Published

2019-01-01

Physiological and antioxidant responses of cape gooseberry (Physalis peruviana L.) seedlings to phosphorus deficiency

Respuestas fisiológicas y antioxidantes en plántulas de uchuva (Physalis peruviana L.) a la deficiencia de fósforo

DOI:

https://doi.org/10.15446/agron.colomb.v37n1.65610

Keywords:

catalase, electrolyte leakage, mineral nutrition, proline, root length density (en)
catalasa, pérdida de electrolitos, nutrición mineral, prolina, densidad de longitud de raíces (es)

Downloads

Authors

  • Gabriel Roveda-Hoyos Universidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias Agrarias
  • Liz Moreno-Fonseca Universidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias Agrarias https://orcid.org/0000-0002-5421-9580

The main objective of present study was to understand the physiological effects of phosphorus (P) deficiency and the antioxidant response in cape gooseberry (Physalis peruviana L.) seedlings. Seedlings were grown in soil with five P levels: 0 (P0), 6 (P6), 12 (P12), 25 (P25) and 50 (P50) mg of P2O5 kg-1. The plant growth, gas exchange, chlorophyll content, membrane integrity and the antioxidant response in cape gooseberry were evaluated. In the P0, P6, P12 treatments, the seedlings showed a reduction in total biomass, the number of leaves, leaf area, root length density, shoot/root ratio, photosynthesis, transpiration, stomatal conductance, and chlorophyll content, as well as an increase in the electrolyte leakage, the proline content and the activity of catalase and peroxidase compared with the P50 treatment. The P25 treatment was not different compared to P50 in terms of photosynthesis, chlorophyll content and total biomass after 30 d of treatment, the number of leaves and root length density at 90 d of treatment, and in electrolyte leakage and peroxidase activity at 60 and 90 d of treatment. Doses below 25 mg of P2O5 kg-1 cause P deficiency in cape gooseberry seedlings, inducing antioxidant and protection response mechanisms to cope with stress.

El presente estudio tuvo como objetivo comprender los efectos fisiológicos de la deficiencia de fósforo (P) y la respuesta antioxidante de las plántulas de uchuva (Physalis peruviana L.). Las plántulas se cultivaron en suelo con 5 niveles de P: 0 (P0), 6 (P6), 12 (P12), 25 (P25) y 50 (P50) mg de P2O5 kg-1. Se evaluaron el crecimiento, el intercambio gaseoso, el contenido de clorofila, la integridad de la membrana y la respuesta antioxidante en las plántulas de uchuva. En los tratamientos P0, P6, P12, las plántulas mostraron una reducción en la biomasa total, el número de hojas, el área foliar, la densidad de la longitud de las raíces, la relación entre las raíces y la parte aérea, la fotosíntesis, la transpiración, la conductancia estomática y el contenido de clorofila, así como un incremento en la pérdida de electrolitos, el contenido de prolina y la actividad de la catalasa y la peroxidasa en comparación con el tratamiento con P50. El tratamiento con P25 no fue diferente con respecto a P50 en términos de fotosíntesis, contenido de clorofila y biomasa total después de 30 días de tratamiento, y en cuanto al número de hojas y la densidad de longitud de raíces a los 90 días de tratamiento y en la pérdida de electrolitos y actividad peroxidasa a 60 y 90 días de tratamiento. Dosis menores de 25 mg de P2O5 kg-1 causan deficiencia de P en las plántulas de la uchuva, induciendo la producción de antioxidantes y mecanismos de respuesta de protección para atenuar los efectos del estrés.

References

Abel, S., C.A. Ticconi, and C.A. Delatorre. 2002. Phosphate sensing in higher plants. Physiologia Plantarum 115: 1-8. Doi: 10.1034/j.1399-3054.2002.1150101.

Al-Karaki, G. N., R.B. Clark, and C.Y. Sullivan. 1996. Phosphorus nutrition and water stress effects on proline accumulation in Sorghum and Bean. Journal of Plant Physiology 184: 745-751. DOI: Doi.org/10.1016/S0176-1617(96)80378-6

Arias-Baldrich, C., N. Bosch, D. Begines, A.B. Feria, J. A. Monreal, and S. García-Mauriño. 2015. Proline synthesis in barley under iron deficiency and salinity. Journal of Plant physiology 183: 121-129. Doi: 10.1016/j.jplph.2015.05.016

Barrett, D.J., and R.M. Gifford. 1995. Acclimation of photosynthesis and growth by cotton to elevated CO2: interactions with severe phosphate deficiency and restricted rooting volume. Australian Journal of Plant Physiology 22:955-963. Doi: 10.1071/PP9950955

Bates, L.S., R.P. Waldren, and I.D. Teare. 1973. Rapid determination of free proline for water stress studies. Plant and Soil 39:205-207. Doi I: 10.1007/BF00018060

Blokhina, O., E. Virolainen, and K. Fagerstedt. 2003. Antioxidants, oxidative damage and oxygen deprivation stress: A review. Annals of Botany 91(2):179-194. Doi: 10.1093/aob/mcf118

Bradford, M.M. 1976. A rapid and sensitive for the quantitation of microgram quantitites of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72:248-254. Doi I: 10.1016/0003-2697(76)90527-3

Briones-Labarca, V., C. Giovagnoli-Vicuña, P. Figueroa-Álvarez, I. Quispe-Fuentes, and M. Pérez-Won. 2013. Extraction of ß-Carotene, Vitamin C and Antioxidant Compounds from Physalis peruviana (Cape gooseberry) Assisted by High Hydrostatic Pressure. Food and Nutrition Sciences 4(8A): 109-118. Doi.org/10.4236/fns.2013.48A014

Campbell, C.D., and R.F. Sage. 2006. Interactions between the effects of atmospheric CO2 content and P nutrition on photosynthesis in white lupin (Lupinus albus L.). Plant Cell Environ 29: 844-853. Doi: 10.1111/j.1365-3040.2005.01464.x

Chaudhary, M.L., J.J. Adu-Gyamfi, H. Saneoka, N.T. Nguyen, R. Suwa, S. Kanai, H.A. El-Shemy, D.A. Lightfoot, and K. Fujita. 2008. The effect of phosphorus deficiency on nutrient uptake, nitrogen fixation and photosynthetic rate in mashbean, mungbean and soybean. Acta Physiology Plant Journal, 30: 537-544. Doi.org/10.1007/s11738-008-0152-8

Cruz de Carvalho, M.H. 2008. Drought stress and reactive oxygen species. Plant Signal Behaviour 3(3): 156-165. Doi: 10.4161/psb.3.3.5536

Cubas, C., M.G. Lobo, and M. González. 2008. Optimization of the extraction of chlorophylls in green beans (Phaseolus vulgaris L.) by N, N-dimethylformamide using response surface methodology. Journal of Food Composition and Analysis 21: 125-133. Doi: 10.1016/j.jfca.2007.07.007

De Groot, C.C., L.F.M. Marcelis, R. Van Den Boogaard, and H. Lambers. 2001. Growth and dry-mass partitioning in tomato as affected by phosphorus nutrition and light. Plant Cell and Environment 24: 1309-1317. Doi: 10.1046/j.0016-8025.2001.00788.x

De Groot, C.C., R. Van Den Boogaard, L.F.M. Marcelis, J. Harbinson, and H. Lambers. 2003. Contrasting effects of N and P deprivation on the regulation of photosynthesis in tomato plants in relation to feedback limitation. Journal of Experimental Botany 54: 1957-1967. Doi: 10.1093/jxb/erg193

El-Tohamy, W.A., H.M. El-Abagy, M.A. Badr, A.A. Ghanem, and S.D. Abou-Hussein. 2012. Improvement of productivity and quality of Cape gooseberry (Physalis peruviana L.) by foliar application of some chemical substances. Journal of Applied Sciences Research 8(4): 2366-2370.

Fischer, G., G. Ebert, and P. Lüdders. 2007. Production, seeds and carbohydrate contents of Cape gooseberry (Physalis peruviana L.) fruits grown at two contrasting Colombian altitudes. Journal of Applied Botany and Food Quality 81: 29-35.

Garzón-Acosta, C.P., D.M. Villarreal-Garzón, G. Fischer, A. Herrera, and O.D. Sanjuanelo. 2014. Deficiencies of phosphorus, calcium and magnesium affect the postharvest quality of Cape gooseberry (Physalis peruviana L.) fruits. Acta Horticulturae 1016: 83-88. Doi: 10.17660/ActaHortic.2014.1016.9

Guo, T., Yao, P., Z. Zhang, J. Wang, and M. Wang. 2012. Involvement of Antioxidative Defence System in Rice Seedlings Exposed to Aluminum Toxicity and Phosphorus Deficiency. Rice Science, 19(3): 207-212. Doi: 10.1016/S1672-63-08(12)60042-2

Hare, P.D., W.A. Cress, and J. van Staden. 1998. Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environment 21: 535-553. Doi: 10.1046/j.1365-3040.1998.00309.x

Hawkesford, M., W. Horst, T. Kichey, H. Lambers, J. Schjoerring, M.I. Skrumsager, and F. White. 2012. Functions of Macronutrients. In Mineral Nutrition of Higher Plants, eds. P. Marschner, 135-178. Elsevier, USA.

Hermans, C., J.P. Hammond, P.J. White, and N. Verbruggen. 2006. How do plants respond to nutrient shortage by biomass allocation?. Trends in Plant Science 11: 610-617. Doi: 10.1016/j.tplants.2006.10.007

Ismail, M. 2005. Aluminum-phosphorus interactions on growth and some physiological traits of carrot and radish plants. Acta Agronomica Hungarica 53: 293-301. Doi: 10.1556/AAgr.53.2005.3.6

Jacob J., and D.W. Lawlor. 1992. Dependence of photosynthesis of sunflower and maize leaves on phosphate supply, ribulose-1, 5-bisphosphate carboxylase/oxygenase activity, and ribulose-1, 5-bisphosphate pool size. Plant Physiology 98: 801-807. Doi: 10.1104/pp.98.3.801

Juszczuk, I., E. Malusà, and A.M. Rychter. 2001. Oxidative stress during phosphate deficiency in roots of bean plants (Phaseolus vulgaris L.). Journal of Plant Physiolgy 158: 1299-1305. Doi: 10.1078/0176-1617-00541

Khavari-Nejad, R.A., F. Najafi, and C. Tofighi. 2009. Diverse responses of tomato to N and P deficiency. International Journal of Agriculture and biology 11: 209-213.

Kireyko, A., I. Veselova, and T. Shekhovtsova. 2006. Mechanisms of peroxidase oxidation of o-dianisidine, 3, 3´, 5, 5´- tetramethylbenzidine and o-phynylenediamine in the presence of sodium dodecylfulfate. Russian Journal of Bioorganic Chemistry 32: 71-77. Doi: 10.1134/S1068162006010079

Kirschbaum, M.U.F., and D.Tompkins.1990. Photosynthetic responses to phosphorus nutrition in Eucalyptus grandis seedlings. Australian Journal of Plant Physiology 17: 527-535.

Lichtenthaler, H. 1987. Chlorophylls and Carotenoids: pigments of pthotosynthetic biomembranes. In Methods in Enzymology, eds. R. Dource and L. Packer, 350-382. Academic Press Inc., New York. Doi: 10.1016/0076-6879(87)48036-1

Maathuis, F.J. 2009. Physiological functions of mineral macronutrients. Current Opinion in Plant Biology 12: 250-258. Doi: 10.1016/j.pbi.2009.04.003

Malusa, E., E. Laurenti, I. Juszczuk, R.P. Ferrari, and A.M. Rychter. 2002. Free radical production in roots of Phaseolus vulgaris subjected to phosphate deficiency stress. Plant Physiolgy and Biochemistry 40: 963–967. Doi: 10.1016/S0981-9428(02)01459-6

Manschadi, A.M., H.-P. Kaul, J. Vollmann, J. Eitzinger, and W. Wenzel. 2014. Reprint of “Developing phosphorus-efficient crop varieties – An interdisciplinary research frame work. Field Crop Research 165: 49-60. Doi: 10.1016/j.fcr.2014.06.027

Misson, J., K.G. Raghothama, A. Jain, J. Jouhet, et al. 2005. A genome-wide transcriptional analysis using Arabidopsis thaliana affymetrix gene chips determined plant responses to phosphate deprivation. Proccedings of the National Academy of Sciences. 102(33): 11934-11939. Doi: 10.1073/pnas.0505266102

Mollier, A., and S. Pellerin. 1999. Maize root system growth and development as influenced by P deficiency. Journal of Experimental Botany 50: 487-497. Doi: 10.1093/jxb/50.333.487

Nakamura, Y. 2013. Review: Phosphate starvation and membrane lipid remodeling in seed plants. Progress in Lipid Research 52: 43-50. Doi: 10.1016/j.plipres.2012.07.002

Newman, E. I., and K. Ritz. 1986. Evidence on the pathways of phosphorus transfer between vesicular-arbuscular mycorrhizal plants. New Phytologist 104: 77-87. Doi: 10.1111/j.1469-8137.1986.tb00635.x

Nielsen, K.I., A. Eshel, and J.P. Lynch. 2001. The effect of phosphorus availability on the carbon economy of contrasting common bean genotypes. Journal of Experimental Botany 52(355): 329-339. Doi: 10.1093/jexbot/52.355.329

Plénet, D., A. Mollier, and S. Pellerin. 2000. Growth analysis of maize field crops under phosphorus deficiency. II. Radiation-use efficiency, biomass accumulation and yield component. Plant and Soil 224: 259-272. Doi: 10.1023/A:1004835621371

Puente, L.A., S.A. Pinto-Muñoz, E.S. Castro, and M. Cortés. 2011. Physalis peruviana Linnaeus, the multiple properties of a highly functional fruit: a review. Food Research International 44: 1733-1740. Doi: 10.1016/j.foodres.2010.09.034

Radin, J.W., and M.P. Eidenbock. 1984. Hydraulic conductance as a factor limiting leaf expansion of phosphorus-deficient cotton plants. Plant Physiology 75: 372-377. Doi: 10.1104/pp.75.2.372

Ramaekers, L., R. Remans, R.I.M. Rao, M. Blair, and J. Vanderleyden. 2010. Strategies for improving phosphorus acquisition efficiency of crop plants. Field Crops Research 117: 169-176. Doi: 10.1016/j.fcr.2010.03.001

Ramadan, M.F., and J.T. Mörcel. 2003. Oil Goldenberry (Physalis peruviana L.). Journal of Agricultural and Food Chemistry 51: 969-974. Doi: 10.1021/jf020778z

Ramírez, F., G. Fischer, T.L. Davenportc, J.C.A. Pinzón, and C. Ulrichse. 2013. Cape gooseberry (Physalis peruviana L.) phenology according to the BBCH phenological scale. Scientia Horticulturae 162: 39-42.

Rao, I.M., and N. Terry. 1995. Leaf phosphate status, photosynthesis, and carbon partitioning in sugar beet. IV. Changes with time following increased supply of phosphate to low-phosphate plants. Plant Physiology 107: 1313-1321. Doi.org/10.1104/pp.107.4.1313

Reich, P.B., J. Oleksyn, and I.J. Wright. 2009. Leaf phosphorus influences the photosynthesis–nitrogen relation: a cross-biome analysis of 314 species. Oecologia 160(2): 207-212. Doi: 10.1007/s00442-009-1291-3

Rodríguez, P., A. Torrecillas, M. Morales, M. Ortuño, and M. Sánchez. 2004. Effects of NaCl salinity and water stress on growth and leaf water relations of Asteriscus maritimus plants. Environmental and Experimental Botany 53: 113-123. Doi.org/10.1016/j.scienta.2009.06.032

Sánchez, P.A. 1976. Properties and Management of Soils in the Tropics. John Wiley and Sons, New York, USA.

Sarker, B.C., and J.L. Karmoker. 2011. Effects of phosphorus deficiency on accumulation of biochemical compounds in lentil (Lens culinaris medik.). Bangladesh Journal of Botany 40(1): 23-27. Doi: 10.3329/bjb.v40i1.7992

Schobert, B., and H. Tschesche. 1978. Unusual solution properties of proline and its interaction with proteins. Biochimica et Biophysica Acta 541: 270-277. Doi: 10.1016/0304-4165(78)90400-2

Singh, S.K., G. Badgujarb, R. Vangimalla, D.H. Reddyb, J. Fleisherb, and A. Bunce. 2013. Carbon dioxide diffusion across stomata and mesophyll and photo-biochemical processes as affected by growth CO2 and phosphorus nutrition in cotton. Journal of Plant Physiology 170: 801-813. Doi: 10.1016/j.jplph.2013.01.001

Tewari, R.K., P. Kumara, N. Tewari, S. Srivastava, and P.N. Sharma. 2004. Macronutrient deficiencies and differential antioxidant responses influence on the activity and expression of superoxide dismutase in maize. Plant Science 166: 687-694.

Thomas, D., D.S. Thomas, K.D. Montagu, and J.P. Conroy. 2006. Leaf inorganic phosphorus as a potential indicator of phosphorus status photosynthesis and growth of Eucalyptus grandis seedlings. Forest Ecology and Management 223: 267-274. Doi: 10.1016/j.foreco.2005.11.006

Ulrich, B.H. 1974. Catalase. Methods of Enzymatic Analysis. New York: Academic Press.

Vance, C.P., C. Uhde-Stone, and D.L. Allan. 2003. Phosphorus acquisition and use, critical adaptations by plants for securing a nonrenewable resource. New Phytologist 15: 423-447. Doi: 10.1046/j.1469-8137.2003.00695.x

Yang, Y. H., and S.M. Chen. 2001. Physiological effects of aluminum/calcium ratios on Aluminum toxicity of mungbean seedling growth. Journal of Plant Nutrition 24: 585-597. Doi: 10.1081/PLN-100104982

Yao, Q., K. Yang, G. Pan, and T. Rong. 2007. The effects of low phosphorus stress on morphological and physiological characteristics of maize (Zea mays L.) Landraces. Agricultural Sciences in China 6(5): 559-566. Doi.org/10.1016/S1671-2927(07)60083-2

Zhang, Y., F. Chen, X. Chen, L. Long, K. Gao, L. Yuan, F. Zhang, and G. Mi. 2013. Genetic Improvement of Root Growth Contributes to Efficient Phosphorus Acquisition in maize (Zea mays L.). Journal of Integrative Agriculture 12(6): 1098-1111. Doi: 10.1016/S2095-3119(13)60489-X

Zribi, O.T., Z. Barhoumi, S. Kouas, M. Ghandour, I. Slama, and C. Abdelly. 2015. Insigths into de physiological responses of the facultative halophyte Aeluropus littoralis to the combined effects of salinity and phosphorus availability. Journal of Plant physiology 189: 1-10. doi: 10.1016/j.jplph.2015.08.007

How to Cite

APA

Roveda-Hoyos, G. and Moreno-Fonseca, L. (2019). Physiological and antioxidant responses of cape gooseberry (Physalis peruviana L.) seedlings to phosphorus deficiency. Agronomía Colombiana, 37(1), 3–11. https://doi.org/10.15446/agron.colomb.v37n1.65610

ACM

[1]
Roveda-Hoyos, G. and Moreno-Fonseca, L. 2019. Physiological and antioxidant responses of cape gooseberry (Physalis peruviana L.) seedlings to phosphorus deficiency. Agronomía Colombiana. 37, 1 (Jan. 2019), 3–11. DOI:https://doi.org/10.15446/agron.colomb.v37n1.65610.

ACS

(1)
Roveda-Hoyos, G.; Moreno-Fonseca, L. Physiological and antioxidant responses of cape gooseberry (Physalis peruviana L.) seedlings to phosphorus deficiency. Agron. Colomb. 2019, 37, 3-11.

ABNT

ROVEDA-HOYOS, G.; MORENO-FONSECA, L. Physiological and antioxidant responses of cape gooseberry (Physalis peruviana L.) seedlings to phosphorus deficiency. Agronomía Colombiana, [S. l.], v. 37, n. 1, p. 3–11, 2019. DOI: 10.15446/agron.colomb.v37n1.65610. Disponível em: https://revistas.unal.edu.co/index.php/agrocol/article/view/65610. Acesso em: 31 aug. 2024.

Chicago

Roveda-Hoyos, Gabriel, and Liz Moreno-Fonseca. 2019. “Physiological and antioxidant responses of cape gooseberry (Physalis peruviana L.) seedlings to phosphorus deficiency”. Agronomía Colombiana 37 (1):3-11. https://doi.org/10.15446/agron.colomb.v37n1.65610.

Harvard

Roveda-Hoyos, G. and Moreno-Fonseca, L. (2019) “Physiological and antioxidant responses of cape gooseberry (Physalis peruviana L.) seedlings to phosphorus deficiency”, Agronomía Colombiana, 37(1), pp. 3–11. doi: 10.15446/agron.colomb.v37n1.65610.

IEEE

[1]
G. Roveda-Hoyos and L. Moreno-Fonseca, “Physiological and antioxidant responses of cape gooseberry (Physalis peruviana L.) seedlings to phosphorus deficiency”, Agron. Colomb., vol. 37, no. 1, pp. 3–11, Jan. 2019.

MLA

Roveda-Hoyos, G., and L. Moreno-Fonseca. “Physiological and antioxidant responses of cape gooseberry (Physalis peruviana L.) seedlings to phosphorus deficiency”. Agronomía Colombiana, vol. 37, no. 1, Jan. 2019, pp. 3-11, doi:10.15446/agron.colomb.v37n1.65610.

Turabian

Roveda-Hoyos, Gabriel, and Liz Moreno-Fonseca. “Physiological and antioxidant responses of cape gooseberry (Physalis peruviana L.) seedlings to phosphorus deficiency”. Agronomía Colombiana 37, no. 1 (January 1, 2019): 3–11. Accessed August 31, 2024. https://revistas.unal.edu.co/index.php/agrocol/article/view/65610.

Vancouver

1.
Roveda-Hoyos G, Moreno-Fonseca L. Physiological and antioxidant responses of cape gooseberry (Physalis peruviana L.) seedlings to phosphorus deficiency. Agron. Colomb. [Internet]. 2019 Jan. 1 [cited 2024 Aug. 31];37(1):3-11. Available from: https://revistas.unal.edu.co/index.php/agrocol/article/view/65610

Download Citation

CrossRef Cited-by

CrossRef citations4

1. Lucas Esteban Cano-Gallego, Nube Minchalá-Buestan, Ruby Alejandra Loaiza-Ruíz, José Régulo Cartagena-Valenzuela, Oscar de Jesús Córdoba-Gaona. (2022). Gas exchange and chlorophyll fluorescence in spearmint (Mentha spicata L.) leaves influenced by mineral nutrition. Revista Colombiana de Ciencias Hortícolas, 16(1) https://doi.org/10.17584/rcch.2022v16i1.13685.

2. Marcos Vinícius Miranda Aguilar, Caroline Castro Kuinchtner, Daiane Franchesca Senhor, Thalía Preussler Birck, Charleston dos Santos Lima, Matheus Severo de Souza Kulmann, Maristela Machado Araujo, Álvaro Luís Pasquetti Berghetti, Gustavo Brunetto, Luciane Almeri Tabaldi. (2024). Selecting Eucalyptus spp. Clones to Enable Higher Phosphorus Uptake Efficiency. Journal of Plant Growth Regulation, 43(3), p.854. https://doi.org/10.1007/s00344-023-11145-2.

3. Gerhard Fischer, Helber Enrique Balaguera-López, Luz Marina Melgarejo. (2024). Handbook of Goldenberry (Physalis Peruviana). , p.101. https://doi.org/10.1016/B978-0-443-15433-1.00010-8.

4. Suresh Kumar, Anuradha Agrawal, Karishma Seem, Santosh Kumar, K. K. Vinod, Trilochan Mohapatra. (2022). Transcriptome analysis of a near-isogenic line and its recurrent parent reveals the role of Pup1 QTL in phosphorus deficiency tolerance of rice at tillering stage. Plant Molecular Biology, 109(1-2), p.29. https://doi.org/10.1007/s11103-022-01254-z.

Dimensions

PlumX

Article abstract page views

977

Downloads

Download data is not yet available.