Published

2017-01-01

Evaluation of six leaf angle distribution functions in the Castillo® coffee variety

Evaluación de seis funciones de distribución de ángulos foliares en café variedad Castillo ®

DOI:

https://doi.org/10.15446/agron.colomb.v35n1.60063

Keywords:

Coffea arabica L., leaves, canopy (en)
Coffea arabica L., hojas, dosel (es)

Downloads

Authors

  • Carlos Andrés Unigarro M. Centro Nacional de Investigaciones de Café (Cenicafé) https://orcid.org/0000-0002-7344-3211
  • Álvaro Jaramillo R. Centro Nacional de Investigaciones de Café (Cenicafé)
  • Claudia Patricia Flórez R. Centro Nacional de Investigaciones de Café (Cenicafé)
The study was conducted at the "Estación Central Naranjal Ce-nicafé" (National Coffee Research Center, Chinchina, Caldas, Colombia) on Coffea arábica L. variety Castillo® to find the leaf angle distribution function that best described the tilt of the angles present in the canopy. Leaf angles were recorded for 1,559 leaves located in the upper, middle and lower profiles of the canopy. The observed leaf angle distribution was compared with the Beta, ellipsoidal and four de Wit distribution functions. The fit between comparisons was determined by the Pearson X2 test and its significance, the regression coefficient statistically equal to one and the RMSE. Likewise, the leaf angle distribution recorded in the field per profile and their combination was described based on three angle classes (1stclass: 0°-30°; 2nd class: 30°-60°; and 3rd class: 60°-90°) according to the Goudriaan criterion. Generally, the leaf angle distribution present in the canopy of Castillo® coffee variety is adequately described by the Beta function with two parameters and the ellipsoidal function based on the adjustment provided by the statistical tests.

El estudio se llevó a cabo en la Estación Central Naranjal de Cenicafé (Centro Nacional de Investigaciones de Café, Chinchiná, Caldas, Colombia) sobre Coffea arábica L. variedad Castillo®, teniendo por objetivo encontrar la función de distribución de ángulos foliares que mejor describa la inclinación de los ángulos presentes en el dosel. Los ángulos foliares se registraron en 1.559 hojas ubicadas en los perfiles superior, medio e inferior del dosel. La distribución de ángulos foliares observadas se compararon con las funciones de distribución Beta, Elipsoidal y las cuatro funciones de Wit. El ajuste entre las comparaciones se determinó mediante la prueba de X2 de Pearson y su significancia, el coeficiente de regresión estadísticamente igual a uno y el RMSE. Así mismo, la distribución de ángulos foliares registrada en campo por perfiles y su combinado, fue descrita con base en tres clases de ángulos (1ra clase: 0°-30°; 2da clase: 30°-60°; 3ra clase: 60°-90°) según el criterio de Goudriaan. En términos generales, la distribución de ángulos foliares presente en el dosel de café variedad Castillo®, es adecuadamente descrita por la función Beta de dos parámetros y la función elipsoidal, de acuerdo con el ajuste dado por las pruebas estadísticas.

References

Blackman, V.H. 1919. The compound interest law and plant growth. Ann. Bot. 33(131), 353-360.

Campbell, C.S. and J.M. Norman. 1988. The description and measurement of plant canopy structure. In: C. Russell (ed.). Plant canopies: Their growth, form and function, society for experimental biology. Seminar Series 29, 179. Cambridge University Press, New York, USA.

Campbell, G. 1990. Derivation of an angle density function for canopies with ellipsoidal leaf angle distributions. Agric. For. Meteorol. 49, 173-176. Doi: 10.1016/0168-1923(90)90030-A

Castillo, E., J. Arcila, A. Jaramillo, and R.J. Sanabria. 1997. Interceptacion de la radiacion fotosinteticamente activa y su relación con el area foliar de Coffea arabica L. Cenicafe 48(3), 182-194.

Castillo, E., J. Arcila, A. Jaramillo, and R.J. Sanabria. 1996. Estructura del dosel e interceptacion de la radiacion solar en café Coffea arabica L., var. Colombia. Cenicafe 47(1), 4-15.

Charbonnier, F., G. Le Maire, E. Dreyer, F. Casanoves, M. Christina, J. Dauzat, J.U.H. Eitel, P. Vaasta, L.A. Vierlin, and O. Roupsard. 2013. Competition for light in heterogeneous canopies: Application of MAESTRA to a coffee (Coffea arabica L.) agroforestry system. Agric. For. Meteorol. 181, 152-169. Doi: 10.1016/j.agrformet.2013.07.010

DaMatta, F.M., C.P. Ronchi, M. Maestri, and R.S. Barros. 2007. Ecophysiology of coffee growth and production. Braz. J. Plant Physiol. 19(4), 485-510. Doi: 10.1590/S1677-04202007000400014

De Wit, C. 1965. Photosynthesis of leave canopies. Center for Agricultural Publication and Documents, Wageningen, The Netherlands. Duvick, D.N. 2005. Genetic progress in yield of United States maize (Zea mays L.). Maydica 50, 193-202.

Fahl, J.I., M.L.C. Carelli, J. Vega, and A.C. Magalhaes. 1994. Nitrogen and irradiance levels affecting net photosynthesis and growth of young coffee plants (Coffea arabica L.). J. Hortic. Sci. Biotechn. 69, 161-169. Doi: 0.1080/14620316.1994.11515262.

Falster, D.S. and M. Westoby, M. 2003. Leaf size and angle vary widely across species: what consequences for light interception? New Phytol. 158(3), 509-525. Doi: 10.1046/j.1469-8137.2003.00765.x

Flerchinger, G.N. and Q. Yu. 2007. Simplified expressions for radiation scattering in canopies with ellipsoidal leaf angle distributions. Agric. Forest Meteorol. 144(3), 230-235. Doi: 10.1016/j.agrformet.2007.03.002

Goel, N. and D. Strebel. 1984. Simple Beta distribution representation of leaf orientation in vegetation canopies. Agron. J. 76, 800-802. Doi: 10.2134/agronj1984.00021962007600050021x

Goudriaan, J. 1988. The bare bones of leaf-angle distribution in radiation models for canopy photosynthesis and energy exchange. Agric. Forest Meteorol. 43, 155-169. Doi: 10.1016/0168-1923(88)90089-5

Goudriaan, J. and J.L. Monteith. 1990. A mathematical function for growth based on light interception and leaf area expansion. Ann. Bot. 66(6), 695-701.

Hikosaka, K. and T. Hirose. 1997. Leaf angle as a strategy for light competition: optimal and evolutionarily stable light-extinction coefficient within a leaf canopy. Ecosci. 4, 501-507.

Jaramillo, A., J. Arcila, E.C. Montoya, and F. Quiroga. 2006. La radiacion solar, consideraciones para su estudio en las plantaciones de cafe (Coffea arabica L.). Meteorol. Colomb. 10, 12-22.

Knyazikhin, Y., M.A. Schullb, P. Stenbergc, M. Mottusd, M. Rautiainenc, Y. Yanga, A. Marshake, P.L. Carmonaf, R.K. Kaufmanna, P. Lewisg, M. Disneyg, V. Vanderbilth, A.B. Davisi, F. Baretj, S. Jacquemoudk, A. Lyapustine, and R.B. Mynenia. 2013. Hyperspectral remote sensing of foliar nitrogen content. Proc. Nat. Acad. Sci. USA 110(3), 185-192. Doi: 10.1073/pnas.1210196109

Kumar, D. and L.L. Tieszen. 1980. Photosynthesis in Coffea arabica. I. Effects of light and temperature. Exp. Agric. 16, 13-19. Doi: 10.1017/S0014479700010656

Mansfield, B.D. and R.H. Mumm. 2014. Survey of plant density tolerance in US maize germplasm. Crop Sci. 54, 157-173. Doi: 10.2135/cropsci2013.04.0252

Mejia, J.W., J.R. Cartagena, and N.M. Riano. 2013. Morphometric and productive characterization of nineteen genotypes from the Colombian coffee collection. Rev. Fac. Nac. Agron. Medellin 66(2), 7021-7034.

Mooney, H.A., J. Ehleringer, and O. Bjorkman. 1977. The energy balance of leaves of the evergreen desert shrub atriplex hymenelytra. Oecol. 29, 301-310. Doi: 10.1007/BF00345804

Niinemets, U. 2010. A review of light interception in plant stands from leaf to canopy in different plant functional types and in species with varying shade tolerance. Ecol. Res. 25, 693-714. Doi: 10.1007/s11284-010-0712-4

Pearce, R.B., R.H. Brown, and R.E. Blaser. 1967. Photosynthesis in plant communities as influenced by leaf angle. Crop Sci. 7, 321-324. Doi: 10.2135/cropsci1967.0011183X000700040012x

Ross, J. 1975. Radiative transfer in plant communities. pp. 13-52. ln: Monteith, J.L. (ed.). Vegetation and the atmosphere. Academy Press, London, UK.

SAS Institute. 2010. The SAS system for Windows. Release 9.3. SAS Institute, Cary, USA.

Sinclair, T.R. and J.E. Sheehy. 1999. Erect leaves and photosynthesis in rice. Science 283, 1456-1457. Doi: 10.1126/science.283.5407.1455c

Sinoquet, H. and B. Andrieu. 1993. The geometrical structure of plant canopies: characterization and direct measurements methods. pp. 131-158. In: Varlet-Grancher, C., R. Bonhomme, and H. Sinoquet (eds.). Crop structure and light microclimate characterization and applications. INRA, Paris, France.

Smith, J.A. 1982. mathematical structure of electromagnetic terrain feature canopy models. College of Forestry and Natural Resources, Colorado State University, Fort Collins, CO, USA.

Song, Q.F., G.L. Zhang, and X.G. Zhu. 2013. Optimal crop canopy architecture to maximise canopy photosynthetic CO2 uptake under elevated CO2: a theoretical study using a mechanistic model of canopy photosynthesis. Funct. Plant Biol. 40, 109-124. Doi: 10.1071/FP12056

Thanisawanyangkura, S., H. Sinoquet, P. Rivet, M. Cretenet, and E. Jallas. 1997. Leaf orientation and sunlit leaf area distribution in cotton. Agric. Forest Meteorol. 86, 1-15. Doi: 10.1016/S0168-1923(96)02417-3

Thomas, S.C. and W.E. Winner. 2000. A rotated ellipsoidal angle density function improves estimation of foliage inclination distributions in forest canopies. Agric. Forest Meteorol. 100, 19-24. Doi: 10.1016/S0168-1923(99)00089-1.

Truong, S.K., R.F. McCormick, W.L. Rooney, and J.E. Mullet. 2015. Harnessing genetic variation in leaf angle to increase productivity of sorghum bicolor. Genet. 201, 1229-1238. Doi: 10.1534/genetics.115.178608

Van Zanten, M., T.L. Pons, J.A.M. Janssen, L.A.C.J. Voesenek, and A.J.M. Peeters. 2010. On the relevance and control of leaf angle. Crit. Rev. Plant Sci. 29, 300-316. Doi: 10.1080/07352689.2010.502086

Verhoef, W. and H. Bach. 2007. Coupled soil–leaf-canopy and atmosphere radiative transfer modeling to simulate hyperspectral multi-angular surface reflectance and TOA radiance data. Remote Sens. Environt. 109(2), 166-182. Doi: 10.1016/j.rse.2006.12.013

Wang, W.M., Z.L. Li, and H.B. Su. 2007. Comparison of leaf angle distribution functions: Effects on extinction coefficient and fraction of sunlit foliage. Agric. For. Meteorol. 143, 106-122. Doi: 10.1016/j.agrformet.2006.12.003

Wang, Y.P. and P.G. Jarvis. 1988. Mean leaf angles for the ellipsoidal inclination angle distribution. Agric. Forest Meteorol. 43, 319- 321. Doi: 10.1016/0168-1923(88)90057-3

How to Cite

APA

Unigarro M., C. A., Jaramillo R., Álvaro and Flórez R., C. P. (2017). Evaluation of six leaf angle distribution functions in the Castillo® coffee variety. Agronomía Colombiana, 35(1), 23–28. https://doi.org/10.15446/agron.colomb.v35n1.60063

ACM

[1]
Unigarro M., C.A., Jaramillo R., Álvaro and Flórez R., C.P. 2017. Evaluation of six leaf angle distribution functions in the Castillo® coffee variety. Agronomía Colombiana. 35, 1 (Jan. 2017), 23–28. DOI:https://doi.org/10.15446/agron.colomb.v35n1.60063.

ACS

(1)
Unigarro M., C. A.; Jaramillo R., Álvaro; Flórez R., C. P. Evaluation of six leaf angle distribution functions in the Castillo® coffee variety. Agron. Colomb. 2017, 35, 23-28.

ABNT

UNIGARRO M., C. A.; JARAMILLO R., Álvaro; FLÓREZ R., C. P. Evaluation of six leaf angle distribution functions in the Castillo® coffee variety. Agronomía Colombiana, [S. l.], v. 35, n. 1, p. 23–28, 2017. DOI: 10.15446/agron.colomb.v35n1.60063. Disponível em: https://revistas.unal.edu.co/index.php/agrocol/article/view/60063. Acesso em: 19 apr. 2024.

Chicago

Unigarro M., Carlos Andrés, Álvaro Jaramillo R., and Claudia Patricia Flórez R. 2017. “Evaluation of six leaf angle distribution functions in the Castillo® coffee variety”. Agronomía Colombiana 35 (1):23-28. https://doi.org/10.15446/agron.colomb.v35n1.60063.

Harvard

Unigarro M., C. A., Jaramillo R., Álvaro and Flórez R., C. P. (2017) “Evaluation of six leaf angle distribution functions in the Castillo® coffee variety”, Agronomía Colombiana, 35(1), pp. 23–28. doi: 10.15446/agron.colomb.v35n1.60063.

IEEE

[1]
C. A. Unigarro M., Álvaro Jaramillo R., and C. P. Flórez R., “Evaluation of six leaf angle distribution functions in the Castillo® coffee variety”, Agron. Colomb., vol. 35, no. 1, pp. 23–28, Jan. 2017.

MLA

Unigarro M., C. A., Álvaro Jaramillo R., and C. P. Flórez R. “Evaluation of six leaf angle distribution functions in the Castillo® coffee variety”. Agronomía Colombiana, vol. 35, no. 1, Jan. 2017, pp. 23-28, doi:10.15446/agron.colomb.v35n1.60063.

Turabian

Unigarro M., Carlos Andrés, Álvaro Jaramillo R., and Claudia Patricia Flórez R. “Evaluation of six leaf angle distribution functions in the Castillo® coffee variety”. Agronomía Colombiana 35, no. 1 (January 1, 2017): 23–28. Accessed April 19, 2024. https://revistas.unal.edu.co/index.php/agrocol/article/view/60063.

Vancouver

1.
Unigarro M. CA, Jaramillo R. Álvaro, Flórez R. CP. Evaluation of six leaf angle distribution functions in the Castillo® coffee variety. Agron. Colomb. [Internet]. 2017 Jan. 1 [cited 2024 Apr. 19];35(1):23-8. Available from: https://revistas.unal.edu.co/index.php/agrocol/article/view/60063

Download Citation

CrossRef Cited-by

CrossRef citations2

1. Oded Liran, Ofer M. Shir, Shai Levy, Ariel Grunfeld, Yuval Shelly. (2020). Novel Remote Sensing Index of Electron Transport Rate Predicts Primary Production and Crop Health in L. sativa and Z. mays. Remote Sensing, 12(11), p.1718. https://doi.org/10.3390/rs12111718.

2. Miroslava Rakocevic, Fabio Takeshi Matsunaga, Ricardo Antônio Almeida Pazianotto, José Cochicho Ramalho, Evelyne Costes, Rafael Vasconcelos Ribeiro. (2024). Drought responses in Coffea arabica as affected by genotype and phenophase. I – leaf distribution and branching. Experimental Agriculture, 60 https://doi.org/10.1017/S0014479724000036.

Dimensions

PlumX

Article abstract page views

483

Downloads

Download data is not yet available.