Published

2017-09-01

Evaluation of four degree-day estimation methods in eight Colombian coffee-growing areas

Evaluación de cuatro métodos para estimar grados-día en ocho zonas cafeteras colombianas

DOI:

https://doi.org/10.15446/agron.colomb.v35n3.65221

Keywords:

thermal time, temperature, numerical integration, linear regression, bias (en)
tiempo térmico, temperatura, integración numérica, regresión lineal, sesgo (es)

Downloads

Authors

Methods to estimate the accumulation of degree-days based on maximum and minimum temperaturesare are commonly used to determine relationships or to adjust phenological models based on the "physiological time". Degree-days are obtained indirectly by these methods, this information is not generally available on hourly or shorter time scales due to the type of equipment used to record data or a data loss in historical time series. To compare the performance of such methods, degree-days were estimated with four indirect methods in eight Colombian locations during 1 year. Each indirect method was evaluated in comparison to the numerical integration method by the trapezoidal rule (reference method) using temperatures recorded every 5 min. Based on the percent bias error, the methods proposed by Arnold, Ometto and Snyder tend to overestimate thermal time, whereas the Villa-Nova method underestimates this time, but with a lower performance as regards to the previous ones.

Los métodos que estiman la acumulación de los grados-día basados en datos de temperatura máxima y mínima diaria son comúnmente usados para determinar relaciones o hacer ajustes en modelos fenológicos basados en "tiempo fisiológico". La obtención de los grados-día con estos métodos se hace de manera indirecta, dado a que en general no se dispone de información de temperaturas a escala horaria e incuso menor, debido al tipo de equipo utilizado para tomar registros o por la pérdida de datos en series históricas. Con el objetivo de determinar el desempeño de estos métodos, se estimaron los grados-día con cuatro métodos indirectos en ocho localidades colombianas durante 1 año. Cada uno de los métodos se evaluó con respecto al método de integración numérica por regla del trapecio (método de referencia) usando las temperaturas registradas cada 5 min. El desempeño de los métodos se evaluó a partir de un modelo de regresión lineal y sus respectivos errores. Los métodos de Arnold, Ometto y Snyder, según el porcentaje de sesgo, tienden a sobrestimar el tiempo térmico, mientras el método de Villa-Nova lo subestima, pero con un menor desempeño respecto a los anteriores.

References

Arnold, C.Y. 1959. The determination and significance of the base temperature in a linear heat unit system. Proc. Amer. Soc. Hort. Sci. 74, 430-445.

Baskerville, G.L. and P. Emin. 1969. Rapid Estimation of heat accumulation from maximum and minimum temperatures. Ecology.50, 514-517. Doi: 10.2307/1933912.

Bonhomme, R. 2000. Bases and limits to using "degree.day" units. Eur. J. Agron. 13, 1-10. Doi: 10.1016/S1161-0301(00)00058-7.

Bryant, S.R., J.S. Bale, and C.D. Thomas. 1998. Modification of the Triangle method of degree-day accumulation to allow for behavioral thermoregulation in insects. J. Appl. Ecol. 35, 921-927. Doi: 10.1111/j.1365-2664.1998.tb00009.x.

Camargo, A.D. and A.R. Pereira. 1994. Agrometeorology of the coffee crop. World Meteorological Organization, 92. Geneva, Switzerland.

Cardina, J., C.P. Herms, D.A. Herms, and F. Forcella. 2007. Evaluating phenological indicators for predicting giant foxtail (Setaria faberi) emergence. Weed Sci. 55, 455-464. Doi: 10.1614/WS-07-005.1.

Carlson, J.D. and J.F. Hancock.1991. A methodology for determining suitable heat-unit requirements for harvest of highbush blueberry. J. Amer. Soc Hort. Sci. 116 (5), 774-779.

Cesaraccio, C., D. Spano, P. Duce, and R.L. Snyder. 2001. An improved model for degree-days from temperature data. Int. J. Biometeorol. 45, 161-169. Doi: 10.1007/s004840100104.

Cross, H.Z. and M.S. Zuber. 1972. Prediction of flowering dates in maize based on different methods of estimating thermal units. Agron. J. 64, 351-355. Doi: 10.2134/agronj1972.00021962006400030029x.

Durand, R., R. Bonhomme, and M. Derieux. 1982. Seuil optimal des sommes de température: application au maïs (Zea mays L.). Agronomie 7, 589-597.

Gilmore, E.C. and J.S. Rogers. 1958. Heat units as a method of measuring maturity in corn. Agron. J. 50, 611-615. Doi: 10.2134/agronj1958.00021962005000100014x.

Gordon, R. and A. Bootsma. 1993. Analyses of growing degree-days for agriculture in Atlantic Canada. Clim. Res. 3, 169-176. Doi: 10.3354/cr003169.

Hatfield, J.L. and J.H. Prueger. 2015. Temperature extremes: Effect on plant growth and development. Weather and Climate Extremes. 10, 4-10. Doi: 10.1016/j.wace.2015.08.001.

Higley, L.G., L.P. Pedigo, and K.R. Ostlie. 1986. DEGDAY: a program for calculating degree-days, and assumptions behind the degree-day approach. Environ. Entomol. 15, 999-1016. Doi: 10.1093/ee/15.5.999.

Jaramillo, R.A. and M.O. Guzmán.1984. Relación entre la temperatura y el crecimiento en Coffea arabica L., variedad caturra. Cenicafé. 35(3), 57-65.

Johnson, I.R. and J.H.M. Thornley. 1985. Temperature dependence of plant and crop processes. Ann. Bot. 55, 1-24.

Kean, J.M. 2013. How accurate are thermal accumulation methods for predicting phenology in New Zealand. N.Z. Plant Prot. 66, 124-131.

Lima, E.P. and E.L. da Silva. 2008. Temperatura base, coeficientes de cultura e graus-dia para cafeeiro arábica em fase de implantação. R. Bras. Eng. Agríc. Ambiental. 12(3), 266-273. Doi: 10.1590/S141543662008000300007.

Lindsey, A.A. and J.E. Newman. 1956. Use of official weather data in spring time: temperature analysis of an indiana phenological record. Ecol. 37, 812-823. Doi: 10.2307/1933072.

Litschmann, T., I. Oukropec, and B. Kirzan. 2008. Predicting individual phenological phases in peaches using meteorological data. Hort. Sci. 35(2), 65-71.

McMaster, G.S. and W.W. Wilhelm. 1997. Growing degree-days: one equation, two interpretations. Agr. Forest Meteorol. 87, 291-300. Doi: 10.1016/S0168-1923(97)00027-0.

McMaster, G.S. 1993. Another wheat (Triticumspp.) model? Progress and applications in crop modeling. Riv. Agron. 27, 264-272.

Ometto, J.C. 1981. Bioclimatologia vegetal. Agronômica Ceres. São Paulo, Brazil.

Pedro-Junior, M.J., O. Brunini, R.R. Alfonsi, and L.R. Angelocci. 1977. Estimativa de graus-dia em função de altitude e latitude para o estado de São Paulo. Bragantia 36(1), 89-92. Doi: 10.1590/S0006-87051977000100005.

Pezzopane, J.R.M., M.J. Pedro, M.B. Paes, and L.C. Fazuoli. 2008. Exigência térmica do Café árabica cv. Mundo Novo no subperíodo florescimento-colheita. Ciênc. Agrotec. 32(6), 1781-1786. Doi: 10.1590/S1413-70542008000600016.

Pruess, K. 1983. Day-degree methods for pest management. Environ. Entomol. 12, 613-619. Doi: 10.1093/ee/12.3.613.

Raworth, D.A. 1994. Estimation of degree-days using temperature data recorded at regular intervals. Environ. Entomol. 23, 893-899. Doi: 10.1093/ee/23.4.893.

Rodríguez, C.D., J.M. Cotes, and J.R. Cure. 2012. Comparision of eight degree-days estimation methods in four agroecological regions in Colombia. Bragantia 71(2), 299-307. Doi: 10.1590/S0006-87052012005000011.

Roltsch, W.J., F.G. Zalom, A.J. Strawn, J.F. Strand, and M.J. Pitcairn. 1999. Evaluation of several degree-day estimation methods in California climates. Int. J. Biometeorol. 42, 169-176. Doi: 10.1007/s004840050101.

SAS Institute. 2012. The SAS system for Windows. Release 9.4. SAS Institute. Cary, NC, USA.

Sharpe, P.J.H. and D.W. DeMichele. 1977. Reaction kinetics of poikilotherm development. Theor. Biol. 64, 649-670. Doi: 10.1016/0022-5193(77)90265-X.

Snyder, R.L. 1985. Hand calculating degree days. Agr. Forest Meteorol. 35(1-4), 353-358. Doi: 10.1016/0168-1923(85)90095-4.

Snyder, R.L., D. Spano, C. Cesaraccio, and P. Duce. 1999. Determining degree-day threshold from field observations. Int. J. Biometeorol. 42, 177-182. Doi: 10.1007/s004840050102.

Snyder, R.L., D. Spano, and P. Duce. 2013. Weather station siting: Effects on phenological models. pp. 345-361. In: Shwartz, M.D. (ed.). Phenology: An integrative environmental science. Springer Verlag, Berlin, Germany.

Souza, A.P.R., C.M. Carvalho, A.D. Lima, H.O. Florentino, and J.F. Escobedo. 2011. Comparison of methodologies for degree-day estimation using numerical methods. Acta Sci-Agron. 33(3), 391-400. Doi: 10.4025/actasciagron.v33i3.6018.

Villa-Nova, N.A., Jr., M.J. Pedro, A.R. Pereira, and J.C. Ometo. 1972. Estimativa de grausdia acumulados acima de qualquer temperatura base, em função das temperaturas máximas e mínima. Caderno de Ciências da Terra Instituto de Geografia Uniersidade de São Paulo 30, 1-8.

Wang, J.Y. 1960. A critique of the heat unit approach to plant response studies. Ecol. 41, 785-790. Doi: 10.2307/1931815.

Worner, S.P. 1988. Evaluation of diurnal temperature models and thermal summation in New Zealand. J. Econ. Entomol. 81, 9-13. Doi: 10.1093/jee/81.1.9.

How to Cite

APA

Unigarro, C. A., Bermudez Florez, L. N., Medina, R. D., Jaramillo, A. and Flórez, C. P. (2017). Evaluation of four degree-day estimation methods in eight Colombian coffee-growing areas. Agronomía Colombiana, 35(3), 357–364. https://doi.org/10.15446/agron.colomb.v35n3.65221

ACM

[1]
Unigarro, C.A., Bermudez Florez, L.N., Medina, R.D., Jaramillo, A. and Flórez, C.P. 2017. Evaluation of four degree-day estimation methods in eight Colombian coffee-growing areas. Agronomía Colombiana. 35, 3 (Sep. 2017), 357–364. DOI:https://doi.org/10.15446/agron.colomb.v35n3.65221.

ACS

(1)
Unigarro, C. A.; Bermudez Florez, L. N.; Medina, R. D.; Jaramillo, A.; Flórez, C. P. Evaluation of four degree-day estimation methods in eight Colombian coffee-growing areas. Agron. Colomb. 2017, 35, 357-364.

ABNT

UNIGARRO, C. A.; BERMUDEZ FLOREZ, L. N.; MEDINA, R. D.; JARAMILLO, A.; FLÓREZ, C. P. Evaluation of four degree-day estimation methods in eight Colombian coffee-growing areas. Agronomía Colombiana, [S. l.], v. 35, n. 3, p. 357–364, 2017. DOI: 10.15446/agron.colomb.v35n3.65221. Disponível em: https://revistas.unal.edu.co/index.php/agrocol/article/view/65221. Acesso em: 27 jan. 2025.

Chicago

Unigarro, Carlos Andres, Leidy Natalia Bermudez Florez, Rubén Darío Medina, Alvaro Jaramillo, and Claudia Patricia Flórez. 2017. “Evaluation of four degree-day estimation methods in eight Colombian coffee-growing areas”. Agronomía Colombiana 35 (3):357-64. https://doi.org/10.15446/agron.colomb.v35n3.65221.

Harvard

Unigarro, C. A., Bermudez Florez, L. N., Medina, R. D., Jaramillo, A. and Flórez, C. P. (2017) “Evaluation of four degree-day estimation methods in eight Colombian coffee-growing areas”, Agronomía Colombiana, 35(3), pp. 357–364. doi: 10.15446/agron.colomb.v35n3.65221.

IEEE

[1]
C. A. Unigarro, L. N. Bermudez Florez, R. D. Medina, A. Jaramillo, and C. P. Flórez, “Evaluation of four degree-day estimation methods in eight Colombian coffee-growing areas”, Agron. Colomb., vol. 35, no. 3, pp. 357–364, Sep. 2017.

MLA

Unigarro, C. A., L. N. Bermudez Florez, R. D. Medina, A. Jaramillo, and C. P. Flórez. “Evaluation of four degree-day estimation methods in eight Colombian coffee-growing areas”. Agronomía Colombiana, vol. 35, no. 3, Sept. 2017, pp. 357-64, doi:10.15446/agron.colomb.v35n3.65221.

Turabian

Unigarro, Carlos Andres, Leidy Natalia Bermudez Florez, Rubén Darío Medina, Alvaro Jaramillo, and Claudia Patricia Flórez. “Evaluation of four degree-day estimation methods in eight Colombian coffee-growing areas”. Agronomía Colombiana 35, no. 3 (September 1, 2017): 357–364. Accessed January 27, 2025. https://revistas.unal.edu.co/index.php/agrocol/article/view/65221.

Vancouver

1.
Unigarro CA, Bermudez Florez LN, Medina RD, Jaramillo A, Flórez CP. Evaluation of four degree-day estimation methods in eight Colombian coffee-growing areas. Agron. Colomb. [Internet]. 2017 Sep. 1 [cited 2025 Jan. 27];35(3):357-64. Available from: https://revistas.unal.edu.co/index.php/agrocol/article/view/65221

Download Citation

CrossRef Cited-by

CrossRef citations3

1. Pedro Lizarazo-Peña, Carlos Nústez-López, Aquiles Darghan. (2023). Efficiency in biomass accumulation of diploid potato cultivars (Solanum tuberosum, Phureja Group) in contrasting environments at elevation. Bragantia, 82 https://doi.org/10.1590/1678-4499.20230046.

2. Dimitrios Theodorou, Nikolaos Mantas, Ioanna Karampelia, Nikos Dimokas, Thomas Kyriakidis, Malamati Louta. (2023). Decision Making in Precision Agriculture - The Case of VEL OS Intelligent Decision Support System. 2023 14th International Conference on Information, Intelligence, Systems & Applications (IISA). , p.1. https://doi.org/10.1109/IISA59645.2023.10345869.

3. Muhammed A. Oyinlola, Mostafa Khorsandi, Rachael Penman, Madison L. Earhart, Richard Arsenault, Colin J. Brauner, Andre St-Hilaire. (2023). Hydrothermal impacts of water release on early life stages of white sturgeon in the Nechako river, B.C. Canada. Journal of Thermal Biology, 117, p.103682. https://doi.org/10.1016/j.jtherbio.2023.103682.

Dimensions

PlumX

Article abstract page views

506

Downloads

Download data is not yet available.