Evaluation of six leaf angle distribution functions in the Castillo® coffee variety
Evaluación de seis funciones de distribución de ángulos foliares en café variedad Castillo ®
DOI:
https://doi.org/10.15446/agron.colomb.v35n1.60063Keywords:
Coffea arabica L., leaves, canopy (en)Coffea arabica L., hojas, dosel (es)
Downloads
El estudio se llevó a cabo en la Estación Central Naranjal de Cenicafé (Centro Nacional de Investigaciones de Café, Chinchiná, Caldas, Colombia) sobre Coffea arábica L. variedad Castillo®, teniendo por objetivo encontrar la función de distribución de ángulos foliares que mejor describa la inclinación de los ángulos presentes en el dosel. Los ángulos foliares se registraron en 1.559 hojas ubicadas en los perfiles superior, medio e inferior del dosel. La distribución de ángulos foliares observadas se compararon con las funciones de distribución Beta, Elipsoidal y las cuatro funciones de Wit. El ajuste entre las comparaciones se determinó mediante la prueba de X2 de Pearson y su significancia, el coeficiente de regresión estadísticamente igual a uno y el RMSE. Así mismo, la distribución de ángulos foliares registrada en campo por perfiles y su combinado, fue descrita con base en tres clases de ángulos (1ra clase: 0°-30°; 2da clase: 30°-60°; 3ra clase: 60°-90°) según el criterio de Goudriaan. En términos generales, la distribución de ángulos foliares presente en el dosel de café variedad Castillo®, es adecuadamente descrita por la función Beta de dos parámetros y la función elipsoidal, de acuerdo con el ajuste dado por las pruebas estadísticas.
References
Blackman, V.H. 1919. The compound interest law and plant growth. Ann. Bot. 33(131), 353-360.
Campbell, C.S. and J.M. Norman. 1988. The description and measurement of plant canopy structure. In: C. Russell (ed.). Plant canopies: Their growth, form and function, society for experimental biology. Seminar Series 29, 179. Cambridge University Press, New York, USA.
Campbell, G. 1990. Derivation of an angle density function for canopies with ellipsoidal leaf angle distributions. Agric. For. Meteorol. 49, 173-176. Doi: 10.1016/0168-1923(90)90030-A
Castillo, E., J. Arcila, A. Jaramillo, and R.J. Sanabria. 1997. Interceptacion de la radiacion fotosinteticamente activa y su relación con el area foliar de Coffea arabica L. Cenicafe 48(3), 182-194.
Castillo, E., J. Arcila, A. Jaramillo, and R.J. Sanabria. 1996. Estructura del dosel e interceptacion de la radiacion solar en café Coffea arabica L., var. Colombia. Cenicafe 47(1), 4-15.
Charbonnier, F., G. Le Maire, E. Dreyer, F. Casanoves, M. Christina, J. Dauzat, J.U.H. Eitel, P. Vaasta, L.A. Vierlin, and O. Roupsard. 2013. Competition for light in heterogeneous canopies: Application of MAESTRA to a coffee (Coffea arabica L.) agroforestry system. Agric. For. Meteorol. 181, 152-169. Doi: 10.1016/j.agrformet.2013.07.010
DaMatta, F.M., C.P. Ronchi, M. Maestri, and R.S. Barros. 2007. Ecophysiology of coffee growth and production. Braz. J. Plant Physiol. 19(4), 485-510. Doi: 10.1590/S1677-04202007000400014
De Wit, C. 1965. Photosynthesis of leave canopies. Center for Agricultural Publication and Documents, Wageningen, The Netherlands. Duvick, D.N. 2005. Genetic progress in yield of United States maize (Zea mays L.). Maydica 50, 193-202.
Fahl, J.I., M.L.C. Carelli, J. Vega, and A.C. Magalhaes. 1994. Nitrogen and irradiance levels affecting net photosynthesis and growth of young coffee plants (Coffea arabica L.). J. Hortic. Sci. Biotechn. 69, 161-169. Doi: 0.1080/14620316.1994.11515262.
Falster, D.S. and M. Westoby, M. 2003. Leaf size and angle vary widely across species: what consequences for light interception? New Phytol. 158(3), 509-525. Doi: 10.1046/j.1469-8137.2003.00765.x
Flerchinger, G.N. and Q. Yu. 2007. Simplified expressions for radiation scattering in canopies with ellipsoidal leaf angle distributions. Agric. Forest Meteorol. 144(3), 230-235. Doi: 10.1016/j.agrformet.2007.03.002
Goel, N. and D. Strebel. 1984. Simple Beta distribution representation of leaf orientation in vegetation canopies. Agron. J. 76, 800-802. Doi: 10.2134/agronj1984.00021962007600050021x
Goudriaan, J. 1988. The bare bones of leaf-angle distribution in radiation models for canopy photosynthesis and energy exchange. Agric. Forest Meteorol. 43, 155-169. Doi: 10.1016/0168-1923(88)90089-5
Goudriaan, J. and J.L. Monteith. 1990. A mathematical function for growth based on light interception and leaf area expansion. Ann. Bot. 66(6), 695-701.
Hikosaka, K. and T. Hirose. 1997. Leaf angle as a strategy for light competition: optimal and evolutionarily stable light-extinction coefficient within a leaf canopy. Ecosci. 4, 501-507.
Jaramillo, A., J. Arcila, E.C. Montoya, and F. Quiroga. 2006. La radiacion solar, consideraciones para su estudio en las plantaciones de cafe (Coffea arabica L.). Meteorol. Colomb. 10, 12-22.
Knyazikhin, Y., M.A. Schullb, P. Stenbergc, M. Mottusd, M. Rautiainenc, Y. Yanga, A. Marshake, P.L. Carmonaf, R.K. Kaufmanna, P. Lewisg, M. Disneyg, V. Vanderbilth, A.B. Davisi, F. Baretj, S. Jacquemoudk, A. Lyapustine, and R.B. Mynenia. 2013. Hyperspectral remote sensing of foliar nitrogen content. Proc. Nat. Acad. Sci. USA 110(3), 185-192. Doi: 10.1073/pnas.1210196109
Kumar, D. and L.L. Tieszen. 1980. Photosynthesis in Coffea arabica. I. Effects of light and temperature. Exp. Agric. 16, 13-19. Doi: 10.1017/S0014479700010656
Mansfield, B.D. and R.H. Mumm. 2014. Survey of plant density tolerance in US maize germplasm. Crop Sci. 54, 157-173. Doi: 10.2135/cropsci2013.04.0252
Mejia, J.W., J.R. Cartagena, and N.M. Riano. 2013. Morphometric and productive characterization of nineteen genotypes from the Colombian coffee collection. Rev. Fac. Nac. Agron. Medellin 66(2), 7021-7034.
Mooney, H.A., J. Ehleringer, and O. Bjorkman. 1977. The energy balance of leaves of the evergreen desert shrub atriplex hymenelytra. Oecol. 29, 301-310. Doi: 10.1007/BF00345804
Niinemets, U. 2010. A review of light interception in plant stands from leaf to canopy in different plant functional types and in species with varying shade tolerance. Ecol. Res. 25, 693-714. Doi: 10.1007/s11284-010-0712-4
Pearce, R.B., R.H. Brown, and R.E. Blaser. 1967. Photosynthesis in plant communities as influenced by leaf angle. Crop Sci. 7, 321-324. Doi: 10.2135/cropsci1967.0011183X000700040012x
Ross, J. 1975. Radiative transfer in plant communities. pp. 13-52. ln: Monteith, J.L. (ed.). Vegetation and the atmosphere. Academy Press, London, UK.
SAS Institute. 2010. The SAS system for Windows. Release 9.3. SAS Institute, Cary, USA.
Sinclair, T.R. and J.E. Sheehy. 1999. Erect leaves and photosynthesis in rice. Science 283, 1456-1457. Doi: 10.1126/science.283.5407.1455c
Sinoquet, H. and B. Andrieu. 1993. The geometrical structure of plant canopies: characterization and direct measurements methods. pp. 131-158. In: Varlet-Grancher, C., R. Bonhomme, and H. Sinoquet (eds.). Crop structure and light microclimate characterization and applications. INRA, Paris, France.
Smith, J.A. 1982. mathematical structure of electromagnetic terrain feature canopy models. College of Forestry and Natural Resources, Colorado State University, Fort Collins, CO, USA.
Song, Q.F., G.L. Zhang, and X.G. Zhu. 2013. Optimal crop canopy architecture to maximise canopy photosynthetic CO2 uptake under elevated CO2: a theoretical study using a mechanistic model of canopy photosynthesis. Funct. Plant Biol. 40, 109-124. Doi: 10.1071/FP12056
Thanisawanyangkura, S., H. Sinoquet, P. Rivet, M. Cretenet, and E. Jallas. 1997. Leaf orientation and sunlit leaf area distribution in cotton. Agric. Forest Meteorol. 86, 1-15. Doi: 10.1016/S0168-1923(96)02417-3
Thomas, S.C. and W.E. Winner. 2000. A rotated ellipsoidal angle density function improves estimation of foliage inclination distributions in forest canopies. Agric. Forest Meteorol. 100, 19-24. Doi: 10.1016/S0168-1923(99)00089-1.
Truong, S.K., R.F. McCormick, W.L. Rooney, and J.E. Mullet. 2015. Harnessing genetic variation in leaf angle to increase productivity of sorghum bicolor. Genet. 201, 1229-1238. Doi: 10.1534/genetics.115.178608
Van Zanten, M., T.L. Pons, J.A.M. Janssen, L.A.C.J. Voesenek, and A.J.M. Peeters. 2010. On the relevance and control of leaf angle. Crit. Rev. Plant Sci. 29, 300-316. Doi: 10.1080/07352689.2010.502086
Verhoef, W. and H. Bach. 2007. Coupled soil–leaf-canopy and atmosphere radiative transfer modeling to simulate hyperspectral multi-angular surface reflectance and TOA radiance data. Remote Sens. Environt. 109(2), 166-182. Doi: 10.1016/j.rse.2006.12.013
Wang, W.M., Z.L. Li, and H.B. Su. 2007. Comparison of leaf angle distribution functions: Effects on extinction coefficient and fraction of sunlit foliage. Agric. For. Meteorol. 143, 106-122. Doi: 10.1016/j.agrformet.2006.12.003
Wang, Y.P. and P.G. Jarvis. 1988. Mean leaf angles for the ellipsoidal inclination angle distribution. Agric. Forest Meteorol. 43, 319- 321. Doi: 10.1016/0168-1923(88)90057-3
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Oded Liran, Ofer M. Shir, Shai Levy, Ariel Grunfeld, Yuval Shelly. (2020). Novel Remote Sensing Index of Electron Transport Rate Predicts Primary Production and Crop Health in L. sativa and Z. mays. Remote Sensing, 12(11), p.1718. https://doi.org/10.3390/rs12111718.
2. Miroslava Rakocevic, Fabio Takeshi Matsunaga, Ricardo Antônio Almeida Pazianotto, José Cochicho Ramalho, Evelyne Costes, Rafael Vasconcelos Ribeiro. (2024). Drought responses in Coffea arabica as affected by genotype and phenophase. I – leaf distribution and branching. Experimental Agriculture, 60 https://doi.org/10.1017/S0014479724000036.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2017 Agronomía Colombiana
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
© Centro Editorial de la Facultad de Ciencias Agrarias, Universidad Nacional de Colombia
Reproduction and quotation of material appearing in the journal is authorized provided the following are explicitly indicated: journal name, author(s) name, year, volume, issue and pages of the source. The ideas and observations recorded by the authors are their own and do not necessarily represent the views and policies of the Universidad Nacional de Colombia. Mention of products or commercial firms in the journal does not constitute a recommendation or endorsement on the part of the Universidad Nacional de Colombia; furthermore, the use of such products should comply with the product label recommendations.
The Creative Commons license used by Agronomia Colombiana journal is: Attribution - NonCommercial - ShareAlike (by-nc-sa)
Agronomia Colombiana by Centro Editorial of Facultad de Ciencias Agrarias, Universidad Nacional de Colombia is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional License.
Creado a partir de la obra en http://revistas.unal.edu.co/index.php/agrocol/.