Published

2017-09-01

Yield, physicochemical quality, and antioxidant capacity of “beef” and wild tomato fruits (Solanum lycopersicum L.) as a function of the electrical conductivity of the nutrient solution

Rendimiento, calidad fisicoquímica y capacidad antioxidante en frutos de tomate bola y silvestre (Solanum lycopersicum L.) en función de la conductividad eléctrica de la solución nutritiva

DOI:

https://doi.org/10.15446/agron.colomb.v35n3.64905

Keywords:

total titratable acidity, total soluble solids, ascorbic acid, total phenols, Solanaceae. (en)
acidez titulable total, solidos solubles totales, acido ascórbico, fenoles totales, Solanacea. (es)

Downloads

Authors

  • María Teresa Martínez-Damían Universidad Autónoma Chapingo
  • Oscar Cruz-Álvarez Universidad Autónoma de Chihuahua https://orcid.org/0000-0003-3069-5483
  • Juan Enrique Rodríguez-Pérez Universidad Autónoma Chapingo
  • María Teresa Colinas-León Universidad Autónoma Chapingo
  • Miguel Angel Góngora-Canto Universidad Autónoma Chapingo

The objective of this study was to evaluate the response of three levels of electrical conductivity (2.0, 2.5 and 3.0 dS m-1) of Steiner’s nutrient solution on the yield, physicochemical quality, and antioxidant capacity of fruits from seven tomato genotypes and wild types of tomato (kidney selections). The yield, number of fruits per cluster (NFPC), average fresh fruit weight (AFWF), color, firmness, total soluble solids (TSS), total titratable acidity (TTA), vitamin C (VC), total phenols (TP), lycopene (LY) and antioxidant capacity (AC). The use of 2.5 and 3.0 dS m-1 increased the hue angle (49.05°) and TTA (0.35 and 0.36% citric acid). Among genotypes, L-51H and L-76H showed better performance (16.80 and 16.91 kg m-2, respectively), where L-28 stood out for its values of TSS, TTA, VC, TP and AC. Regarding the wild genotypes, the EC modification did not increase the yield; however, the use of 3.0 dS m-1 allowed the best results among the wild selections were SS3 (yield, AFWF and LY) and SS5 (NFPC, VC, TP and AC). The modification of the EC did not affect the yield, however, if it affected the physicochemical quality and antioxidant capacity of the analyzed materials.

El objetivo de este estudio fue evaluar la respuesta de tres niveles de conductividad electrica (CE) (2,0; 2,5 y 3,0 dS m-1) de la solucion nutritiva de Steiner, sobre el rendimiento, calidad fisicoquimica y capacidad antioxidante en frutos de tomate bola y silvestre tipo rinon. Se determino el rendimiento, numero de frutos por racimo (NFPR), peso promedio de fruto fresco (PPFF), color, firmeza, solidos solubles totales (SST), acidez titulable total (ATT), vitamina C (VC), fenoles totales (FT), licopeno (LI) y capacidad antioxidante (CA). El uso de 2,5 y 3,0 dS m-1 incrementaron el angulo hue (49,05°) y ATT (0,35 y 0,36% de acido citrico). Entre genotipos, L-51H y L-76H mostraron mejor rendimiento (16,80 y 16,91 kg m-2, respectivamente), donde L-28 destaco por sus valores de SST, TTA, VC, TP y CA. Con respecto a los genotipos silvestres, la modificacion de la CE no incremento el rendimiento; no obstante, el uso de 3,0 dS m-1 permitio obtener los mejores resultados. Entre las selecciones silvestres se destacaron SS3 (rendimiento, PPFF y LI) y SS5 (NFPR, VC, FT y CA). La modificacion de la CE no modifico el rendimiento, sin embargo, si afecto la calidad fisicoquímica y capacidad antioxidante de los materiales analizados.

References

AOAC. 1990. Association of Official Analytical Chemists. Retrieved from: https://law.resource.org/pub/us/cfr/ibr/002/aoac. methods.1.1990.pdf; consulted: August, 2016.

Barankevicz, G.B., D. Novello, J.T. Resende, K. Schwarz, and E.F. Santos. 2015. Physical and chemical characteristics of tomato hybrids pulp during frozen storage. Hortic. Bras. 33(1), 7-11. Doi: 10.1590/S0102-053620150000100002

Batu, A. 2004. Determination of acceptable firmness and colour values of tomatoes. J. Food Eng. 61(3), 471-475. Doi: 10.1016/ S0260-8774(03)00141-9

Bertoldi, F.C., E.S. Sant’Anna, J.L. Barcelos-Oliveira, and R. Simoni. 2008. Antioxidant properties of hydroponic cherry tomato cultivated in desalinized wastewater. Acta Hortic. 843, 197- 202. Doi: 10.17660/ActaHortic.2009.843.25

Bhandari, S.R., M.C. Cho, and J.G. Lee. 2016. Genotypic variation in carotenoid, ascorbic acid, total phenolic, and flavonoid contents, and antioxidant activity in selected tomato breeding lines. Hortic. Environ. Biotechnol. 57(5), 440-452. Doi: 10.1007/s13580-016-0144-3

Borghesi, E., M.L. Gonzalez-Miret, M.L. Escudero-Gilete, F. Malorgio, F.J. Heredia, and A.J. Melendez-Martinez. 2011. Effects of salinity stress on carotenoids, anthocyanins, and color of diverse tomato genotypes. J. Agric. Food Chem. 59(21), 11676-11682. Doi: 10.1021/jf2021623

Brasiliano, C.C.A., D.F. Pedro, R.G. Hans, F.B. Flavio, B.G. Cira, F.C., and F.C. Selma Aparecida. 2006. Yield and fruit quality of industrial tomato under saline irrigation. Scientia Agric. 63(2), 146-152. Doi: 10.1590/S0103-90162006000200006

Carrillo, R.J.C., H. Lopez-Mendoza, J.L. Chavez-Servia, E. Rodriguez-Guzman, P. Sanchez-Pena, and R. Lobato-Ortiz. 2012. Phenotypic divergence on growth and productivity of wild and semi-domesticated cherry tomato grown under greenhouse conditions. Acta Hortic. 947, 375-380. Doi: 10.17660/ ActaHortic.2012.947.48

Chattopadhyay, A., I.V.I. Chakraborty, and W. Siddique. 2013. Characterization of determinate tomato hybrids: search for better processing qualities. J. Food Proces. Technol. 4, 222. Doi: 10.4172/2157-7110.1000222

Choi, K., G. Lee, Y.J. Han, and J.M. Bunn. 1995. Tomato maturity evaluation using color image analysis. Trans. ASAE 38(1), 171-176.

Cruz, C.E. and M. Sandoval-Villa. 2012. Effect of the nutrient solution concentration and substrates mixture on the quality of tomato. Acta Hortic. 947, 197-202. Doi: 10.17660/ ActaHortic.2012.947.24

Estrada, C.J.B., J.C. Carrillo-Rodriguez, M.P. Jerez-Salas, J.L. Chavez-Servia, and C. Perales-Segovia. 2011. Small farmer practices for production improvement of the kidney-type tomato landrace: a case study in Oaxaca. Afr. J. Agric. Res. 6(13), 3176-3182. Doi: 10.5897/AJAR11.538

Flores, G.D., M. Sandoval-Villa, P. Sanchez-Garcia, P. Ramirez-Vallejo, and M.N. Rodriguez-Garcia. 2012. Yield of native genotypes of tomato as affected by electrical conductivity of nutrient solution. Acta Hortic. 947, 69-76. Doi: 10.17660/ ActaHortic.2012.947.6

Gaspar, P.P., J.C. Carrillo-Rodriguez, J.L. Chavez-Servia, A.M. Vera-Guzman, and I. Perez-Leon. 2012. Variacion de caracteres agronomicos y licopeno en lineas avanzadas de tomate (Solanum lycopersicum L.). Phyton 81(1), 15-22.

Grijalva, C.R.L., R. Macias Duarte, and F. Robles Contreras. 2011. Comportamiento de hibridos de jitomate bola en invernadero bajo condiciones deserticas del noroeste de Sonora. Trop. Subtrop. Agroecosyst. 14(2), 675-682.

Hernandez, M., E. Rodriguez, and C. Diaz. 2007. Free hydroxycinnamic acids, lycopene, and color parameters in tomato cultivars. J. Agric. Food Chem. 55(21), 8604-8615. Doi: 10.1021/jf071069u

Hernandez, L.E., R. Lobato-Ortiz, J.J. Garcia-Zavala, D. Reyes- Lopez, A. Mendez-Lopez, O. Bonilla-Barrientos, and A. Hernandez-Bautista. 2013. Comportamiento agronomico de poblaciones F2 de hibridos de jitomate (Solanum lycopersicum L.). Rev. Fitotec. Mex. 36(3), 209-215.

Inbaraj, B.S. and B.H Chen. 2008. Carotenoids in tomato plants. pp. 133-164. In: Preedy, V.R. and R.R. Watson (eds.). Tomatoes and tomato products: nutritional, medicinal and therapeutic properties. CRC Press, UK. Doi: 10.1108/nfs.2009.39.6.702.1

Juarez, L.P., R. Medina-Torres, E. Cruz-Crespo, D.W. Reed, M. Kent, L. Cisneros-Zevallos, and P. Ramirez-Vallejo. 2013. Effect of electrical conductivity of the nutrient solution on fruit quality of three native tomato genotypes (Lycopersicon esculentum var. cerasiforme). Acta Hortic. 1034, 505-508. Doi: 10.17660/ActaHortic.2014.1034.63

Kacjan, M.N., L. Gašperlin, V. Abram, M. Budič, and R. Vidrih. 2011. Quality parameters and total phenolic content in tomato fruits regarding cultivar and microclimatic conditions. Turk. J. Agric. For. 35(2), 185-194. Doi:10.3906/tar-0910-499

Kavitha, P., K.S. Shivashankara, V.K. Rao, A.T. Sadashiva, K.V. Ravishankar, and G.J. Sathish. 2014. Genotypic variability for antioxidant and quality parameters among tomato cultivars, hybrids, cherry tomatoes and wild species. J. Sci. Food Agric. 94(5), 993-999. Doi: 10.1002/jsfa.6359

Krauss, S., W.H. Schnitzler, J. Grassmann, and M. Woitke. 2006. The influence of different electrical conductivity values in a simplified recirculating soilless system on inner and outer fruit quality characteristics of tomato. J. Agric. Food Chem. 54(2),441-448. Doi: 10.1021/jf051930a

Kubota, C., M. Kroggel, M. Torabi, K.A. Dietrich, H.J. Kim, J. Fonseca, and C.A. Thomson. 2012. Changes in selected quality attributes of greenhouse tomato fruit as affected by pre-and postharvest environmental conditions in year-beef production. HortScience 47(12), 1698-1704.

Magana, L.N., A. Pena-Lomeli, F. Sanchez-del Castillo, J.E. Rodriguez- Perez, and E.D.C. Moreno-Perez. 2013. Comportamiento productivo de hibridos F1 de jitomate y sus poblaciones F2. Rev. Fitotec. Mex. 36(4), 371-379.

Martinez, S.J., A. Pena-Lomeli, J.E. Rodriguez-Perez, C. Villanueva-Verduzco, J. Sahagun Castellanos, and M.G. Pena-Ortega. 2005. Comportamiento productivo en hibridos de jitomate y sus respectivas poblaciones F2. Rev. Chapingo Ser. Hortic. 11(2), 299-307. Doi: 10.5154/r.rchsh.2004.04.028

Mendez, I.I., A.M. Vera G., J.L. Chavez S, and J.C. Carrillo R. 2011. Quality of fruits in Mexican tomato (Lycopersicon esculentum Mill.) landraces. Vitae 18(1), 26-32.

Ozgen, M., N.R. Reese, Z.A. Tulio, C.J. Scheerens, and R.A. Miller. 2006. Modified 2,2-Azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) method to measure antioxidant capacity of selected small fruits and comparison to ferric reducing antioxidant power (FRAP) and 2,2´-diphenil-1-picrylhydrazyl (DPPH) methods. J. Agric. Food Chem. 54(4), 1151-1157. Doi:10.1021/jf051960d

Perez, R.M. P., M. Albarracin, H. Moratinos, and F.Z. Navas. 2012. Rendimiento y calidad de fruto en cuatro cultivares de jitomate (Solanum lycopersicum L.) bajo condiciones protegidas. Rev. Fac. Agron. 29(3), 395-412.

Preczenhak, A.P., J.T. Resende, R.R. Chagas, P.R. Silva, K. Schwarz, and R.G. Morales. 2014. Caracterizacao agronomica de genotipos de minitomate. Hortic. Bras. 32(3), 348-356. Doi: 10.1590/ S0102-053620140003000018

Ramos, P.M., J.C. Carrillo-Rodriguez, R. Enriquez-del Valle, and V. Velasco-Velasco. 2009. Fertilizantes organicos en la producción de jitomate tipo rinon en Oaxaca, Mexico. Natur. Desar. 7(1),39-44.

Ruiz, E.F.H., R.L.V. Gutierrez, B.M. Amador, F.A.B. Morales, and L.G.H. Montiel. 2014. Respuesta diferencial a la salinidad de genotipos de tomate (Lycopersicon esculentum Mill.) en primeras etapas fenologicas. Terra Latinoamer. 32(4), 301-309.

Sadler, G., J. Davis, and D. Dezman. 1990. Rapid extraction of lycopene and β-Carotene from reconstituted tomato paste and pink grapefruit homogenates. J. Food Sci. 55(5), 1460-1461.

Doi: 10.1111/j.1365-2621.1990.tb03958. x

Schnitzler, W.H. and S. Krauss. 2010. Quality and health promoting compounds tomato fruit (Lycopersicon esculentum Mill.) under salinity. Acta Hortic. 856, 21-30. Doi: 10.17660/

ActaHortic.2010.856.2

Steiner, A.A. 1984. The universal nutrient solution. pp. 633-650. In: Proc. 6th International Congress on Soilles Culture. Wageningen, The Netherlands.

Urrieta, V.J.A., M.D.L.N. Rodriguez-Mendoza, P. Ramirez-Vallejo, G.A. Baca-Castillo, L.D.M. Ruiz-Posada, and J.A. Cueto-Wong. 2012. Variables de produccion y calidad de tres selecciones de jitomate de costilla (Solanum lycopersicum L.). Rev. Chapingo Ser. Hort. 18(3), 371-381. Doi: 10.5154/r.rchsh.2010.05.016

Valenzuela, L.M., L.P. Ruvalcaba, T.D. Valdez, T.J.V. Alcaraz, G.B. Bojorquez, and T.E. Osuna. 2014. Respuesta del tomate cultivado en hidroponia con soluciones nutritivas en sustrato humus de lombriz-fibra de coco. Rev. Mex. Cienc. Agric. 5(5), 807-818.

Vasquez, O.R., J.C. Carrillo-Rodriguez y P. Ramirez-Vallejo. 2010. Evaluacion morfo-agronomica de una muestra del jitomate nativo del centro y sureste de Mexico. Natur. Desar. 8(2), 49-64.

Vera, G.A.M., J.L. Chavez-Servia, and J.C. Carrillo-Rodriguez. 2011. Variacion en calidad de frutos de poblaciones de jitomate (Solanum lycopersicum L.) tipo rinon. J. Interam. Soc. Trop. Hortic. 55, 82-85.

Voss, D.H. 1992. Relating colourimeter measurement of plant colour to the royal horticultural society colour chart. HortScience 27 (12), 1256-1260.

Wakeel, A. 2013. Potassium-sodium interactions in soil and plant under saline-sodic conditions. J. Plant Nutr. Soil Sci. 176(3), 344-354. Doi: 10.1002/jpln.201200417

Waterman, P.G. and S. Mole. 1994. Analysis of phenolic plant metabolites. Blackwell Scientific Publications. Oxford, UK.

Wu, M. and C. Kubota. 2008. Effects of high electrical conductivity of nutrient solution and its application timing on lycopene, chlorophyll and sugar concentrations of hydroponic tomatoes during ripening. Sci. Hortic. 116(2), 122-129. Doi: 10.1016/j. scienta.2007.11.014

How to Cite

APA

Martínez-Damían, M. T., Cruz-Álvarez, O., Rodríguez-Pérez, J. E., Colinas-León, M. T. and Góngora-Canto, M. A. (2017). Yield, physicochemical quality, and antioxidant capacity of “beef” and wild tomato fruits (Solanum lycopersicum L.) as a function of the electrical conductivity of the nutrient solution. Agronomía Colombiana, 35(3), 330–339. https://doi.org/10.15446/agron.colomb.v35n3.64905

ACM

[1]
Martínez-Damían, M.T., Cruz-Álvarez, O., Rodríguez-Pérez, J.E., Colinas-León, M.T. and Góngora-Canto, M.A. 2017. Yield, physicochemical quality, and antioxidant capacity of “beef” and wild tomato fruits (Solanum lycopersicum L.) as a function of the electrical conductivity of the nutrient solution. Agronomía Colombiana. 35, 3 (Sep. 2017), 330–339. DOI:https://doi.org/10.15446/agron.colomb.v35n3.64905.

ACS

(1)
Martínez-Damían, M. T.; Cruz-Álvarez, O.; Rodríguez-Pérez, J. E.; Colinas-León, M. T.; Góngora-Canto, M. A. Yield, physicochemical quality, and antioxidant capacity of “beef” and wild tomato fruits (Solanum lycopersicum L.) as a function of the electrical conductivity of the nutrient solution. Agron. Colomb. 2017, 35, 330-339.

ABNT

MARTÍNEZ-DAMÍAN, M. T.; CRUZ-ÁLVAREZ, O.; RODRÍGUEZ-PÉREZ, J. E.; COLINAS-LEÓN, M. T.; GÓNGORA-CANTO, M. A. Yield, physicochemical quality, and antioxidant capacity of “beef” and wild tomato fruits (Solanum lycopersicum L.) as a function of the electrical conductivity of the nutrient solution. Agronomía Colombiana, [S. l.], v. 35, n. 3, p. 330–339, 2017. DOI: 10.15446/agron.colomb.v35n3.64905. Disponível em: https://revistas.unal.edu.co/index.php/agrocol/article/view/64905. Acesso em: 27 jan. 2025.

Chicago

Martínez-Damían, María Teresa, Oscar Cruz-Álvarez, Juan Enrique Rodríguez-Pérez, María Teresa Colinas-León, and Miguel Angel Góngora-Canto. 2017. “Yield, physicochemical quality, and antioxidant capacity of ‘beef’ and wild tomato fruits (Solanum lycopersicum L.) as a function of the electrical conductivity of the nutrient solution”. Agronomía Colombiana 35 (3):330-39. https://doi.org/10.15446/agron.colomb.v35n3.64905.

Harvard

Martínez-Damían, M. T., Cruz-Álvarez, O., Rodríguez-Pérez, J. E., Colinas-León, M. T. and Góngora-Canto, M. A. (2017) “Yield, physicochemical quality, and antioxidant capacity of ‘beef’ and wild tomato fruits (Solanum lycopersicum L.) as a function of the electrical conductivity of the nutrient solution”, Agronomía Colombiana, 35(3), pp. 330–339. doi: 10.15446/agron.colomb.v35n3.64905.

IEEE

[1]
M. T. Martínez-Damían, O. Cruz-Álvarez, J. E. Rodríguez-Pérez, M. T. Colinas-León, and M. A. Góngora-Canto, “Yield, physicochemical quality, and antioxidant capacity of ‘beef’ and wild tomato fruits (Solanum lycopersicum L.) as a function of the electrical conductivity of the nutrient solution”, Agron. Colomb., vol. 35, no. 3, pp. 330–339, Sep. 2017.

MLA

Martínez-Damían, M. T., O. Cruz-Álvarez, J. E. Rodríguez-Pérez, M. T. Colinas-León, and M. A. Góngora-Canto. “Yield, physicochemical quality, and antioxidant capacity of ‘beef’ and wild tomato fruits (Solanum lycopersicum L.) as a function of the electrical conductivity of the nutrient solution”. Agronomía Colombiana, vol. 35, no. 3, Sept. 2017, pp. 330-9, doi:10.15446/agron.colomb.v35n3.64905.

Turabian

Martínez-Damían, María Teresa, Oscar Cruz-Álvarez, Juan Enrique Rodríguez-Pérez, María Teresa Colinas-León, and Miguel Angel Góngora-Canto. “Yield, physicochemical quality, and antioxidant capacity of ‘beef’ and wild tomato fruits (Solanum lycopersicum L.) as a function of the electrical conductivity of the nutrient solution”. Agronomía Colombiana 35, no. 3 (September 1, 2017): 330–339. Accessed January 27, 2025. https://revistas.unal.edu.co/index.php/agrocol/article/view/64905.

Vancouver

1.
Martínez-Damían MT, Cruz-Álvarez O, Rodríguez-Pérez JE, Colinas-León MT, Góngora-Canto MA. Yield, physicochemical quality, and antioxidant capacity of “beef” and wild tomato fruits (Solanum lycopersicum L.) as a function of the electrical conductivity of the nutrient solution. Agron. Colomb. [Internet]. 2017 Sep. 1 [cited 2025 Jan. 27];35(3):330-9. Available from: https://revistas.unal.edu.co/index.php/agrocol/article/view/64905

Download Citation

CrossRef Cited-by

CrossRef citations1

1. Dalila Jacqueline Escudero-Almanza, Oscar Cruz-Alvarez, Ofelia Adriana Hern醤dez-Rodr韌uez, Juan Luis Jacobo-Cuellar, Esteban S醤chez-Ch醰ez, Pablo Preciado-R醤gel, D醡aris Leopoldina Ojeda-Barrios. (2022). Proline and Oxidative Metabolism in Young Pecan Trees Associated with Sulphate Accumulation. Phyton, 91(6), p.1141. https://doi.org/10.32604/phyton.2022.019129.

Dimensions

PlumX

Article abstract page views

633

Downloads

Download data is not yet available.