Effect of organic fertilization on yield and quality of rosemary (Rosmarinus officinalis L.) essential oil
Efecto de la fertilización orgánica sobre rendimiento y calidad del aceite esencial de romero (Rosmarinus officinalis L.)
DOI:
https://doi.org/10.15446/agron.colomb.v35n2.63155Keywords:
biofertilizer, PGPR bacteria, nutrient solubilisation (en)biofertilzantes, bacterias PGPR, solubilización de nutrientes (es)
Downloads
Rosemary production (Rosmarinus officinalis L.) in Colombia is destined mainly for international markets (2.898 t in 2006), Although the national demand is low, this is a promising crop in some areas of the country, having potential to enhance producers life quality through the implementation of sustainable crops allowing the decrease of non-beneficial conditions in agriculture labors. Studying the response to the application of biofertilizers as an alternative to implement rosemary organic crops has become an important tool for the integrated crop management. In this research three commercial biofertilizer applied to the soil were evaluated (Azotobacter chroococcum, Pseudomonas fluorescens, humic and fulvic acids) facing a control treatment, significant differences were found regarding the number of stems growth per plant, however variables as oil extract volume and plant height did not present significant differences when compared with control treatment.
References
Ávila, R., A. Navarro, O. Vera, R. Davila, N. Melgoza, and R. Meza. 2011. Romero (Rosmarinus officinalis L.) un revisión de sus usos no culinarios. Rev. Cienc. Mar. 43, 23-36.
Abdel, S., W. Eweda, M. Girgis, and B. Abdel. 2014. Improving the productivity and quality of black cumin (Nigella sativa) by using Azotobacter as N2 biofertilizer. Ann. Agric. Sci. 59(1), 95-108. Doi: 10.1016/j.aoas.2014.06.014.
Ambrosini, A., R. de Souza, and L. Passaglia, L. 2015. Ecological role of bacterial inoculants and their potential impact on soil microbial diversity. Plant Soil 400(1-2), 193-207 Doi: 10.1007/s11104-015-2727-7.
Aseri, G., N. Jain, J. Panwar, A. Rao, and P. Meghwal. 2008. Biofertilizers improve plant growth, fruit yield, nutrition, metabolism and rhizosphere enzyme activities of Pomegranate (Punicagranatum L.) in Indian Thar Desert. Sci. Hortic. 117(2), 130-135. Doi: 10.1016/j.scienta.2008.03.014.
Asli, S. and P. Neumann. 2010. Rhizosphere humic acid interacts with root cell walls to reduce hydraulic conductivity and plant development. Plant Soil 336(1-2), 313-322. Doi: 10.1007/s11104-010-0483-2.
Atti-Santos, A., M. Rossato, G. Fernandes, L. Duarte, J. Ciro, M. Pansera, F. Agostini, L. Atti, and P. Moyna. 2005. Physicochemical evaluation of Rosmatinus officinalis L. Essential Oils. Braz. Arch. Biol. Technol. 48(6), 1035-1039. Doi: 10.1590/S1516-89132005000800020.
Barrientos, J., M. Reina, and M. Chacón. 2012. Potencial económico de cuatro especies aromáticas promisorias para producir aceites esenciales en Colombia. Rev. Colomb. Cienc. Hortic. 6(2), 225-237. Doi: 10.17584/rcch.2012v6i2.1979.
Canellas, L., F. Olivares, N. Aguiar, D. Jones, A. Nebbioso, P. Mazzei, and A. Piccolo. 2015. Review: Humic and fulvic acids as biostimulants in horticulture. Sci. Hortic. 196, 15-27. Doi: 10.1016/j.scienta.2015.09.013.
Cassel, E., R. Vargas, N. Martinez, D. Lorenzo, and E. Dellacassa. 2009. Steam distillation modeling for essential oil extraction process. Ind. Crops Prod. 29, 171-176. Doi: 10.1016/j.indcrop.2008.04.017.
Calvo, P., L. Nelson, and J. Kloepper. 2014. Agricultural uses of plant biostimulants. Plant Soil 383(1-2), 3-41. Doi: 10.1007/s11104-014-2131-8.
Caperalli, L., M. Santoro, F. Nievas, W. Giordano, and E. Banchio. 2013. Increase of secondary metabolite content in marigold by inoculation with plant growth-promoting rhizobactera. Appl. Soil Ecol. 70, 16-22. Doi: 10.1016/j.apsoil.2013.04.001.
Commision regulation EU. 2011. No. 1130 of11 November 2011. Brussels, Belgium.
Conpes. 2008. Política nacional fitosanitaria y de inocuidad para las cadenas de frutas y de otros vegetales. Retrieved from: Retrieved from: https://www.minambiente.gov.co/images/normativa/conpes/2008/Conpes_3514_2008.pdf ; consulted: June, 2017.
Abdel, S ., W. Eweda, M. Girgis, and B. Abdel. 2014. Improving the productivity and quality of black cumin (Nigella sativa) by using Azotobacter as N2 biofertilizer. Ann. Agric. Sci. 59(1), 95-108. Doi: 10.1016/j.aoas.2014.06.014.
Dadrasan, M., M. Chaichi, A. Pourbabaee, D. Yazdani, and R. Keshavarsz-Afshar. 2015. Deficit Irrigation and biological fertilizer influence on yield and trigonelline production of fenugreek. Ind. Crops Prod. 77, 156-162. Doi: 10.1016/j.indcrop.2015.08.040.
Delgado, A., A. Madrid, S. Kassem, L. Andreu, and M. Campillo. 2002. Phosphorus fertilizer recovery from calcareous soils amended with humic and fulvic acids. Plant Soil 245(2), 277-286. Doi: 10.1023/A:1020445710584.
Egamberdiyeva, D. 2007. The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils. Appl. Soil Ecol. 36(2-3), 184-189. Doi: 10.1016/j.apsoil.2007.02.005.
Gopalakrshnan, S., A. Sathya, R. Vijayabharathi, R. Varshney, C. Gowda, and L. Krishnamurthy. 2015. Plant growth promoting rhizobia: challenges and opportunities. Biotech. 5(4), 355-377. Doi: 10.1007/s13205-014-0241-x.
Hall, J., D. Pierson, S. Ghosh, and B. Glick. 1996. Root elongation in various agronomic crops by the plant growth promoting rhizobacteriaPseudomonas putida GR12-2. Isr. J. Plant Sci. 44, 37-42. Doi: 10.1080/07929978.1996.10676631.
Hamilton, J., A. Zangerl, E. Delucia, and M. Berenbaum. 2001. The carbon nutrient balance hypothesis: its rise and fall. Ecol. Lett. 4(1), 86-95. Doi: 10.1046/j.1461-0248.2001.00192.x.
IDEAM. 2016. Datos históricos climáticos estación climatológica completa 2120570 Guasca. Instituto de Hidrología, Meteorología y Estudios Ambientales de Colombia, Bogotá, Colombia.
IGAC. 2000. Estudio general de suelos y zonificación de tierras del departamento de Cundinamarca. Instituto Geográfico Agustin Codazzi, Subdirección de Agrología, Bogotá, Colombia.
Kilam, D., M. Saifi, M. Abdin, A. Agnihotri, and A. Varma. 2015. Combined effects of Piriformospora indica and Azotobacter chroococcum enhance plant growth, antioxidant potential and steviol glycoside content in Stevia rebaudiana. Symbiosis 66(3), 149-156. Doi: 10.1007/s13199-015-0347-x.
Kizilkaya, R. 2008. Yield response and nitrogen concentrations of spring wheat (Triticumaestivum) inoculated with Azoto-bacter chroococcum. Ecol. Eng. 33(2), 150-156. Doi: 10.1016/j.ecoleng.2008.02.011.
Maheshwari, D., R. Dubey, A. Aeron, B. Kumar, S. Kumar, S. Tewari, and N. Kumar. 2012. Integrated approach for disease management and growth enhancement of Sesamumindicum L. utilizing Azotobacter chroococcum TRA2 and chemical fertilizer. J. Micro. Biotech. 28(10), 3015-3024. Doi: 10.1007/s11274-012-1112-4.
MADR. 2009. Agenda prospectiva de investigación y desarrollo tecnológico para la cadena productiva de plantas aromáticas, medicinales, condimentarías y afines con énfasis en ingredientes naturales para la industria cosmética en Colombia. Ministerio de Agricultura y Desarrollo Rural, Universidad Nacional de Colombia, Cámara de Comercio de Bogotá. Bogotá, Colombia.
Moncada, J., J. Tamayo, and C. Cardona. 2016. Techno-economic and environmental assessment of essential oil extraction from Oregano (Origanum vulgare) and Rosemary (Rosmarinus officinalis) in Colombia. J. Cleaner Prod. 112(1), 172-181. Doi: 10.1016/j.jclepro.2015.09.067.
Narwal, S. and D. Sampietro. 2009. Allelopathy and allelochemicals. pp. 3-5. In: Sampietro, D.A., C.A.N. Catalan, M.A. Vattuone, and S.S. Narwal (eds.). Isolation, identification and characterización of allelochemicals / Natural products. Science Publishers. Doi: 10.1201/b10195-3.
Nogués, I., V. Muzzini, F. Loreto, and M. Bustamante. 2015. Drought and soil amendment effects on monoterpene emission in rosemary plants. Sci. Total Environ. 538, 768-778. Doi: 10.1016/j.scitotenv.2015.08.080.
Ormeño, E., V. Baldy, C. Ballini, and C. Fernandez. 2008. Production and diversity of volatile terpenes from plants on calcareous and siliceous soils: Effect of soil nutrients. J. Chem. Eco. 34, 1219-1229. Doi: 10.1007/s10886-008-9515-2.
Pavarini, D., S. Pavarini, M. Niehues, and N. Lopes. 2012. Exogenous influences on plant secondary metabolite levels. Animal Feed Sci. Technol. 176(1-4), 5-16. Doi: 10.1016/j.anifeedsci.2012.07.002.
Peng, Y., J. Yuan, F. Liu, and J. Ye. 2005. Determination of active components in Rosemary by capillary electrophoresis with electrochemical detection. J. Pharm. Biomed. Anal. 39(3-4), 431-437. Doi: 10.1016/j.jpba.2005.03.033.
Piccolo, A. and M. Spiteller. 2003. Electrospray ionization mass spectrometry of terrestrial humic substances and their size fractions. Anal. Bioanal. Chem. 377(6), 1047-1059. Doi: 10.1007/s00216-003-2186-5.
Puglisi, E., G. Fragoulis, A. Del Re, R. Spaccini, A. Piccolo, G. Gigliotti, D. Said, and M. Trevisan. 2008. Carbon deposition in soil rhizosphere following amenments with compost and its soluble fractions, as evaluated by combined soil-plant rhizobox and reporter gene systems. Chemosphere 73(8), 1292-1299. Doi: 10.1016/j.chemosphere.2008.07.008.
Smolen, S., I. Ledwozy, and W. Sady. 2016. The role of exogenous humic and fulvic acids in iodine biofortification in spinach (Spinacia oleracea L.). Plant Soil 402(1-2), 129-143. Doi: 10.1007/s11104-015-2785-x.
Sharma, S., G. Lyons, C. McRoberts, D. McCall, E. Carmichael, F. Andrews, R. Swan, R. McCormack, and R. Mellon. 2012. Biostimulant activity of brown seaweed species from Strangford Lough: compositional analyses ofpolysaccharides and bioassay of extracts using mung bean (Vigno mungo L.) and pakchoi (Brassica rapachinensis L.). J. Appl. Phycol. 24(5), 1081-1091. Doi: 10.1007/s10811-011-9737-5.
Yang, Y., X. Song, X. Sui, B. Qi, Z. Wang, Y. Li, and L. Jiang. 2016. Rosemary extract can be used as a synthetic antioxidant to improve vegetable oil oxidative stability. Ind. Crop Prod. 80, 141-147. Doi: 10.1016/j.indcrop.2015.11.044.
Valadabadi, S. and H. Farahani. 2011. Investigation of biofertilizers influence on quantity and quality characteristics in Nigella sativa L. J. Hort. For. 3(3), 88-92.
Varanini, Z. and R. Pinton. 2001. Direct versus indirect effects of soil humic substances on plant growth and nutrition. pp. 3-41 In: Calvo, P ., L. Nelson, and J. Kloepper (eds.). Agricultural uses of plant biostimulants. Marcel Dekker, New York, USA.
Vrieze, J. 2015. The littlest farmhands. Sci. 349(6249), 680-683. Doi: 10.1126/science.349.6249.680.
Wardle, D., R. Bardgett, J. Klironomos, H. Setálá, W. van Der Putten, and D. Wall. 2004. Ecological linkages between aboveg-round and belowground biota. Sci. 304(5677), 1629-1633. Doi: 10.1126/science.1094875.
Wu, S., Z. Cao, Z. Li, K. Cheung, and M. Wong. 2005. Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma 125(1-2), 155-166. Doi: 10.1016/j.geoderma.2004.07.003.
Yahya, A. and R. Mohd. 2013. Influence of simple preparation and extraction time on chemical composition of steam distillation derived patchouli oil. Procedia Eng. 53, 1-6. Doi: 10.1016/j.proeng.2013.02.001.
Zuzarte, M. and L. Salgueiro. 2015. Essential oils chemistry. pp. 1961. In: De Sousa, D. (ed.). Bioactive essential oils and cancer. Springer. Doi: 10.1007/978-3-319-19144-7_2.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Vaida Vaičiulytė, Kristina Ložienė, Irina Sivicka. (2022). Effect of Organic Matter Fertilizers on the Composition of Volatiles, Morphometrical and Anatomical Parameters of Essential Oil-Bearing Thymus × citriodorus Cultivated in an Open Field Conditions. Horticulturae, 8(10), p.917. https://doi.org/10.3390/horticulturae8100917.
2. Gikuru Mwithiga, Samuel Maina, Josiah Gitari, Phyllis Muturi. (2022). Rosemary (Rosmarinus officinalis L.) growth rate, oil yield and oil quality under differing soil amendments. Heliyon, 8(4), p.e09277. https://doi.org/10.1016/j.heliyon.2022.e09277.
3. Asfa Rizvi, Bilal Ahmed, Mohammad Saghir Khan, Hossam S. El-Beltagi, Shahid Umar, Jintae Lee. (2022). Bioprospecting Plant Growth Promoting Rhizobacteria for Enhancing the Biological Properties and Phytochemical Composition of Medicinally Important Crops. Molecules, 27(4), p.1407. https://doi.org/10.3390/molecules27041407.
4. Heba S. El-Sayed, Atiat Hassan, Khouloud M. Barakat, Hasnaa E.-B. Ghonam. (2024). Improvement of growth and biochemical constituents of Rosmarinus officinalis by fermented Spirulina maxima biofertilizer. Plant Physiology and Biochemistry, 208, p.108452. https://doi.org/10.1016/j.plaphy.2024.108452.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2017 Agronomía Colombiana

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
© Centro Editorial de la Facultad de Ciencias Agrarias, Universidad Nacional de Colombia
Reproduction and quotation of material appearing in the journal is authorized provided the following are explicitly indicated: journal name, author(s) name, year, volume, issue and pages of the source. The ideas and observations recorded by the authors are their own and do not necessarily represent the views and policies of the Universidad Nacional de Colombia. Mention of products or commercial firms in the journal does not constitute a recommendation or endorsement on the part of the Universidad Nacional de Colombia; furthermore, the use of such products should comply with the product label recommendations.
The Creative Commons license used by Agronomia Colombiana journal is: Attribution - NonCommercial - ShareAlike (by-nc-sa)

Agronomia Colombiana by Centro Editorial of Facultad de Ciencias Agrarias, Universidad Nacional de Colombia is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional License.
Creado a partir de la obra en http://revistas.unal.edu.co/index.php/agrocol/.