Published

2017-01-01

Effect of Eucalyptus globullus biochar addition on the availability of phosphorus in acidic soil

Efecto de la adición de biocarbonizados de Eucalyptus globullus en la disponibilidad de fósforo en suelos ácidos María Jo

DOI:

https://doi.org/10.15446/agron.colomb.v35n1.58671

Keywords:

Biochar amendment, phosphate fertilizers, agricultural soils, desorption, sorption, incubation (en)
Enmiendas con biocarbonizados, fertilizantes fosfatados, suelos agrícolas, desorción, adsorción, incubación (es)

Downloads

Authors

  • María José Martínez C. Universidad Nacional de Colombia - Sede Bogotá - Faculty of Sciences - Department of Chemistry
  • Julio César España A. Universidad Nacional de Colombia - Sede Bogotá - Faculty of Sciences - Department of Chemistry
  • José De Jesus Diaz V. Universidad Nacional de Colombia - Sede Bogotá - Faculty of Sciences - Department of Chemistry

Phosphorus (P) is one of the primary nutrients limiting crop production. The application of phosphate fertilizers in acidic soils leads to the formation of secondary insoluble compounds that reduces the effectiveness of the fertilizer. The addition of biochar may represent a solution to the problem of nutrients bioavailability, especially P. In this study, tests were performed to determine the effects of amending soil with five different percentages of biochar (0, 5, 10, 20, and 35% w/w) on the phenomena of P sorption and desorption. The effect of soil/ biochar contact treatments on P availability was also examined. Phosphorus sorption was lower in the soils containing biochar compared to normal soil. The accumulated desorption quantity after eight consecutive extractions was 85% higher when 35% biochar was added to the soil than soil alone. Moreover, the application of 35% biochar increased the concentration of soluble P up to 38% after 30 days of incubation. Based on these results, we deduced that biochar induces changes in P retention soil properties that may be beneficial for agricultural soils.

El fósforo (P) es uno de los principales nutrientes que limita el crecimiento de los cultivos. La aplicación de fertilizantes fosfatados en los suelos ácidos deriva en la formación de compuestos secundarios insolubles, que disminuyen la eficiencia del fertilizante. La adición de biocarbonizados, puede ser una solución al problema de disponibilidad de nutrientes, especialmente de fósforo. En este estudio se realizaron ensayos para determinar el efecto de un suelo enmendado con cinco niveles de biocarbonizado (0, 5, 10, 20 y 35% p/p) sobre los fenómenos de adsorción y desorción de P. También se evaluó el efecto del tiempo de contacto de las mezclas suelo/biocarbonizado sobre la disponibilidad de P. Se encontró que la adsorción es menor en suelos que contienen carbonizados frente al suelo sin tratamientos. La cantidad desorbida acumulada, después de ocho extracciones consecutivas fue 85% superior cuando se agregó biocarbonizado en 35% p/p. Además, la aplicación de biocarbonizados aumentó la concentración de P soluble hasta 38% después de 30 días de incubación cuando se añade 35% p/p. Los resultados muestran que los biocarbonizados inducen cambios en las propiedades de retención de fósforo del suelo que pueden ser benéficas para los suelos agrícolas.

References

Chen, B.L., D.D. Zhou, and L.Z. Zhu. 2008. Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environ. Sci. Technol. 42, 5137-5143. Doi: 10.1021/es8002684.

Chun, Y., G.Y. Sheng, C.T. Chiou, and B.S. Xing. 2004. Compositions and sorptive properties of crop residue-derived chars. Environ. Sci. Technol. 38, 4649-4655. Doi: 10.1021/es035034w.

Daza-Torres, M.C., J.G. Álvarez-Herrera, and J.H. Camacho-Tamayo. 2008. Aplicación de materiales orgánicos e inorgánicos en la adsorción de fósforo en un Oxisol. Rev. Bras. Eng. Agríc. Ambient. 12, 451-457. Doi: 10.1590/S1415-43662008000500002.

De Luca, T.H., M.D. Mackenzie, and M.J. Gundale. 2009. Biochar effects on soil nutrient transformations. pp. 251-270. In: Lehmann, J. and S. Joseph (eds.) Biochar for environmental management: Science and technology. Earthscan Publisher, London, UK.

Denevan, W.M. 1996. A bluff model of riverine settlement in prehistoric Amazonia. Ann. Assoc. Am. Geogr. 86, 654-681. Doi: 10.1111/j.1467-8306.1996.tb01771.x.

Gérard, F. 2016. Clay minerals, iron/aluminum oxides, and their contribution to phosphate sorption in soils - a myth revisited. Geoderma. 262, 213-226. Doi: 10.1016/j.geoderma.2015.08.036.

Guedes, R.S., L.C.A Melo, L. Vergütz, A. Rodríguez-Vila, E.F. Covelo, and A.R. Fernandes. 2016. Adsorption and desorption kinetics and phosphorus hysteresis in highly weathered soil by stirred flow chamber experiments. Soil Tillage Res. 162, 46-54. Doi: 10.1016/j.still.2016.04.018.

Gul, S., J. K. Whalen, B.W. Thomas, V. Sachdeva, and H. Deng. 2015. Physico-chemical properties and microbial responses in biochar-amended soils: mechanisms and future directions. Agric. Ecosyst. Environ. 206, 46-59. Doi. 10.1016/j.agee.2015.03.015.

Icontec. 1998. NTC 4467. Métodos de ensayo productos químicos industriales. Carbón activado. Icontec, Bogotá. Instituto Colombiano de Normas Técnicas y Certificación, Bogotá, Colombia.

Jiménez L.F., M.C. Baquero, and J. J. Díaz. 2006. Carbonizados de origen vegetal (COV) para la generación de antroposoles. Obtención y caracterización fisicoquímica. R. Col. Quim. 35, 177-190.

Lehmann, J. 2007. Bio-energy in the black. Front. Ecol. Environ. 5, 381-387. Doi: 10.1890/1540-9295(2007)5[381:BITB]2.0.CO;2.

Lehmann, J., J.P. Silva, C. Steiner, T. Nehls, W. Zech, and B. Glaser. 2003. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant Soil 249, 343-357. Doi: 10.1023/A:1022833116184.

Malagón, C.D. 2003. Ensayo sobre tipología de suelos colombianos-enfasis en génesis y aspectos ambientales. Rev. Acad. Colomb. Cienc. 27, 319-341.

Mukherjee, A. and A.R. Zimmerman. 2013. Organic carbon and nutrient release from a range of laboratory-produced biochars and biochar-soil mixtures. Geoderma 193/194, 122-130. Doi: 10.1016/j.geoderma.2012.10.002.

Mukherjee, A., A.R. Zimmerman, and W. Harris. 2011.Surface chemistry variations among a series of laboratory-produced biochars. Geoderma 163, 247-255. Doi: 10.1016/j.geoderma.2011.04.021.

Murphy, J. and J.P. Riley. 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta. 27, 31-36. Doi: 10.1016/S0003-2670(00)88444-5.

Murphy, P.N.C. and R.J. Stevens. 2010. Lime and gypsum as source measures to decrease phosphorus loss from soils to water. Water Air Soil Pollut. 212, 101-111. Doi: 10.1007/s11270-010-0325-0.

Navarro, G. and S. Navarro. 2013. Química agrícola química del suelo y de nutrientes esenciales para las plantas. Mundi-Prensa, Madrid, Spain.

Nelson, N.O., S.C. Agudelo, W.Q. Yuan, and J. Gan. 2011. Nitrogen and phosphorus availability in biochar-amended soils. Soil Sci. 176, 218-226. Doi:_10.1097/SS.0b013e3182171eac.

Novak, J.M., I. Lima, B. Xing, J.W. Gaskin, C. Steiner, K. Das, M. Ahmedna, D. Rehrah, D.W. Watts, and W.J. Busscher. 2009. Characterization of designer biochar produced at different temperatures and their effects on a loamy sand. Ann. Environ. Sci. 3, 195-206.

Quesada, C.A., J. Lloyd, L.O. Anderson, N.M. Fyllas, M. Schwarz, and C.I. Czimczik. 2011. Soils of Amazonia with particular reference to the RAINFOR sites. Biogeosci. 8, 11415-11440. Doi: 10.5194/bg-8-1415-2011.

Ranno, S.K., L.S. Silva, L.C. Gatiboni, and A.C. Rhoden, 2007.Capacidade de adsorção de fósforo em solos de várzea do estado do Rio Grande do Sul. R. Bras. Ci. Solo. 31,21-28. Doi: 10.1590/S0100-06832007000100003.

Reddy, K.R., G.A. O'Conner, and P.M. Gale. 1998. Phosphorus sorption capacities of wetland soils and stream sediments impacted by dairy effluent. J. Environ. Qual. 27: 438-447. Doi: 10.2134/jeq1998.00472425002700020027x.

Ren, J., N. Li, L. Li, J.K. An, L. Zhao, and N.Q. Ren. 2015. Granulation and ferric oxides loading enable biochar derived from cotton stalk to remove phosphate from water. Bioresour. Technol. 178, 119-125. Doi: 10.1016/j.biortech.2014.09.071.

Ritcher, A.M. and I.M. Rao. 2005. Role of phosphorus in photosynthetic carbon metabolism. pp. 122-125. En: Pessarakli, M. (ed.) Handbook ofphotosynthesis. CRC Press, Boca Raton, FL, USA. Doi: 10.1201/9781420027877.ch7.

Sánchez-Buitrago. 2013. Estudio de la diversidad genética en Eucalyptus globulus (Labill.) empleando marcadores moleculares tipo microsatélite (SSR). MSc. Thesis. Universidad Nacional de Colombia, Bogotá, Colombia.

Siddiqui A.R., S. Nazeer, M.A. Piracha, M.M. Saleem, I. Siddiqi, S.M. Shahzad, and G. Sarwar. 2016. The production of biochar and its possible effects on soil properties and phosphate solubilizing bacteria J. Appl. Agric. Biotechnol. 1, 27-40.

Soinne, H., J. Hovi, P. Tammeorg, and E. Turtola. 2014. Effect of biochar on phosphorus sorption and clay soil aggregate stability. Geoderma 219/220, 162-167. Doi: 10.1016/j.geoderma.2013.12.022.

Steiner, C., W.G. Teixeira, J. Lehmann, T. Nehls, J.L.V. Macédo, W.E.H. Blum, and W. Zech. 2007. Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant Soil 291, 275-290. Doi: 10.1007/s11104-007-9193-9.

Xu, G., J. Sun, H. Shao, and S.X. Chang. 2014. Biochar had effects on phosphorus sorption and desorption in three soils with differing acidity. Ecol. Eng. 62, 54-60. Doi: 10.1016/j.ecoleng.2013.10.027.

Yao, Y., B. Gao, M. Zhang, and A.R. Zimmerman. 2012. Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. Chemosphere 89, 1467-1471. Doi: 10.1016/j.chemosphere.2012.06.002.

Zhang, B., F. Fang, J. Guo, Y. Chen, Z. Li, and S.S. Guo. 2012. Phosphorus fractions and phosphate sorption-release characteristics relevant to the soil composition of water-level-fluctuating zone of three Gorges Reservoir. Ecol. Eng. 40, 153-159, 2012. Doi: 10.1016/j.ecoleng.2011.12.024.

Zhao, L., X. Cao, W. Zheng, J.W. Scott, B.K. Sharma, and X. Chen. 2016. Copyrolysis of biomass with phosphate fertilizers to improve Biochar carbon retention, slow nutrient release, and stabilize heavy metals in soil. ACS Sustainable Chem. Eng. 4, 1630-1636. Doi: 10.1021/acssuschemeng.5b01570.

How to Cite

APA

Martínez C., M. J., España A., J. C. and Diaz V., J. D. J. (2017). Effect of Eucalyptus globullus biochar addition on the availability of phosphorus in acidic soil. Agronomía Colombiana, 35(1), 75–81. https://doi.org/10.15446/agron.colomb.v35n1.58671

ACM

[1]
Martínez C., M.J., España A., J.C. and Diaz V., J.D.J. 2017. Effect of Eucalyptus globullus biochar addition on the availability of phosphorus in acidic soil. Agronomía Colombiana. 35, 1 (Jan. 2017), 75–81. DOI:https://doi.org/10.15446/agron.colomb.v35n1.58671.

ACS

(1)
Martínez C., M. J.; España A., J. C.; Diaz V., J. D. J. Effect of Eucalyptus globullus biochar addition on the availability of phosphorus in acidic soil. Agron. Colomb. 2017, 35, 75-81.

ABNT

MARTÍNEZ C., M. J.; ESPAÑA A., J. C.; DIAZ V., J. D. J. Effect of Eucalyptus globullus biochar addition on the availability of phosphorus in acidic soil. Agronomía Colombiana, [S. l.], v. 35, n. 1, p. 75–81, 2017. DOI: 10.15446/agron.colomb.v35n1.58671. Disponível em: https://revistas.unal.edu.co/index.php/agrocol/article/view/58671. Acesso em: 25 apr. 2024.

Chicago

Martínez C., María José, Julio César España A., and José De Jesus Diaz V. 2017. “Effect of Eucalyptus globullus biochar addition on the availability of phosphorus in acidic soil”. Agronomía Colombiana 35 (1):75-81. https://doi.org/10.15446/agron.colomb.v35n1.58671.

Harvard

Martínez C., M. J., España A., J. C. and Diaz V., J. D. J. (2017) “Effect of Eucalyptus globullus biochar addition on the availability of phosphorus in acidic soil”, Agronomía Colombiana, 35(1), pp. 75–81. doi: 10.15446/agron.colomb.v35n1.58671.

IEEE

[1]
M. J. Martínez C., J. C. España A., and J. D. J. Diaz V., “Effect of Eucalyptus globullus biochar addition on the availability of phosphorus in acidic soil”, Agron. Colomb., vol. 35, no. 1, pp. 75–81, Jan. 2017.

MLA

Martínez C., M. J., J. C. España A., and J. D. J. Diaz V. “Effect of Eucalyptus globullus biochar addition on the availability of phosphorus in acidic soil”. Agronomía Colombiana, vol. 35, no. 1, Jan. 2017, pp. 75-81, doi:10.15446/agron.colomb.v35n1.58671.

Turabian

Martínez C., María José, Julio César España A., and José De Jesus Diaz V. “Effect of Eucalyptus globullus biochar addition on the availability of phosphorus in acidic soil”. Agronomía Colombiana 35, no. 1 (January 1, 2017): 75–81. Accessed April 25, 2024. https://revistas.unal.edu.co/index.php/agrocol/article/view/58671.

Vancouver

1.
Martínez C. MJ, España A. JC, Diaz V. JDJ. Effect of Eucalyptus globullus biochar addition on the availability of phosphorus in acidic soil. Agron. Colomb. [Internet]. 2017 Jan. 1 [cited 2024 Apr. 25];35(1):75-81. Available from: https://revistas.unal.edu.co/index.php/agrocol/article/view/58671

Download Citation

CrossRef Cited-by

CrossRef citations4

1. Gilles Pouangam Ngalani, Jean Aubin Ondo, Jacques Romain Njimou, Charles Peguy Nanseu Njiki, Pascale Prudent, Emmanuel Ngameni. (2023). Effect of coffee husk and cocoa pods biochar on phosphorus fixation and release processes in acid soils from West Cameroon. Soil Use and Management, 39(2), p.817. https://doi.org/10.1111/sum.12894.

2. Larissa Ghodszad, Adel Reyhanitabar, Mohammad Reza Maghsoodi, Behnam Asgari Lajayer, Scott X. Chang. (2021). Biochar affects the fate of phosphorus in soil and water: A critical review. Chemosphere, 283, p.131176. https://doi.org/10.1016/j.chemosphere.2021.131176.

3. JOSELY DANTAS FERNANDES, LÚCIA HELENA GARÓFALO CHAVES, EDILMA RODRIGUES BENTO DANTAS, GILVANISE ALVES TITO, HUGO ORLANDO CARVALLO GUERRA. (2022). PHOSPHORUS AVAILABILITY IN SOIL INCUBATED WITH BIOCHAR: ADSORPTION STUDY. Revista Caatinga, 35(1), p.206. https://doi.org/10.1590/1983-21252022v35n121rc.

4. Soheila Baninajarian, Mehran Shirvani. (2021). Use of biochar as a possible means of minimizing phosphate fixation and external P requirement of acidic soil. Journal of Plant Nutrition, 44(1), p.59. https://doi.org/10.1080/01904167.2020.1792491.

Dimensions

PlumX

Article abstract page views

480

Downloads

Download data is not yet available.