9781420027877.ch7.
Sánchez-Buitrago. 2013. Estudio de la diversidad genética en Eucalyptus globulus (Labill.) empleando marcadores moleculares tipo microsatélite (SSR). MSc. Thesis. Universidad Nacional de Colombia, Bogotá, Colombia.
Siddiqui A.R., S. Nazeer, M.A. Piracha, M.M. Saleem, I. Siddiqi, S.M. Shahzad, and G. Sarwar. 2016. The production of biochar and its possible effects on soil properties and phosphate solubilizing bacteria J. Appl. Agric. Biotechnol. 1, 27-40.
Soinne, H., J. Hovi, P. Tammeorg, and E. Turtola. 2014. Effect of biochar on phosphorus sorption and clay soil aggregate stability. Geoderma 219/220, 162-167. Doi: 10.1016/j.geoderma.2013.12.022.
Steiner, C., W.G. Teixeira, J. Lehmann, T. Nehls, J.L.V. Macédo, W.E.H. Blum, and W. Zech. 2007. Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant Soil 291, 275-290. Doi: 10.1007/s11104-007-9193-9.
Xu, G., J. Sun, H. Shao, and S.X. Chang. 2014. Biochar had effects on phosphorus sorption and desorption in three soils with differing acidity. Ecol. Eng. 62, 54-60. Doi: 10.1016/j.ecoleng.2013.10.027.
Yao, Y., B. Gao, M. Zhang, and A.R. Zimmerman. 2012. Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. Chemosphere 89, 1467-1471. Doi: 10.1016/j.chemosphere.2012.06.002.
Zhang, B., F. Fang, J. Guo, Y. Chen, Z. Li, and S.S. Guo. 2012. Phosphorus fractions and phosphate sorption-release characteristics relevant to the soil composition of water-level-fluctuating zone of three Gorges Reservoir. Ecol. Eng. 40, 153-159, 2012. Doi: 10.1016/j.ecoleng.2011.12.024.
Zhao, L., X. Cao, W. Zheng, J.W. Scott, B.K. Sharma, and X. Chen. 2016. Copyrolysis of biomass with phosphate fertilizers to improve Biochar carbon retention, slow nutrient release, and stabilize heavy metals in soil. ACS Sustainable Chem. Eng. 4, 1630-1636. Doi: 10.1021/acssuschemeng.5b01570.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Gilles Pouangam Ngalani, Jean Aubin Ondo, Jacques Romain Njimou, Charles Peguy Nanseu Njiki, Pascale Prudent, Emmanuel Ngameni. (2023). Effect of coffee husk and cocoa pods biochar on phosphorus fixation and release processes in acid soils from West Cameroon. Soil Use and Management, 39(2), p.817. https://doi.org/10.1111/sum.12894.
2. Larissa Ghodszad, Adel Reyhanitabar, Mohammad Reza Maghsoodi, Behnam Asgari Lajayer, Scott X. Chang. (2021). Biochar affects the fate of phosphorus in soil and water: A critical review. Chemosphere, 283, p.131176. https://doi.org/10.1016/j.chemosphere.2021.131176.
3. JOSELY DANTAS FERNANDES, LÚCIA HELENA GARÓFALO CHAVES, EDILMA RODRIGUES BENTO DANTAS, GILVANISE ALVES TITO, HUGO ORLANDO CARVALLO GUERRA. (2022). PHOSPHORUS AVAILABILITY IN SOIL INCUBATED WITH BIOCHAR: ADSORPTION STUDY. Revista Caatinga, 35(1), p.206. https://doi.org/10.1590/1983-21252022v35n121rc.
4. Soheila Baninajarian, Mehran Shirvani. (2021). Use of biochar as a possible means of minimizing phosphate fixation and external P requirement of acidic soil. Journal of Plant Nutrition, 44(1), p.59. https://doi.org/10.1080/01904167.2020.1792491.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2017 Agronomía Colombiana

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
© Centro Editorial de la Facultad de Ciencias Agrarias, Universidad Nacional de Colombia
Reproduction and quotation of material appearing in the journal is authorized provided the following are explicitly indicated: journal name, author(s) name, year, volume, issue and pages of the source. The ideas and observations recorded by the authors are their own and do not necessarily represent the views and policies of the Universidad Nacional de Colombia. Mention of products or commercial firms in the journal does not constitute a recommendation or endorsement on the part of the Universidad Nacional de Colombia; furthermore, the use of such products should comply with the product label recommendations.
The Creative Commons license used by Agronomia Colombiana journal is: Attribution - NonCommercial - ShareAlike (by-nc-sa)

Agronomia Colombiana by Centro Editorial of Facultad de Ciencias Agrarias, Universidad Nacional de Colombia is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional License.
Creado a partir de la obra en http://revistas.unal.edu.co/index.php/agrocol/.