Evaluation of four degree-day estimation methods in eight Colombian coffee-growing areas
Evaluación de cuatro métodos para estimar grados-día en ocho zonas cafeteras colombianas
DOI:
https://doi.org/10.15446/agron.colomb.v35n3.65221Keywords:
thermal time, temperature, numerical integration, linear regression, bias (en)tiempo térmico, temperatura, integración numérica, regresión lineal, sesgo (es)
Methods to estimate the accumulation of degree-days based on maximum and minimum temperaturesare are commonly used to determine relationships or to adjust phenological models based on the "physiological time". Degree-days are obtained indirectly by these methods, this information is not generally available on hourly or shorter time scales due to the type of equipment used to record data or a data loss in historical time series. To compare the performance of such methods, degree-days were estimated with four indirect methods in eight Colombian locations during 1 year. Each indirect method was evaluated in comparison to the numerical integration method by the trapezoidal rule (reference method) using temperatures recorded every 5 min. Based on the percent bias error, the methods proposed by Arnold, Ometto and Snyder tend to overestimate thermal time, whereas the Villa-Nova method underestimates this time, but with a lower performance as regards to the previous ones.
References
Arnold, C.Y. 1959. The determination and significance of the base temperature in a linear heat unit system. Proc. Amer. Soc. Hort. Sci. 74, 430-445.
Baskerville, G.L. and P. Emin. 1969. Rapid Estimation of heat accumulation from maximum and minimum temperatures. Ecology.50, 514-517. Doi: 10.2307/1933912.
Bonhomme, R. 2000. Bases and limits to using "degree.day" units. Eur. J. Agron. 13, 1-10. Doi: 10.1016/S1161-0301(00)00058-7.
Bryant, S.R., J.S. Bale, and C.D. Thomas. 1998. Modification of the Triangle method of degree-day accumulation to allow for behavioral thermoregulation in insects. J. Appl. Ecol. 35, 921-927. Doi: 10.1111/j.1365-2664.1998.tb00009.x.
Camargo, A.D. and A.R. Pereira. 1994. Agrometeorology of the coffee crop. World Meteorological Organization, 92. Geneva, Switzerland.
Cardina, J., C.P. Herms, D.A. Herms, and F. Forcella. 2007. Evaluating phenological indicators for predicting giant foxtail (Setaria faberi) emergence. Weed Sci. 55, 455-464. Doi: 10.1614/WS-07-005.1.
Carlson, J.D. and J.F. Hancock.1991. A methodology for determining suitable heat-unit requirements for harvest of highbush blueberry. J. Amer. Soc Hort. Sci. 116 (5), 774-779.
Cesaraccio, C., D. Spano, P. Duce, and R.L. Snyder. 2001. An improved model for degree-days from temperature data. Int. J. Biometeorol. 45, 161-169. Doi: 10.1007/s004840100104.
Cross, H.Z. and M.S. Zuber. 1972. Prediction of flowering dates in maize based on different methods of estimating thermal units. Agron. J. 64, 351-355. Doi: 10.2134/agronj1972.00021962006400030029x.
Durand, R., R. Bonhomme, and M. Derieux. 1982. Seuil optimal des sommes de température: application au maïs (Zea mays L.). Agronomie 7, 589-597.
Gilmore, E.C. and J.S. Rogers. 1958. Heat units as a method of measuring maturity in corn. Agron. J. 50, 611-615. Doi: 10.2134/agronj1958.00021962005000100014x.
Gordon, R. and A. Bootsma. 1993. Analyses of growing degree-days for agriculture in Atlantic Canada. Clim. Res. 3, 169-176. Doi: 10.3354/cr003169.
Hatfield, J.L. and J.H. Prueger. 2015. Temperature extremes: Effect on plant growth and development. Weather and Climate Extremes. 10, 4-10. Doi: 10.1016/j.wace.2015.08.001.
Higley, L.G., L.P. Pedigo, and K.R. Ostlie. 1986. DEGDAY: a program for calculating degree-days, and assumptions behind the degree-day approach. Environ. Entomol. 15, 999-1016. Doi: 10.1093/ee/15.5.999.
Jaramillo, R.A. and M.O. Guzmán.1984. Relación entre la temperatura y el crecimiento en Coffea arabica L., variedad caturra. Cenicafé. 35(3), 57-65.
Johnson, I.R. and J.H.M. Thornley. 1985. Temperature dependence of plant and crop processes. Ann. Bot. 55, 1-24.
Kean, J.M. 2013. How accurate are thermal accumulation methods for predicting phenology in New Zealand. N.Z. Plant Prot. 66, 124-131.
Lima, E.P. and E.L. da Silva. 2008. Temperatura base, coeficientes de cultura e graus-dia para cafeeiro arábica em fase de implantação. R. Bras. Eng. Agríc. Ambiental. 12(3), 266-273. Doi: 10.1590/S141543662008000300007.
Lindsey, A.A. and J.E. Newman. 1956. Use of official weather data in spring time: temperature analysis of an indiana phenological record. Ecol. 37, 812-823. Doi: 10.2307/1933072.
Litschmann, T., I. Oukropec, and B. Kirzan. 2008. Predicting individual phenological phases in peaches using meteorological data. Hort. Sci. 35(2), 65-71.
McMaster, G.S. and W.W. Wilhelm. 1997. Growing degree-days: one equation, two interpretations. Agr. Forest Meteorol. 87, 291-300. Doi: 10.1016/S0168-1923(97)00027-0.
McMaster, G.S. 1993. Another wheat (Triticumspp.) model? Progress and applications in crop modeling. Riv. Agron. 27, 264-272.
Ometto, J.C. 1981. Bioclimatologia vegetal. Agronômica Ceres. São Paulo, Brazil.
Pedro-Junior, M.J., O. Brunini, R.R. Alfonsi, and L.R. Angelocci. 1977. Estimativa de graus-dia em função de altitude e latitude para o estado de São Paulo. Bragantia 36(1), 89-92. Doi: 10.1590/S0006-87051977000100005.
Pezzopane, J.R.M., M.J. Pedro, M.B. Paes, and L.C. Fazuoli. 2008. Exigência térmica do Café árabica cv. Mundo Novo no subperíodo florescimento-colheita. Ciênc. Agrotec. 32(6), 1781-1786. Doi: 10.1590/S1413-70542008000600016.
Pruess, K. 1983. Day-degree methods for pest management. Environ. Entomol. 12, 613-619. Doi: 10.1093/ee/12.3.613.
Raworth, D.A. 1994. Estimation of degree-days using temperature data recorded at regular intervals. Environ. Entomol. 23, 893-899. Doi: 10.1093/ee/23.4.893.
Rodríguez, C.D., J.M. Cotes, and J.R. Cure. 2012. Comparision of eight degree-days estimation methods in four agroecological regions in Colombia. Bragantia 71(2), 299-307. Doi: 10.1590/S0006-87052012005000011.
Roltsch, W.J., F.G. Zalom, A.J. Strawn, J.F. Strand, and M.J. Pitcairn. 1999. Evaluation of several degree-day estimation methods in California climates. Int. J. Biometeorol. 42, 169-176. Doi: 10.1007/s004840050101.
SAS Institute. 2012. The SAS system for Windows. Release 9.4. SAS Institute. Cary, NC, USA.
Sharpe, P.J.H. and D.W. DeMichele. 1977. Reaction kinetics of poikilotherm development. Theor. Biol. 64, 649-670. Doi: 10.1016/0022-5193(77)90265-X.
Snyder, R.L. 1985. Hand calculating degree days. Agr. Forest Meteorol. 35(1-4), 353-358. Doi: 10.1016/0168-1923(85)90095-4.
Snyder, R.L., D. Spano, C. Cesaraccio, and P. Duce. 1999. Determining degree-day threshold from field observations. Int. J. Biometeorol. 42, 177-182. Doi: 10.1007/s004840050102.
Snyder, R.L., D. Spano, and P. Duce. 2013. Weather station siting: Effects on phenological models. pp. 345-361. In: Shwartz, M.D. (ed.). Phenology: An integrative environmental science. Springer Verlag, Berlin, Germany.
Souza, A.P.R., C.M. Carvalho, A.D. Lima, H.O. Florentino, and J.F. Escobedo. 2011. Comparison of methodologies for degree-day estimation using numerical methods. Acta Sci-Agron. 33(3), 391-400. Doi: 10.4025/actasciagron.v33i3.6018.
Villa-Nova, N.A., Jr., M.J. Pedro, A.R. Pereira, and J.C. Ometo. 1972. Estimativa de grausdia acumulados acima de qualquer temperatura base, em função das temperaturas máximas e mínima. Caderno de Ciências da Terra Instituto de Geografia Uniersidade de São Paulo 30, 1-8.
Wang, J.Y. 1960. A critique of the heat unit approach to plant response studies. Ecol. 41, 785-790. Doi: 10.2307/1931815.
Worner, S.P. 1988. Evaluation of diurnal temperature models and thermal summation in New Zealand. J. Econ. Entomol. 81, 9-13. Doi: 10.1093/jee/81.1.9.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Pedro Lizarazo-Peña, Carlos Nústez-López, Aquiles Darghan. (2023). Efficiency in biomass accumulation of diploid potato cultivars (Solanum tuberosum, Phureja Group) in contrasting environments at elevation. Bragantia, 82 https://doi.org/10.1590/1678-4499.20230046.
2. Dimitrios Theodorou, Nikolaos Mantas, Ioanna Karampelia, Nikos Dimokas, Thomas Kyriakidis, Malamati Louta. (2023). Decision Making in Precision Agriculture - The Case of VEL OS Intelligent Decision Support System. 2023 14th International Conference on Information, Intelligence, Systems & Applications (IISA). , p.1. https://doi.org/10.1109/IISA59645.2023.10345869.
3. Muhammed A. Oyinlola, Mostafa Khorsandi, Rachael Penman, Madison L. Earhart, Richard Arsenault, Colin J. Brauner, Andre St-Hilaire. (2023). Hydrothermal impacts of water release on early life stages of white sturgeon in the Nechako river, B.C. Canada. Journal of Thermal Biology, 117, p.103682. https://doi.org/10.1016/j.jtherbio.2023.103682.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2017 Agronomía Colombiana
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
© Centro Editorial de la Facultad de Ciencias Agrarias, Universidad Nacional de Colombia
Reproduction and quotation of material appearing in the journal is authorized provided the following are explicitly indicated: journal name, author(s) name, year, volume, issue and pages of the source. The ideas and observations recorded by the authors are their own and do not necessarily represent the views and policies of the Universidad Nacional de Colombia. Mention of products or commercial firms in the journal does not constitute a recommendation or endorsement on the part of the Universidad Nacional de Colombia; furthermore, the use of such products should comply with the product label recommendations.
The Creative Commons license used by Agronomia Colombiana journal is: Attribution - NonCommercial - ShareAlike (by-nc-sa)
Agronomia Colombiana by Centro Editorial of Facultad de Ciencias Agrarias, Universidad Nacional de Colombia is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional License.
Creado a partir de la obra en http://revistas.unal.edu.co/index.php/agrocol/.