Published

2017-05-01

Identification and freedom to operate analysis of potential genes for drought tolerance in maize

Identificación y analisis de libertad de operación en genes potenciales de maíz para la tolerancia a sequía

DOI:

https://doi.org/10.15446/agron.colomb.v35n2.60706

Keywords:

propiedad intelectual, cultivos GM, diseño de genes (en)
intellectual property, GM crops, gene design (es)

Downloads

Authors

  • Andrea Carreño-Venegas Plant Genetic Engineering Group, Biology Department, Universidad Nacional de Colombia, Bogotá (Colombia).
  • Julián Mora-Oberlaender Universidad Nacional de Colombia - Sede Bogotá
  • Alejandro Chaparro-Giraldo Universidad Nacional de Colombia

Drought tolerance is an important character for agricultural crops, particularly corn. Genes confering this feature can be patented, thus hindering their use. From a thorough analysis, three genes (DREB, ZAT10 and CspB) were identified and their sequences were captured in the NCBI database. From these sequences and using free software tools, expression cassettes -including regulatory regions (promoters E35S + Pleader, Ubi-1, rab17; terminators Trub, Tnos)- were designed. Patent searches were conducted in international databases (The Lens and PATENTSCOPE). Four patents and an application were found. In the Colombian national database of the Superintendence of Industry and Commerce (SIC), only the application made through PCT was identified. The claims and nucleotide sequences contained in the application were analyzed and it was found that they do not affect the expression cassettes designed. There is freedom to operate for these constructs and it is possible to continue developing drought-tolerant GM maize lines for the domestic market.

La tolerancia a sequía es un carácter importante para los cultivos agrícolas, en particular para el maíz. Los genes que confieren esta característica pueden estar patentados, dificultando así su uso. A partir de un análisis exhaustivo se identificaron tres de tales genes (DREB, ZAT10 y CspB) y se capturaron las secuencias en las bases de datos del NCBI. A partir de estas secuencias y mediante herramientas de software libre se diseñaron casetes de expresión que incluyeron regiones regulatorias (promotores E35S+pLeader, Ubi-1, rab17; terminadores Trub, Tnos). A continuación se realizaron búsquedas de patentes en bases de datos internacionales (The Lens, y PATENSCOPE). Se encontraron cuatro patentes y una solicitud. En la búsqueda en la base de datos nacional de la Superintendencia de Industria y Comercio, se identificó solo la solicitud realizada por PTC. Analizadas las reivindicaciones y secuencias nucleotídicas contenidas en la solicitud, se encontró que no afectan los casetes de expresión diseñados. Se comprueba la libertad de operación para estos constructos, y la posibilidad de desarrollar líneas. GM tolerantes a sequía para el mercado nacional.

References

Al-Abed, D., P. Madasamy, R. Talla, S. Goldman, and S. Rudrabhatia. 2007. Genetic engineering of maize with the arabidopsis DREB1A/CBF3 Gene Using Split-Seed Explants. Crop Sci. 47(6), 2390-2402. Doi: 10.2135/cropsci2006.11.0712.

Bolaños, J. and G.O. Edmeades. 1996. The importance of the anthesis-silking interval in breeding for drought tolerance in tropical maize. Field Crops Res. 48(1), 65-80. Doi: 10.1016/0378-4290(96)00036-6.

Boyer, J.S. and M.E. Westgate. 2004. Grain yields with limited water. J. Exp. Bot. 55(407), 2385-2394. Doi: 10.1093/jxb/erh219.

Cai, B., R.H. Peng, A.S. Xiong, J. Zhou, J.G. Liu, F. Xu, Z. Zhang, and Q.H. Yao. 2008. Identification of polyadenylation signals and alternative polyadenylation in Vitis vinifera based on ESTs data. Sci. Hortic. 115(3), 292-300. Doi: 10.1016/j.scienta.2007.10.009.

Chen, J.Q., X.P. Meng, Y. Zhang, M. Xia, and X.P. Wang. 2008. Over-expression of OsDREB genes lead to enhanced drought tolerance in rice. Biotechnol. Lett. 30(12), 2191-2198. Doi: 10.1007/s10529-008-9811-5.

Chi-Ham, C., K. Clark, and A. Bennett. 2010. The intellectual property landscape for gene suppression technologies in plants. Nat. Biotechnol. 28(1), 32-36. Doi: 10.1038/nbt0110-32.

Ciftci-Yilmaz, S. and R. Mittler. 2008. The zinc finger network of plants. Cell. Mol. Life Sci. 65(7-8), 1150-1160. Doi: 10.1007/s00018-007-7473-4

Ding, Z., S. Li, X. An, X. Liu, H. Qin, and D. Wang. 2009. Transgenic expression of MYB15 confers enhanced sensitivity to abscisic acid and improved drought tolerance in Arabidop-sis thaliana. J. Genet. Genomics 36(1), 17-29. Doi: 10.1016/S1673-8527(09)60003-5.

Edgerton, M.D. 2009. Increasing crop productivity to meet global needs for feed, food, and fuel. Plant Physiol. 149(1), 7-13. Doi: 10.1104/pp.108.130195.

Edmeades, G.O. 2013. Progress in achieving and delivering drought tolerance in maize-An update. ISAAA, Ithaca, New York, USA.

Englbrecht, C.C., H. Schoof, and S. Böhm. 2004. Conservation, diversification and expansion of C2H2 zinc finger proteins in the Arabidopsis thaliana genome. BMC genomics 5(1), 39. Doi: 10.1186/1471-2164-5-39

FENALCE. 2014. Importaciones de cerales y leguminosas 2010-2014. In: Índice cerealista. Retrieved from: http://www.fenalce.org/nueva/pg.php?pa=19; consulted: October, 2016.

Fujita, Y., M. Fujita, R. Satoh, K. Maruyama, M.M. Parvez, M. Seki, and K. Yamaguchi-Shinozaki. 2005. AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. Plant Cell 17(12), 3470-3488. Doi: 10.1105/tpc.105.035659.

Grant, R.F., B.S. Jackson, J.R. Kiniry, and G.F. Arkin. 1989. Water deficit timing effects on yield components in maize. Agron. J. 81(1), 61-65. Doi: 10.2134/agronj1989.00021962008100010011x.

Hincapié, V. and A. Chaparro-Giraldo. 2014. Estudio de libertad de operación para una línea genéticamente modificada de papa (Solanum tuberosum L.). Rev. Colomb. Biotecnol. 16(1), 119-128. Doi: 10.15446/rev.colomb.biote.v16n1.44260.

Hu, H., M. Dai, J. Yao, B. Xiao, X. Li, Q. Zhang, and L. Xiong. 2006. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc. Natl. Acad. Sci. U.S.A. 103(35), 12987-12992. Doi: 10.1073/pnas.0604882103.

James, C. 2014. Global status of commercialized biotech/GM Crops: 2014. ISAAA Brief No.49. ISAAA, Ithaca, New York, USA.

Kaan, T., G. Homuth, U. Máder, J. Bandow, and T. Schweder. 2002. Genome-wide transcriptional profiling of the Bacillus subtilis cold-shock response. Microbiol. 148(11), 3441-3455. Doi: 10.1099/00221287-148-11-3441.

Kang, J.Y., H.I. Choi, M.Y. Im, and S.Y. Kim. 2002. Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling. Plant Cell 14(2), 343-357. Doi: 10.1105/tpc.010362.

Karaba, A., S. Dixit, R. Greco, A. Aharoni, K.R. Trijatmiko, N. Marsch-Martinez, and A. Pereira. 2007. Improvement of water use efficiency in rice by expression of HARDY, an Arabidopsis drought and salt tolerance gene. Proc. Natl. Acad. Sci. U.S.A. 104(39), 15270-15275. Doi: 10.1073/pnas.0707294104.

Kowalski, S.P., R.V. Ebora, R.D. Kryder, and R.H. Potter. 2002. Transgenic crops, biotechnology and ownership rights: what scientists need to know. Plant J. 31(4), 407-421. Doi: 10.1046/j.1365-313X.2002.01367.x.

Kryder, R., P. Stanley, S. Kowalski, and A. Krattiger. 2000. A Preliminary Freedom-To-Operate. The intellectual and technical property components of pro-vitamin a rice (Golden RiceTM): Review. ISAAA Briefs 20. ISAAA, Ithaca, NY, USA.

Li, W.X., Y. Oono, J. Zhu, X.J. He, J.M. Wu, K. Iida, and J.K. Zhu. 2008. The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance. Plant Cell 20(8), 2238-2251. Doi: 10.1105/tpc.108.059444.

Liu, Q., M. Kasuga, Y. Sakuma, H. Abe, S. Miura, K. Yamaguchi-Shinozaki, and K. Shinozaki. 1998. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10(8), 1391-1406. Doi: 10.1105/tpc.10.8.1391.

Long, S.P. and D.R. Ort. 2010. More than taking the heat: crops and global change. Curr. Opin. Plant Biol. 13(3), 240-247. Doi: 10.1016/j.pbi.2010.04.008.

Mazzon, R.R., A.S. Lang, C. Silva, and M.V. Marques. 2012. Cold Shock Genes cspA and cspB from Caulobacter crescentus are posttranscriptionally regulated and important for cold adaptation. J. Bacteriol. 194(23), 6507-6517. Doi: 10.1128/JB.01422-12.

Meissner, R. and A.J. Michael. 1997. Isolation and characterisation of a diverse family of Arabidopsis two and three-fingered C2H2 zinc finger protein genes and cDNAs. Plant Mol. Biol. 33(4), 615-624. Doi: 10.1023/A:1005746803089.

Mittler, R., Y. Kim, L. Song, J. Coutu, A. Coutu, S. Ciftci-Yilmaz, and J.K. Zhu. 2006. Gain-and loss-of-function mutations in ZaT10 enhance the tolerance of plants to abiotic stress. FEBS Lett. 580(28), 6537-6542. Doi: 10.1016/j.febslet.2006.11.002.

Morran, S., O. Eini, T. Pyvovarenko, B. Parent, R. Singh, A. Ismagul, and S. Lopato. 2011. Improvement of stress tolerance of wheat and barley by modulation of expression of DREB/CBF factors. Plant Biotechnol. J. 9(2), 230-249. Doi: 10.1111/j.1467-7652.2010.00547.x.

Nakashima, K., K. Yamaguchi-Shinozaki, and K. Shinozaki. 2014. The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat. Front. Plant Sci. 5, 170. Doi: 10.3389/fpls.2014.00170.

Nelson, D.E., P.P. Repetti, T.R. Adams, R.A. Creelman, J. Wu, D.C. Warner, and J.E. Heard. 2007. Plant nuclear factor Y (NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres. Proc. Natl. Acad. Sci. U.S.A. 104(42), 16450-16455. Doi: 10.1073/pnas.0707193104.

Oh, S.J., Y.S. Kim, C.W. Kwon, H.K. Park, J.S. Jeong, and J.K. Kim. 2009. Overexpression of the transcription factor AP37 in Rice improves grain yield under drought conditions. Plant Physiol. 150(3), 1368-1379. Doi: 10.1104/pp.109.137554.

Qin, F., Y. Sakuma, L.S. Tran, K. Maruyama, S. Kidokoro, Y. Fujita, M. Fujita, T. Umezawa, Y. Sawaño, K.I. Miyazono, M. Tañokura, K. Shinozaki, and K. Yamaguchi-Shinozaki. 2008. Arabidopsis DREB2A-Interacting proteins function as RING E3 ligases and negatively regulate plant drought Stress-Responsive gene expression. Plant Cell 20(6), 1693-1707. Doi: 10.1105/tpc.107.057380.

Sakuma, Y., K. Maruyama, Y. Osakabe, F. Qin, M. Seki, K. Shinozaki, and K. Yamaguchi-Shinozaki. 2006a. Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell 18(5), 1292-1309. Doi: 10.1105/tpc.105.035881.

Sakuma, Y., K. Maruyama, F. Qin, Y. Osakabe, K. Shinozaki, and K. Yamaguchi-Shinozaki. 2006b. Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression. Proc. Natl. Acad. Sci. U.S.A. 103(49), 18822-18827. Doi: 10.1073/pnas.0605639103.

Villalobos, A., J. E. Ness, C. Gustafsson, J. Minshull, and S. Govindarajan. 2006. Gene designer: a synthetic biology tool for constructing artificial DNA segments. BMC Bioinformatics 7, 285-292. Doi: 10.1186/1471-2105-7-285.

Viveros, N. 2007. Del maíz y la seguridad alimentaria. In: FENALCE. Retrieved from: Retrieved from: http://www.fenalce.org/nueva/pg.php?pa=40 ; consulted: October, 2016.

Wang, W., B. Vinocur, and A. Altman. 2003. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218(1), 1-14. Doi: 10.1007/s00425-003-1105-5.

Willimsky, G., H. Bang, G. Fischer, and M.A. Marahiel. 1992. Characterization of cspB, a Bacillus subtilis inducible cold shock gene affecting cell viability at low temperatures. J. Bacteriol. 174(20), 6326-6335.

Wolff, T. 2008. Freedom-to-Operate: my six basis ruler. Searcher 16(5), 34-39.

Xiao, B.Z., X. Chen, C.B. Xiang, N. Tang, Q.F. Zhang, and L.Z. Xiong. 2009. Evaluation of seven function-known candidate genes for their effects on improving drought resistance of transgenic rice under field conditions. Mol. Plant 2(1), 73-83. Doi: 10.1093/mp/ssn068.

Yang, S., B. Vanderbeld, J. Wan, and Y. Huang. 2010. Narrowing down the targets: towards successful genetic engineering of drought-tolerant crops. Mol. Plant 3(3), 469-490. Doi: 10.1093/mp/ssq016.

Zhang Z., S. Schwartz, L. Wagner, and W. Miller. 2000. A greedy algorithm for aligning DNA sequences. J. Comput. Biol. 7(1-2),203-14. Doi: 10.1089/10665270050081478.

How to Cite

APA

Carreño-Venegas, A., Mora-Oberlaender, J. and Chaparro-Giraldo, A. (2017). Identification and freedom to operate analysis of potential genes for drought tolerance in maize. Agronomía Colombiana, 35(2), 150–157. https://doi.org/10.15446/agron.colomb.v35n2.60706

ACM

[1]
Carreño-Venegas, A., Mora-Oberlaender, J. and Chaparro-Giraldo, A. 2017. Identification and freedom to operate analysis of potential genes for drought tolerance in maize. Agronomía Colombiana. 35, 2 (May 2017), 150–157. DOI:https://doi.org/10.15446/agron.colomb.v35n2.60706.

ACS

(1)
Carreño-Venegas, A.; Mora-Oberlaender, J.; Chaparro-Giraldo, A. Identification and freedom to operate analysis of potential genes for drought tolerance in maize. Agron. Colomb. 2017, 35, 150-157.

ABNT

CARREÑO-VENEGAS, A.; MORA-OBERLAENDER, J.; CHAPARRO-GIRALDO, A. Identification and freedom to operate analysis of potential genes for drought tolerance in maize. Agronomía Colombiana, [S. l.], v. 35, n. 2, p. 150–157, 2017. DOI: 10.15446/agron.colomb.v35n2.60706. Disponível em: https://revistas.unal.edu.co/index.php/agrocol/article/view/60706. Acesso em: 24 apr. 2024.

Chicago

Carreño-Venegas, Andrea, Julián Mora-Oberlaender, and Alejandro Chaparro-Giraldo. 2017. “Identification and freedom to operate analysis of potential genes for drought tolerance in maize”. Agronomía Colombiana 35 (2):150-57. https://doi.org/10.15446/agron.colomb.v35n2.60706.

Harvard

Carreño-Venegas, A., Mora-Oberlaender, J. and Chaparro-Giraldo, A. (2017) “Identification and freedom to operate analysis of potential genes for drought tolerance in maize”, Agronomía Colombiana, 35(2), pp. 150–157. doi: 10.15446/agron.colomb.v35n2.60706.

IEEE

[1]
A. Carreño-Venegas, J. Mora-Oberlaender, and A. Chaparro-Giraldo, “Identification and freedom to operate analysis of potential genes for drought tolerance in maize”, Agron. Colomb., vol. 35, no. 2, pp. 150–157, May 2017.

MLA

Carreño-Venegas, A., J. Mora-Oberlaender, and A. Chaparro-Giraldo. “Identification and freedom to operate analysis of potential genes for drought tolerance in maize”. Agronomía Colombiana, vol. 35, no. 2, May 2017, pp. 150-7, doi:10.15446/agron.colomb.v35n2.60706.

Turabian

Carreño-Venegas, Andrea, Julián Mora-Oberlaender, and Alejandro Chaparro-Giraldo. “Identification and freedom to operate analysis of potential genes for drought tolerance in maize”. Agronomía Colombiana 35, no. 2 (May 1, 2017): 150–157. Accessed April 24, 2024. https://revistas.unal.edu.co/index.php/agrocol/article/view/60706.

Vancouver

1.
Carreño-Venegas A, Mora-Oberlaender J, Chaparro-Giraldo A. Identification and freedom to operate analysis of potential genes for drought tolerance in maize. Agron. Colomb. [Internet]. 2017 May 1 [cited 2024 Apr. 24];35(2):150-7. Available from: https://revistas.unal.edu.co/index.php/agrocol/article/view/60706

Download Citation

CrossRef Cited-by

CrossRef citations1

1. Julian Mora-Oberlaender, Jenny Jiménez-Barreto, Yadira Rodríguez-Abril, Meike Estrada-Arteaga, Alejandro Chaparro-Giraldo. (2022). Cisgenic Crops: Potential and Prospects. Concepts and Strategies in Plant Sciences. , p.89. https://doi.org/10.1007/978-3-031-06628-3_6.

Dimensions

PlumX

Article abstract page views

469

Downloads

Download data is not yet available.