Published

2017-09-01

Fitting of photosynthetic response curves to photosynthetically active radiation in oil palm

Ajuste de las curvas de respuesta fotosintética a la radiación fotosintéticamente activa en palma de aceite

DOI:

https://doi.org/10.15446/agron.colomb.v35n3.63119

Keywords:

Colombia, dark respiration, light compensation point, light saturation point, maximum photosynthesis, photosynthetic efficiency (en)
Colombia, eficiencia fotosintética, fotosíntesis máxima, punto de compensación lumínico, punto de saturación lumínico, respiración en oscuridad (es)

Downloads

Authors

  • Yurany Dayanna Rivera-Mendes Corporación Centro de Investigación en Palma de Aceite (Cenipalma)
  • Hernán Mauricio Romero Universidad Nacional de Colombia - Sede Bogotá - Faculty of Sciences - Department of Biology https://orcid.org/0000-0002-0760-2296

Light saturation curves represent the response of the net photosynthetic rate to the photosynthetically active radiation. These curves were obtained from individual leaves of oil palm genotypes (Elaeis guineensis, E. oleifera and the O.G interspecific hybrid) without any type of biotic or abiotic stress, fitting three nonlinear models: the rectangular hyperbolic model (Michaelis-Menten), the non-rectangular hyperbolic model (Prioul and Chartier) and the exponential model (Mitscherlich). The research was conducted at Barrancabermeja (Santander, Colombia) with the aim to compare the adaptations of these models and to identify the most suitable model for the crop. The rectangular hyperbolic model was qualitatively and quantitatively the most appropriate to describe the oil palm response under different conditions, in terms of the coefficient of determination (R2 a), the mean squared error (MSE) and the standard error (SE); therefore, using this model, the photosynthetic parameters showed higher and more realistic correlation (r) with the measured values. The non-rectangular hyperbolic model was the least appropriate model to estimate the maximum photosynthesis, dark respiration, saturation points, light compensation and photosynthetic efficiency. Thus, the rectangular hyperbolic model is the fastest, simplest and most appropriate option to access the light curve information in oil palms and can be incorporated into the gas exchange and growth models into the whole palm production system.

Las curvas de saturacion de luz representan la respuesta de la tasa de fotosintesis neta a la radiacion fotosinteticamente activa. Estas se obtuvieron a partir de hojas individuales de genotipos de palma de aceite (Elaeis guineensis, E. oleífera y el hibrido interespecifico O.G) sin ningun tipo de estres biotico o abiotico, y fueron utilizadas para ajustar tres modelos no lineales: el hiperbolico rectangular (Michaelis-Menten), el hiperbólico no rectangular (Prioul y Chartier), y el exponencial (Mitscherlich). La investigacion se llevo a cabo en Barrancabermeja (Santander, Colombia), y busco comparar las adecuaciones de cada modelo e identificar el mas preciso para el cultivo. La hiperbola rectangular fue cualitativa y cuantitativamente el modelo mas adecuado para describir tal respuesta en todas las condiciones de estudio, en terminos de coeficiente de determinación ajustado (R2a), cuadrado medio del error (CME) y error estandar (EE); y por ello sus parametros fotosintéticos mostraron una correlacion (r) mas alta y realista con los valores medidos. El modelo hiperbolico no rectangular fue el menos adecuado para estimar la fotosintesis maxima, la respiración oscura, los puntos de saturacion y compensacion de luz, y la eficiencia fotosintetica. Asi, el modelo hiperbolico rectangular es la opcion mas rapida, sencilla y robusta para acceder a la informacion de las curvas de luz en palma de aceite, que puede ser incorporada en modelos de crecimiento a nivel de planta y sistema productivo.

References

Arias, N. and J.A. Beltrán. 2010. Diseño y evaluación del programa de manejo nutricional en palma de aceite. Tecnologías para la agroindustria de la palma de aceite: Guía para facilitadores. Cenipalma-Fedepalma, Bogota, Colombia.

Ayala, I. and P. Gómez. 2000. Identification of morphological and physiological variables associated with performance of oil palm materials (Elaeis guineensis Jacq.). Palmas 21(4), 10-21.

Azcón-Bieto, J., I. Fleck, X. Aranda, and N. Gomez-Casanovas. 2008. Photosynthesis, environmental factors and climate change. pp. 247-263. In: Azcón-Bieto, J. and M. Talon. (eds.). Fundamentals of plant physiology and biochemistry. 2nd ed. McGraw-Hill-Interamerican, Madrid, Spain.

Byrd, G., R. Sage, and R. Brown.1992. A comparison of dark respiration between C3 and C4 plants. Plant Physiol. 100(1), 191-198.

Cayón, G. 1999. Notes on physiology of growth and development of oil palm (Elaeis guineensis Jacq.). Palmas 20(3), 43-54.

Corley, R. and P. Tinker. 2015. The oil palm. 5th ed. John Wiley and Sons, UK.

Gomes, F., M. Oliva, M. Mielke, A. de Almeida, and H. Leite. 2006. Photosynthetic irradiance-response in leaves of dwarf coconut palm (Cocos nucifera L. 'nana', Arecaceae): Comparison of three models. Sci. Hortic. 109(1), 101-105. Doi: 10.1016/j.scienta.2006.02.030.

Jazayeri, S.M., Y. Rivera, J. Camperos-Reyes, and H.M. Romero. 2015. Physiological effects of water deficit on two oil palm (Elaeis guineensis Jacq.) genotypes. Agron. Colomb. 33(2), 164-173. Doi: 10.15446/agron.colomb.v33n2.49846.

Larcher, W. 2003. Physiological plant ecology. 4th ed. Springer, New York, USA.

Lobo, F., M.P. De Barros, H. Dalmagro, Â. Dalmolin, W. Pereira, É. de Souza, G. Vourlitis, and C. Rodríguez-Ortíz. 2013. Fitting net photosynthetic light-response curves with Microsoft Excel, a critical look at the models. Photosynthetica 51(3), 445-456. Doi: 10.1007/s11099-013-0045-y.

Machado, J.L. and P. Reich. 2006. Dark respiration rate increases with plant size in saplings of three temperate tree species despite decreasing tissue nitrogen and nonstructural carbohydrates. Tree Physiol. 26, 915-923.

Marino, G., M. Aqil, and B. Shipley. 2010. The leaf economics spectrum and the prediction of photosynthetic light-response curves. Funct. Ecol. 24, 263-272. Doi: 10.1111/j.1365-2435.2009.01630.x.

Mejía de Tafur, M.S., R. Burbano, M. García, and D. Baena. 2014. Photosynthetic response Eucalyptus grandis to soil water availability and light intensity. Acta Agron. 63(4), 311-317.

Ögren, E. and J.R. Evans. 1993. Photosynthetic light-response curves. I. The influence of CO2 partial pressure and leaf inversion. Planta 189(2), 191-200.

Peláez, E., D. Ramírez, and G. Cayón. 2010. Comparative physiology of african oil palm (Elaeis guineensis Jacq.), american oil palm (Elaeis oleifera H.B.K. Cortés) and oil palm hybrid (Elaeis oleifera x Elaeis guineensis) in 'Hacienda La Cabaña'. Palmas 31(2), 29-38.

Rincón, A., E. Garzón, and A. Cristancho. 2012. Nutrient contents in different structures of OxG hybrid palms under nursery commercial conditions. Palmas 33(1), 11-20.

Rivera Y., L. Moreno, C. Bayona, and H.M. Romero. 2012. Physiological response of oil palm interspecific hybrids (Elaeis oleifera H.B.K. Cortes versus Elaeis guineensis Jacq.) to water deficit. Braz. J. Plant Physiol. 24(4), 273-280. Doi: 10.1590/S1677-04202012000400006.

Rivera Y., G. Cayón, and J. López. 2013a. Physiological and morphological characterization of american oil palms (Elaeis oleifera HBK Cortes) and their hybrids (Elaeis oleifera x Elaeis guineensis) on the Indupalma plantation. Agron. Colomb. 31(3), 314-323.

Rivera Y., L. Moreno, and H.M. Romero 2013b. Biochemical and physiological characterization of oil palm interspecific hybrids (Elaeis oleifera x Elaeis guineensis) grown in hydroponics. Acta Biol. Colomb. 18(3): 465-472.

Rivera Y., J.C. Cuenca, and H.M. Romero. 2016. Physiological responses of oil palm (Elaeis guineensis Jacq.) seedlings under different water soil conditions. Agron. Colomb. 34(2), 163-171. Doi: 10.15446/agron.colomb.v34n2.55568.

Romero, H.M., I. Ayala, and R. Ruiz. 2007. Oil palm ecophysiology. Palmas 28(4), 176-184.

Ruiz, R. and I.E. Henson. 2002. Photosynthesis and stomatal conductance of oil palm in Colombia: some initial observations. Planter 78(915), 301-308.

Solarte, M., L. Pérez, and L.M. Melgarejo. 2010. Ecofisiología vegetal. pp. 97-120. In: Melgarejo L.M. (ed.). Experimentos en fisiología vegetal. Universidad Nacional de Colombia, Bogotá, Colombia.

Taiz, L. and E. Zeiger.2010. Photosynthesis: Physiological and ecological considerations. pp: 171-192. In: Taiz L. and E. Zeiger (eds.). Plant physiology. 5th ed. Sinauer Associates, Sunderland, MA, USA.

Woittiez, L., M. Wijk, M. Slingerland, M. Noordwijk, and K. Giller. 2017. Yield gaps in oil palm: A quantitative review of contributing factors. Eur. J. Agron. 83, 57-77. Doi: 10.1016/j.eja.2016.11.002.

Ye, Z.-P. 2007. A new model for relationship between irradiance and the rate of photosynthesis in Oryza sativa. Photosynthetica 45, 637-640. Doi: 10.1007/s11099-007-0110-5.

How to Cite

APA

Rivera-Mendes, Y. D. and Romero, H. M. (2017). Fitting of photosynthetic response curves to photosynthetically active radiation in oil palm. Agronomía Colombiana, 35(3), 323–329. https://doi.org/10.15446/agron.colomb.v35n3.63119

ACM

[1]
Rivera-Mendes, Y.D. and Romero, H.M. 2017. Fitting of photosynthetic response curves to photosynthetically active radiation in oil palm. Agronomía Colombiana. 35, 3 (Sep. 2017), 323–329. DOI:https://doi.org/10.15446/agron.colomb.v35n3.63119.

ACS

(1)
Rivera-Mendes, Y. D.; Romero, H. M. Fitting of photosynthetic response curves to photosynthetically active radiation in oil palm. Agron. Colomb. 2017, 35, 323-329.

ABNT

RIVERA-MENDES, Y. D.; ROMERO, H. M. Fitting of photosynthetic response curves to photosynthetically active radiation in oil palm. Agronomía Colombiana, [S. l.], v. 35, n. 3, p. 323–329, 2017. DOI: 10.15446/agron.colomb.v35n3.63119. Disponível em: https://revistas.unal.edu.co/index.php/agrocol/article/view/63119. Acesso em: 26 jul. 2024.

Chicago

Rivera-Mendes, Yurany Dayanna, and Hernán Mauricio Romero. 2017. “Fitting of photosynthetic response curves to photosynthetically active radiation in oil palm”. Agronomía Colombiana 35 (3):323-29. https://doi.org/10.15446/agron.colomb.v35n3.63119.

Harvard

Rivera-Mendes, Y. D. and Romero, H. M. (2017) “Fitting of photosynthetic response curves to photosynthetically active radiation in oil palm”, Agronomía Colombiana, 35(3), pp. 323–329. doi: 10.15446/agron.colomb.v35n3.63119.

IEEE

[1]
Y. D. Rivera-Mendes and H. M. Romero, “Fitting of photosynthetic response curves to photosynthetically active radiation in oil palm”, Agron. Colomb., vol. 35, no. 3, pp. 323–329, Sep. 2017.

MLA

Rivera-Mendes, Y. D., and H. M. Romero. “Fitting of photosynthetic response curves to photosynthetically active radiation in oil palm”. Agronomía Colombiana, vol. 35, no. 3, Sept. 2017, pp. 323-9, doi:10.15446/agron.colomb.v35n3.63119.

Turabian

Rivera-Mendes, Yurany Dayanna, and Hernán Mauricio Romero. “Fitting of photosynthetic response curves to photosynthetically active radiation in oil palm”. Agronomía Colombiana 35, no. 3 (September 1, 2017): 323–329. Accessed July 26, 2024. https://revistas.unal.edu.co/index.php/agrocol/article/view/63119.

Vancouver

1.
Rivera-Mendes YD, Romero HM. Fitting of photosynthetic response curves to photosynthetically active radiation in oil palm. Agron. Colomb. [Internet]. 2017 Sep. 1 [cited 2024 Jul. 26];35(3):323-9. Available from: https://revistas.unal.edu.co/index.php/agrocol/article/view/63119

Download Citation

CrossRef Cited-by

CrossRef citations2

1. Mayra Andreina Osorio Zambrano, Loyla Rodríguez Pérez, Rafael Sierra Ríos, Wilson Terán. (2023). Curvas de respuesta fotosintética a la luz: elucidando la capacidad fotosintética de plantas de cacao (Theobroma cacao L.) aclimatadas a plena luz en Cundinamarca, Colombia. Botanical Sciences, 101(2), p.435. https://doi.org/10.17129/botsci.3118.

2. Hernán Mauricio Romero, Stephany Guataquira, Diana Carolina Forero. (2022). Light Interception, Photosynthetic Performance, and Yield of Oil Palm Interspecific OxG Hybrid (Elaeis oleifera (Kunth) Cortés x Elaeis guineensis Jacq.) under Three Planting Densities. Plants, 11(9), p.1166. https://doi.org/10.3390/plants11091166.

Dimensions

PlumX

Article abstract page views

720

Downloads

Download data is not yet available.