Published

2017-05-01

Variability and genetic structure of yellow passion fruit (Passiflora edulis f. flavicarpa Degener) in Colombia using microsatellite DNA markers

Variabilidad y estructura genética del maracuyá (Passiflora edulis f. flavicarpa Degener) en Colombia por medio de marcadores microsatélite

DOI:

https://doi.org/10.15446/agron.colomb.v35n2.59973

Keywords:

genetic variability, Passiflora, pre-breeding, SSR markers, tropical fruit (en)
fruta tropical, marcadores SSR, Passiflora, pre-mejoramiento, variabilidad genética (es)

Downloads

Authors

  • John Ocampo Universidad Nacional de Colombia - Sede Palmira https://orcid.org/0000-0002-2720-7824
  • Natali Acosta-Barón Programa de Biología Ambiental, Grupo de Investigación GENBIMOL, Facultad de Ciencias e Ingeniería, Universidad Jorge Tadeo Lozano. Bogota (Colombia).
  • Javier Hernández-Fernández Programa de Biología Ambiental, Grupo de Investigación GENBIMOL, Facultad de Ciencias e Ingeniería, Universidad Jorge Tadeo Lozano. Bogota (Colombia).

Colombia is one of the leading producers of yellow passion fruit but the genetic studies based on molecular markers from commercial plantations have not been considered to select interesting market material. The goal of this study was to assess the genetic variability and the population structure of 51 Colombian commercial yellow passion fruit accessions (102 individuals), and to provide the necessary information for prospective selection and breeding programs. Thus, a total of six microsatellites were amplified with 58 alleles identified and an average of 9.66 alleles per locus, including nine private and 31 rare. Diversity indexes showed polymorphic information content values of 0.74 (PIC), an observed (Ho) and expected (He) heterozygosity average of 0.52 and 0.78, respectively. Spatial distribution showed the greatest allelic richness (11 to 14) in most of the Valle del Cauca accessions. The average genetic distance among accessions was 0.68, and the cluster analysis showed three main groups poorly supported (bootstrap <50%), with slight geographical structure and high differentiation between individuals of the same accession. Structure analysis indicated K=4 as the genetic structure's uppermost hierarchical level, while Bayesian clustering showed a division of individuals into four genetically distinct groups. The low geographic structure and high variability of the accessions could be explained by allogamy and seed exchange frequency among farmers. Results issued suggest a complementary agro-morphological assessment to establish total genetic variability and implement a breeding program through assisted selection of superior genotypes in search of more productive and resistant cultivars to phytosanitary problems.

Colombia es uno de los principales productores de maracuyá a nivel mundial y los estudios genéticos basados en marcadores moleculares en cultivos comerciales no han sido considerados para la selección de genotipos superiores para responder a las demandas del mercado. El objetivo de este estudio fue determinar la variabilidad genética y la estructura poblacional de 51 accesiones colombianas (102 individuos), y proveer información necesaria para futuros programas de mejoramiento genético. Un total de seis microsatélites fueron amplificados con 58 alelos identificados y un promedio de 9,66 alelos por locus, entre ellos nueve únicos y 31 raros. Los índices de diversidad mostraron un contenido de información polimórfica de 0,74 (PIC), y una heterocigocidad promedio observada (Ho) y esperada (He) de 0,52 y 0,78. La distribución espacial mostro que la mayor riqueza alélica (11 to 14) se localiza en las accesiones del Valle del Cauca. El promedio de distancia genética entre accesiones fue de 0,68 y el análisis de clasificación mostró tres grupos principales levemente soportados (bootstrap <50%), con poca estructuración geográfica y alta diferenciación entre individuos de una misma accesión. El análisis de estructura poblacional indicó un K=4 con el nivel jerárquico superior frente a los demás, mientras que la agrupación Bayesiana mostró una división de los individuos en cuatro grupos genéticamente distintos. La poca estructuración geográfica y la alta variabilidad de las accesiones podría explicarse por el fenómeno de alogamia y el constante intercambio de semillas entre productores. Los resultados sugieren una evaluación agro-morfológica complementaria que permita establecer la variabilidad genética total e implementar un programa de mejoramiento genético por medio de la selección asistida de genotipos superiores en búsqueda de cultivares más productivos y resistentes a problemas fitosanitarios.

References

Agronet. 2016. Ministerio de Agricultura y Desarrollo Rural de Colombia, Análisis - Estadísticas, Maracuyá. Retrieved from: Retrieved from: http://www.agronet.gov.co ; consulted: 22 May, 2016.

Arias, J.C., J. Ocampo, and R. Urrea. 2014. La polinización natural en el maracuyá (Passiflora edulis f. flavicarpa Degener) como un servicio reproductivo y ecosistémico. Rev. Mesoamer. Agron. 25(1), 73-83. Doi: 10.15517/am.v25i1.14200.

Aukar, A.P.A., E.G. de Macedo, and J.C. Oliveira. 2002. Genetic variations among passion fruit species using RAPD markers. Rev. Bras. Frutic. 24, 738-740. Doi: 10.1590/S0100-29452002000300044

Belkhir, K., P. Borsa, L. Chikhi, N. Raufast, and F. Bonhomme. 1996-2004. GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome, Populations, Interactions, CNRS UMR 5000, Université de Montpellier II, Montpellier, France.

Bernal, N., J. Ocampo-Pérez, and J. Hernández-Fernández. 2014. Caracterización y análisis de la variabilidad genética de la granadilla (Passiflora ligularis Juss.) en Colombia empleando marcadores microsatélites. Rev. Bras. Frutic. 36, 598-611. Doi: 10.1590/0100-2945-251/13

Billote, N., P.J.L. Lagoda, A.M. Risterucci, and C. Baurens. 1999. Microsatellite-enriched libraries: applied methodology for the development of SSR markers in tropical crops. Fruits 54, 277- 288.

Blair, M.W., A. Soler, and A.J. Cortés. 2012. Diversification and population structure in common beans (Phaseolus vulgaris L.). PLoS ONE 7(11), e49488. Doi: 10.1371/journal.pone.0049488

Botstein, D., L. White, H. Skolmick, and W. Davis. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphism. Am. J. Hum. Genet. 32(3), 314-331.

Cerqueira-Silva, C.B.M., F. Gelape-Faleiro, O. Nunes, E.S. Lisboa-dos Santos, and A. Pereira-de Souza. 2016. The genetic diversity, conservation, and use of passion fruit (Passiflora spp.). In: Ahuja, M.R. and S.M. Jain (eds.) Genetic diversity and erosion in plants, sustainable development and biodiversity 8. Springer International Publishing, Switzerland. Doi: 10.1007/978-3-319-25954-3_5

Cerqueira-Silva, C.B.M ., O. Nunes, E.J. Oliveira, E.S.L. Santos, and A.P. Souza. 2015. Characterization and selection of passion fruit (yellow and purple) accessions based on molecular markers and disease reactions for use in breeding programs. Euphytica 202, 345-359. Doi: 10.1007/s10681-014-1235-9.

Cerqueira-Silva, C.B.M., E.S.L. Santos, O. Nunes, J.G.O. Vieira, G.M. Mori, R.X. Corrêa, and A.P. Souza. 2014a. Molecular genetic variability of commercial and wild accessions of passion fruit (Passiflora spp.) targeting ex situ conservation and breeding. Int. J. Mol. Sci. 15, 22933-22959. Doi: 10.3390/ijms151222933.

Cerqueira-Silva, C.B.M ., E.S.L. Santos, O. Nunes, J.G.O. Vieira, G.M. Mori, R.X. Corrêa, and A.P. Souza. 2014b. New microsatellite markers for wild and commercial species of Passiflora (Pas-sifloraceae) and cross-amplification. Appl. Plant Sci. 2(2), 1-5. Doi: 10.3732/apps.1300061.

Cerqueira-Silva C.B.M., E.S.L. Santos, A.M. Souza, G.M. Mori, E.J. Oliveira, R.X. Corrêa, and A.P. Souza. 2012. Development and characterization of microsatellite markers for the wild South American Passiflora cincinnata (Passifloraceae). Am. J. Bot. 99(4), e170-e172. Doi: 10.3732/ajb.1100477.

Chacón, M.I., Y.P. Sánchez, and L.S. Barrero. 2016. Genetic structure of a Colombian cape gooseberry (Physalis peruviana L.) collection by means of microsatellite markers. Agron. Colomb. 34(1), 5-16. Doi: 10.15446/agron.colomb.v34n1.52960

Crochemore, M., H. Correa, and L. Estevez. 2003. Genetic diversity in passion fruit (Passiflora spp.) evaluated by RAPD markers. Braz. Arch. Biol. Technol. Curitiba. 46(4), 521-527. Doi: 10.1590/S1516-89132003000400005.

Doyle, J.J. and J.L. Doyle. 1991. Isolation of plant DNA from fresh tissue. Focus (Rockville) 1, 13-15.

Efron, B. 1979. Bootstrap methods: another look at the jackknife. Annals Statistics, Hayward. Stanford University. 7, 1-26. Doi: 10.1214/aos/1176344552.

Evanno, G., S. Regnaut, and J. Goudet. 2005. Detecting the number of clusters of individuals using the software structure: a simulation study. Mol. Ecol. 14(8), 2611-2620. Doi: 10.1111/j.1365-294X.2005.02553.x.

Fajardo, D., F. Angel, M. Grum, J. Tohmé, M. Lobo, W. Roca, and I. Sánchez. 1998. Genetic variation analysis of the genus Passiflora L. using RAPD markers. Euphytica 101(3), 341-347. Doi: 10.1023/A:1018395229851.

Faleiro, F.G., N.T.V. Junqueira, M.F. Braga, E.J. Oliveira, J.R. Peixoto, and A.M. Costa. 2005. Germoplasma e melhoramento genético do maracujazeiro - histórico e perspectivas. Documentos Embrapa Cerrados, Planaltina, DF, Brazil.

Felsenstein, J. 1985. Phylogenies and the comparative method. Am. Natur. 125, 1-15. Doi: 10.1086/284325

Freitas, J.P.X., E.J. Oliveira, A.J. Cruz, and L. Ribeiro. 2011. Avaliação de recursos genéticos de maracujazeiro-amarelo. Pesq. Agropec. Bras. 46(9), 013-1020.

Hasnaoui, N., A. Buonamici, F. Sebastiani, M. Mars, D. Zhang, and G.G. Vendramin. 2012. Molecular genetic diversity of Punica granatum L. (pomegranate) as revealed by microsatellite DNA markers (SSR). Gene 493, 105-112. Doi: 10.1016/j.gene.2011.11.012

IBGE - Instituto Brasileiro de Geografía e Estadística. 2014. Banco de dados agregados: producao agrícola municipal. Rio de Janeiro. Retrieved from: http://www.sidra.ibge.gov.br/bda/tabela/listabl.asp?c=1613&z=p&o=29; consulted: December, 2016.

Knight, R.J. 1972. The potential for Florida of hybrids between the purple and yellow passion fruit. Fl. St. Hortic. Soc. 288-292. Retrieved from: http://fshs.org/proceedings-o/1972-vol-85/288-292%20(KNIGHT).pdf; consulted: June, 2016

Laurentin, H. 2009. Data analysis for molecular characterization of plant genetic resources. Genet. Resour. Crop Evol. 56(2), 277-292. Doi: 10.1007/s10722-008-9397-8.

Leberg, P.L. 2002. Estimating allelic richness: effects ofsample size. Mol. Ecol. 11(11), 2445-2449. Doi: 10.1046/j.1365-294X.2002.01612.x.

Manders, G., W.C. Otoni, F.B. d'Utra-Vaz, N.W. Blackhall, J.B. Power, and M.R. Davey. 1994. Transformation of passionfruit (Passiflora edulis f. flavicarpa Degener) using Agrobacterium tumefaciens. Plant Cell Rep. 13(12), 697-702 Doi: 10.1007/BF00231627.

Matos, E.L.S., E.J. Oliveira, O. Nunes, and J.L.L. Dantas. 2013. Microsatellite markers of genetic diversity and population structure of Carica papaya. Ann. Appl. Biol. 163, 298-310. Doi: 10.1111/aab.12053.

Meletti, L.M., M.D. Soares-Scott, M.M. dos Santos, L.C. Bernacci, and I.R. Passos. 2005. Melhoramento genético do maracujá: passado e futuro. pp. 55-75. In: Faleiro, F.G ., N.T. Junqueira, and M.F. Braga (eds.). Maracujá: germoplasma e melhoramento genético. Embrapa Cerrados, Planaltina, DF, Brasil.

Meletti LM, R.R. dos Santos, and K. Minami. 2000. Melhoramento do maracujazeiro-amarelo: obtenção do cultivar Composto IAC-27. Sci. Agric. 57(3), 491-498. Doi: 10.1590/S0103-90162000000300019.

Missio, R.F., E. Teixera, E.M. Zambolim, L. Zambolim, CM. Cruz, and N. Sussumu. 2010. Polymorphic information content of SSR markers for Coffea spp. Crop Breeding Appl. Biotech. 10, 89-94. Doi: 10.12702/1984-7033.v10n01a12.

Monteiro-Hara, A.C.B.A., A.S. Jadão, B.M.J. Mendes, J.A.M. Rezende, F. Trevisan, A.P.O.A. Mello, M.L.C. Vieira, L.M. Meletti, and S.M.S. Piedade. 2011. Genetic transformation of passionflower and evaluation of r1 and r2 generations for resistance to Cowpea aphid borne mosaic virus. Plant Dis. 95(8), 1021-1025. Doi: 10.1094/PDIS-12-10-0873.

Nascimento, W.M.O., A.T. Tomé, M.S.P. Oliviera, C.H. Muller, and J.E.U. Caravalho. 2003. Seleção de progênies de mar-acujazeiro-amarelo (Passiflora edulis f. flavicarpa) quanto à qualidade de frutos. Rev. Bras. Frutic. 25, 186-188. Doi: 10.1590/S0100-29452003000100052.

Nei, M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89(3), 583-590.

Ocampo, J., J.C. Arias, and R. Urrea. 2016. Interspecific hybridization between cultivated and wild species of genus Passiflora L. Euphytica 209(2), 395-408. Doi: 10.1007/s10681-016-1647-9.

Ocampo, J., R. Urrea, K. Wyckhuys, and M. Salazar. 2013. Aprovechamiento de la variabilidad genética del maracuyá (Passiflora edulis f. flavicarpa Degener) como base para un programa de fitomejoramiento en Colombia. Acta Agron. 62, 352-360.

Ocampo, J ., G. Coppens d'Eeckenbrugge, and A. Jarvis. 2010. Distribution of the genus Passiflora L. diversity in Colombia and its potential as an indicator for biodiversity management in the Coffee Growing Zone. Diversity 2(11), 1158-1180. Doi: 10.3390/d2111158.

Ocampo, J ., G. Coppens d'Eeckenbrugge, A.M. Risterucci, D. Dambier, and P. Ollitrault. 2007. Papaya genetic diversity assessed with microsatellite markers in germplasm from the Caribbean region. Acta Hortic. 740, 93-102. Doi: 10.17660/ActaHortic.2007.740.9

Ocampo. J., G. Coppens d'Eeckenbrugge, C. Olano, and R. Schnell. 2004. AFLP analysis for the study of genetic relationships among cultivated Passiflora species of the subgenera Passiflora and Tacsonia. Proc. Interamer. Soc. Trop. Hort. 48, 72-76

Ocampo, J. and G, Coppens d'Eeckenbrugge. 2017. Morphological characterization in the genus Passiflora L.: an approach to understanding its complex variability. Plant Syst. Evol. 33, 531-558. Doi: 10.1007/s00606-017-1390-2.

Oliveira, E.J, G. Pádua, I. Zucchi, A. Camargo, M.H.P. Fungaro, and M.L.C. Vieira. 2005. Development and characterization of microsatellite markers from the yellow passion fruit (Passiflora edulis f. flavicarpa). Mol. Ecol. Notes 5(2), 331-333. Doi: 10.1111/j.1471-8286.2005.00917.x.

Oliveira, E.J., V.S. Santos, D.S. Lima, M.D. Machado, R.S. Lucena, T.B. Motta, and M.S. Castellen. 2008. Seleção em progénies de maracujazeiro-amarelo com base em índices multivariados. Pesq. Agropec. Bras. 43(11), 1543-1549. Doi: 10.1590/S0100-204X2008001100013.

Ortiz, D., A. Bohórquez, M.C. Duque, J. Tohme, D. Cuellar, and T. Mosquera. 2012. Evaluating purple passion fruit (Passiflora edulis Sims f. edulis) genetic variability in individuals from commercial plantations in Colombia. Genet. Resour. Crop. Evol. 59, 1089-1099. Doi: 10.1007/s10722-011-9745-y.

Padua, J.G., E.J. Oliveira, M.I. Zucchi, G.C.X. Oliveira, L.E.A. Camargo, and M.L.C. Vieira. 2005. Isolation and characterization of microsatellite markers from the sweet passion fruit (Passiflora alata Curtis: Passifloraceae). Mol. Ecol. Notes 5(4), 863-865. Doi: 10.1111/j.1471-8286.2005.01090.x.

Passionfruitjuice. 2016. Quicornac, IT IS Tropicals, supply and demand. Retrieved from: Retrieved from: http://www.passionfruitjuice.com/supply.php?MENU=5 ; consulted: April, 2016.

Payán, F.R. and F.W. Martín. 1975. Barriers to the hybridization of Passiflora species. Euphytica 24(3), 709-716. Doi: 10.1007/BF00132909.

Pickersgill, B. 2007. Domestication of plants in the Americas: insights from Mendelian and molecular genetics. Ann. Bot. 100, 925-940. Doi: 10.1093/aob/mcm193.

Pritchard, J.K., M. Stephens, and Y.P. Donnell, Y.P., 2000. Inference of population structure using multilocus genotype data. Genet. 155(2), 945-959.

Porras-Hurtado, L1., Y. Ruiz, C. Santos, C. Phillip, A. Carracedo, and M.V. Lareu. 2013. An overview of STRUCTURE: applications, parameter settings, and supporting software. Front. Genet. 4 (98), 1-13. Doi: 10.3389/fgene.2013.00098.

Reis, R.V., A.P. Viana, E.J. Oliveira, and M.G.M. Silva. 2012. Pheno-typic and molecular selection of yellow passion fruit progenies in the second cycle of recurrent selection. Crop Breed. Appl. Biotech. 12, 7-24. Doi: 10.1590/S1984-70332012000100003.

Reis, R.V., E.J. Oliveira, A.P. Viana, T.N.S. Pereira, M.G. Pereira, and M.G.M. Silva. 2011. Diversidade genética em seleção recorrente de maracujazeiro-amarelo detectada por marcadores microssatélites. Pesq. Agrop. Bras. 46, 51-57. Doi: 10.1590/S0100-204X2011000100007.

Saitou, N. and M. Nei. 1987. The neighbor joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 44, 406-425

Sánchez, I., F. Angel, M. Grum, M.C. Duque, M. Lobo, J. Tohme, and W. Roca. 1999. Variability ofchloroplast DNA in the genus Passiflora L. Euphytica 106, 15-26. Doi: 10.1023/A:1003465016168.

Santos, L.F., E.J. Oliveira, A. Santos, F. Moraes, J. Leles, and J. Padua. 2011. ISSR markers as a tool for the assessment of genetic diversity in Passiflora. Biochemical Genetic 49(7-8), 540-554. Doi: 10.1007/s10528-011-9429-5.

Segura, S., G. Coppens d'Eeckenbrugge, A. Bohórquez, P. Ollitrault, and J. Tohmé. 2002. An AFLP study of the genus Passiflora focusing on subgenus Tacsonia. Genet. Resourc. Crop Evol. 49, 11-123. Doi: 10.1023/A:1014731922490.

Silva, F.H.L., P.R. Muñoz, C.I. Vincent, and A.P. Viana. 2016. Generating relevant information for breeding Passiflora edulis: genetic parameters and population structure. Euphytica 208(3), 609-619. Doi: 10.1007/s10681-015-1616-8.

Snow, N. and J.M. MacDougal. 1993. New chromosome reports in Passiflora (Passifloraceae). Syst. Bot. 18(2), 261-273. Doi: 10.2307/2419402.

van Zonneveld, M., X. Scheldeman, P. Escribano, M.A. Viruel, P. Van Damme, W. Garcia, C. Tapia, J. Romero, M. Sigueñas, and J. Hormaza. 2012. Mapping genetic diversity of cherimoya (Annona cherimola Mill.): application of spatial analysis for conservation and use of plant genetic resources. PLoS ONE 7:e29845. Doi: 10.1371/journal.pone.0029845.

Vermeulen, S., R. Zougmore, E. Wollenberg, P. Thornton, G. Nelson, P. Kristjanson, J. Kinyangia, A. Jarvis, J. Hansen, C. Challinor, B. Campbell, and P. Aggarwal. 2012. Climate change, agriculture and food security: a global partnership to link research and action for low-income agricultural producers and consumers. Curr. Opin. Environ. Sustain. 4, 128-133. Doi: 10.1016/j.cosust.2011.12.004.

Winks, C.W., C.M. Menzel, and D.R. Simpson. 1988. Passionfruit in Queensland. 2. Botany and cultivars. Queensl. Agric. J. 114(4), 217-224.

Yockteng, R., G. Coppens d'Eeckenbrugge, and T. Souza-Chies. 2011. Passiflora. pp. 129-171. In: Kole, C. (ed.) Wild crop relatives: genomic and breeding resources tropical and subtropical fruits. Springer, Berlin and Heidelberg, Germany. Doi: 10.1007/978-3-642-20447-0_7.

Yotoko, K.S., M.C. Dornelas, P.D. Togni, T.C. Salzano, S.L. Bonatto, and L.B. Freitas. 2014. Does variation in genome sizes reflect adaptive or neutral processes? New Clues from Passiflora. PloS ONE 6, 1-8. Doi: 10.1371/journal.pone.0018212.

How to Cite

APA

Ocampo, J., Acosta-Barón, N. & Hernández-Fernández, J. (2017). Variability and genetic structure of yellow passion fruit (Passiflora edulis f. flavicarpa Degener) in Colombia using microsatellite DNA markers. Agronomía Colombiana, 35(2), 135–149. https://doi.org/10.15446/agron.colomb.v35n2.59973

ACM

[1]
Ocampo, J., Acosta-Barón, N. and Hernández-Fernández, J. 2017. Variability and genetic structure of yellow passion fruit (Passiflora edulis f. flavicarpa Degener) in Colombia using microsatellite DNA markers. Agronomía Colombiana. 35, 2 (May 2017), 135–149. DOI:https://doi.org/10.15446/agron.colomb.v35n2.59973.

ACS

(1)
Ocampo, J.; Acosta-Barón, N.; Hernández-Fernández, J. Variability and genetic structure of yellow passion fruit (Passiflora edulis f. flavicarpa Degener) in Colombia using microsatellite DNA markers. Agron. Colomb. 2017, 35, 135-149.

ABNT

OCAMPO, J.; ACOSTA-BARÓN, N.; HERNÁNDEZ-FERNÁNDEZ, J. Variability and genetic structure of yellow passion fruit (Passiflora edulis f. flavicarpa Degener) in Colombia using microsatellite DNA markers. Agronomía Colombiana, [S. l.], v. 35, n. 2, p. 135–149, 2017. DOI: 10.15446/agron.colomb.v35n2.59973. Disponível em: https://revistas.unal.edu.co/index.php/agrocol/article/view/59973. Acesso em: 17 nov. 2025.

Chicago

Ocampo, John, Natali Acosta-Barón, and Javier Hernández-Fernández. 2017. “Variability and genetic structure of yellow passion fruit (Passiflora edulis f. flavicarpa Degener) in Colombia using microsatellite DNA markers”. Agronomía Colombiana 35 (2):135-49. https://doi.org/10.15446/agron.colomb.v35n2.59973.

Harvard

Ocampo, J., Acosta-Barón, N. and Hernández-Fernández, J. (2017) “Variability and genetic structure of yellow passion fruit (Passiflora edulis f. flavicarpa Degener) in Colombia using microsatellite DNA markers”, Agronomía Colombiana, 35(2), pp. 135–149. doi: 10.15446/agron.colomb.v35n2.59973.

IEEE

[1]
J. Ocampo, N. Acosta-Barón, and J. Hernández-Fernández, “Variability and genetic structure of yellow passion fruit (Passiflora edulis f. flavicarpa Degener) in Colombia using microsatellite DNA markers”, Agron. Colomb., vol. 35, no. 2, pp. 135–149, May 2017.

MLA

Ocampo, J., N. Acosta-Barón, and J. Hernández-Fernández. “Variability and genetic structure of yellow passion fruit (Passiflora edulis f. flavicarpa Degener) in Colombia using microsatellite DNA markers”. Agronomía Colombiana, vol. 35, no. 2, May 2017, pp. 135-49, doi:10.15446/agron.colomb.v35n2.59973.

Turabian

Ocampo, John, Natali Acosta-Barón, and Javier Hernández-Fernández. “Variability and genetic structure of yellow passion fruit (Passiflora edulis f. flavicarpa Degener) in Colombia using microsatellite DNA markers”. Agronomía Colombiana 35, no. 2 (May 1, 2017): 135–149. Accessed November 17, 2025. https://revistas.unal.edu.co/index.php/agrocol/article/view/59973.

Vancouver

1.
Ocampo J, Acosta-Barón N, Hernández-Fernández J. Variability and genetic structure of yellow passion fruit (Passiflora edulis f. flavicarpa Degener) in Colombia using microsatellite DNA markers. Agron. Colomb. [Internet]. 2017 May 1 [cited 2025 Nov. 17];35(2):135-49. Available from: https://revistas.unal.edu.co/index.php/agrocol/article/view/59973

Download Citation

CrossRef Cited-by

CrossRef citations14

1. Xinhang Sun, Peter Bundock, Patrick Mason, Pragya Dhakal Poudel, Rajeev Varshney, Bruce Topp, Mobashwer Alam. (2025). Exploring Genetic Diversity and Population Structure of Australian Passion Fruit Germplasm. BioTech, 14(2), p.37. https://doi.org/10.3390/biotech14020037.

2. A. C. Morillo, E. H. Manjarres, Y. Morillo. (2024). Diversity and genetic structure of yellow passion fruit in Boyacá-Colombia using microsatellite DNA markers. Brazilian Journal of Biology, 84 https://doi.org/10.1590/1519-6984.282426.

3. Pramote Khuwijitjaru, Khwanjai Klinchongkon. (2020). Valorization of Fruit Processing By-products. , p.183. https://doi.org/10.1016/B978-0-12-817106-6.00009-5.

4. Joshua D. Anderson, Ravena Ferreira Vidal, Maria Brym, Eric T. Stafne, Marcio F. R. Resende, Alexandre Pio Viana, Alan H. Chambers. (2022). Genotyping-by-sequencing of passion fruit (Passiflora spp.) generates genomic resources for breeding and systematics. Genetic Resources and Crop Evolution, 69(8), p.2769. https://doi.org/10.1007/s10722-022-01397-4.

5. José-Alejandro Cleves-Leguízamo. (2021). Functional analysis of trellising systems and their impact on quality and productivity in passion fruit (Passiflora edulis Sims f. Flavicarpa and f. Pupurea, Degener) cultivars in Colombia. Revista Brasileira de Fruticultura, 43(5) https://doi.org/10.1590/0100-29452021886.

6. A. C. Morillo, D. A. Muñoz, Y. Morillo. (2023). Molecular characterization of Passiflora edulis f. flavicarpa Degener with ISSRs markers. Brazilian Journal of Biology, 83 https://doi.org/10.1590/1519-6984.278167.

7. Johan Hernán Pérez, Dumar Ariel Parrales-Ramírez, Zulma Edelmira Rocha-Gil, Ingrid Rocio Fonseca-Guerra, Yamile Pedraza-Jiménez, Giovanny Fagua. (2025). Genetic diversity of butterflies and its perspectives as key information for defining conservation strategies in the high-mountain ecosystems of Colombia. Boletín Científico Centro de Museos Museo de Historia Natural, 29(1), p.161. https://doi.org/10.17151/bccm.2025.29.1.7.

8. Edilson Marques Junior, Luciana Domiciano Silva Rosado, Ana Claudia Costa, Eveline Teixeira Caixeta, Carlos Eduardo Magalhães dos Santos. (2023). Full-sib progenies show greater genetic diversity than half-sib progenies in sour passion fruit: an approach by ssr markers. Molecular Biology Reports, 50(5), p.4133. https://doi.org/10.1007/s11033-023-08340-5.

9. Nusrat Perveen, Sarvamangala S. Cholin, Kulapati Hipparagi, G. Prabhuling, B. N. S. Murthy, Dadapeer Peerjade. (2023). Molecular diversity assessment among the pomegranate genotypes belonging to diverse genetic background using microsatellite markers. Acta Physiologiae Plantarum, 45(7) https://doi.org/10.1007/s11738-023-03568-x.

10. Juan C. Carmona-Hernandez, Gonzalo Taborda-Ocampo, Clara H. González-Correa, Ivan Salmerón. (2021). Folin-Ciocalteu Reaction Alternatives for Higher Polyphenol Quantitation in Colombian Passion Fruits. International Journal of Food Science, 2021, p.1. https://doi.org/10.1155/2021/8871301.

11. Daniel Alberto Muñoz-Fonseca, Elsa Helena Manjarres-Hernández, Ana Cruz Morillo-Coronado, Nidhi Chaudhary. (2025). Agromorphological Characterization of Passiflora edulis f. flavicarpa Degener in Miraflores, Colombia. International Journal of Agronomy, 2025(1) https://doi.org/10.1155/ioa/3277821.

12. Fengchan Wu, Guojun Cai, Peiyu Xi, Yulin Guo, Meng Xu, Anding Li. (2024). Genetic Diversity Analysis and Fingerprint Construction for 87 Passionfruit (Passiflora spp.) Germplasm Accessions on the Basis of SSR Fluorescence Markers. International Journal of Molecular Sciences, 25(19), p.10815. https://doi.org/10.3390/ijms251910815.

13. A. C. Morillo, E. Manjarres, P. J. González, M. F. Londoño. (2025). Agromorphological analysis of yellow passion fruit cultivars in Boyacá: basis for the selection of promising materials. Brazilian Journal of Biology, 85 https://doi.org/10.1590/1519-6984.293833.

14. Ana Cruz Morillo Coronado, María Antonia Martínez Camargo, Yacenia Morillo Coronado. (2023). Genetic diversity pattern of Passiflora spp. in Boyacá, Colombia. Pesquisa Agropecuária Brasileira, 58 https://doi.org/10.1590/s1678-3921.pab2023.v58.03062.

Dimensions

PlumX

Article abstract page views

948

Downloads

Download data is not yet available.