Physiological and antioxidant responses of cape gooseberry (Physalis peruviana L.) seedlings to phosphorus deficiency
Respuestas fisiológicas y antioxidantes en plántulas de uchuva (Physalis peruviana L.) a la deficiencia de fósforo
DOI:
https://doi.org/10.15446/agron.colomb.v37n1.65610Keywords:
catalase, electrolyte leakage, mineral nutrition, proline, root length density (en)catalasa, pérdida de electrolitos, nutrición mineral, prolina, densidad de longitud de raíces (es)
Downloads
The main objective of present study was to understand the physiological effects of phosphorus (P) deficiency and the antioxidant response in cape gooseberry (Physalis peruviana L.) seedlings. Seedlings were grown in soil with five P levels: 0 (P0), 6 (P6), 12 (P12), 25 (P25) and 50 (P50) mg of P2O5 kg-1. The plant growth, gas exchange, chlorophyll content, membrane integrity and the antioxidant response in cape gooseberry were evaluated. In the P0, P6, P12 treatments, the seedlings showed a reduction in total biomass, the number of leaves, leaf area, root length density, shoot/root ratio, photosynthesis, transpiration, stomatal conductance, and chlorophyll content, as well as an increase in the electrolyte leakage, the proline content and the activity of catalase and peroxidase compared with the P50 treatment. The P25 treatment was not different compared to P50 in terms of photosynthesis, chlorophyll content and total biomass after 30 d of treatment, the number of leaves and root length density at 90 d of treatment, and in electrolyte leakage and peroxidase activity at 60 and 90 d of treatment. Doses below 25 mg of P2O5 kg-1 cause P deficiency in cape gooseberry seedlings, inducing antioxidant and protection response mechanisms to cope with stress.
References
Abel, S., C.A. Ticconi, and C.A. Delatorre. 2002. Phosphate sensing in higher plants. Physiologia Plantarum 115: 1-8. Doi: 10.1034/j.1399-3054.2002.1150101.
Al-Karaki, G. N., R.B. Clark, and C.Y. Sullivan. 1996. Phosphorus nutrition and water stress effects on proline accumulation in Sorghum and Bean. Journal of Plant Physiology 184: 745-751. DOI: Doi.org/10.1016/S0176-1617(96)80378-6
Arias-Baldrich, C., N. Bosch, D. Begines, A.B. Feria, J. A. Monreal, and S. García-Mauriño. 2015. Proline synthesis in barley under iron deficiency and salinity. Journal of Plant physiology 183: 121-129. Doi: 10.1016/j.jplph.2015.05.016
Barrett, D.J., and R.M. Gifford. 1995. Acclimation of photosynthesis and growth by cotton to elevated CO2: interactions with severe phosphate deficiency and restricted rooting volume. Australian Journal of Plant Physiology 22:955-963. Doi: 10.1071/PP9950955
Bates, L.S., R.P. Waldren, and I.D. Teare. 1973. Rapid determination of free proline for water stress studies. Plant and Soil 39:205-207. Doi I: 10.1007/BF00018060
Blokhina, O., E. Virolainen, and K. Fagerstedt. 2003. Antioxidants, oxidative damage and oxygen deprivation stress: A review. Annals of Botany 91(2):179-194. Doi: 10.1093/aob/mcf118
Bradford, M.M. 1976. A rapid and sensitive for the quantitation of microgram quantitites of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72:248-254. Doi I: 10.1016/0003-2697(76)90527-3
Briones-Labarca, V., C. Giovagnoli-Vicuña, P. Figueroa-Álvarez, I. Quispe-Fuentes, and M. Pérez-Won. 2013. Extraction of ß-Carotene, Vitamin C and Antioxidant Compounds from Physalis peruviana (Cape gooseberry) Assisted by High Hydrostatic Pressure. Food and Nutrition Sciences 4(8A): 109-118. Doi.org/10.4236/fns.2013.48A014
Campbell, C.D., and R.F. Sage. 2006. Interactions between the effects of atmospheric CO2 content and P nutrition on photosynthesis in white lupin (Lupinus albus L.). Plant Cell Environ 29: 844-853. Doi: 10.1111/j.1365-3040.2005.01464.x
Chaudhary, M.L., J.J. Adu-Gyamfi, H. Saneoka, N.T. Nguyen, R. Suwa, S. Kanai, H.A. El-Shemy, D.A. Lightfoot, and K. Fujita. 2008. The effect of phosphorus deficiency on nutrient uptake, nitrogen fixation and photosynthetic rate in mashbean, mungbean and soybean. Acta Physiology Plant Journal, 30: 537-544. Doi.org/10.1007/s11738-008-0152-8
Cruz de Carvalho, M.H. 2008. Drought stress and reactive oxygen species. Plant Signal Behaviour 3(3): 156-165. Doi: 10.4161/psb.3.3.5536
Cubas, C., M.G. Lobo, and M. González. 2008. Optimization of the extraction of chlorophylls in green beans (Phaseolus vulgaris L.) by N, N-dimethylformamide using response surface methodology. Journal of Food Composition and Analysis 21: 125-133. Doi: 10.1016/j.jfca.2007.07.007
De Groot, C.C., L.F.M. Marcelis, R. Van Den Boogaard, and H. Lambers. 2001. Growth and dry-mass partitioning in tomato as affected by phosphorus nutrition and light. Plant Cell and Environment 24: 1309-1317. Doi: 10.1046/j.0016-8025.2001.00788.x
De Groot, C.C., R. Van Den Boogaard, L.F.M. Marcelis, J. Harbinson, and H. Lambers. 2003. Contrasting effects of N and P deprivation on the regulation of photosynthesis in tomato plants in relation to feedback limitation. Journal of Experimental Botany 54: 1957-1967. Doi: 10.1093/jxb/erg193
El-Tohamy, W.A., H.M. El-Abagy, M.A. Badr, A.A. Ghanem, and S.D. Abou-Hussein. 2012. Improvement of productivity and quality of Cape gooseberry (Physalis peruviana L.) by foliar application of some chemical substances. Journal of Applied Sciences Research 8(4): 2366-2370.
Fischer, G., G. Ebert, and P. Lüdders. 2007. Production, seeds and carbohydrate contents of Cape gooseberry (Physalis peruviana L.) fruits grown at two contrasting Colombian altitudes. Journal of Applied Botany and Food Quality 81: 29-35.
Garzón-Acosta, C.P., D.M. Villarreal-Garzón, G. Fischer, A. Herrera, and O.D. Sanjuanelo. 2014. Deficiencies of phosphorus, calcium and magnesium affect the postharvest quality of Cape gooseberry (Physalis peruviana L.) fruits. Acta Horticulturae 1016: 83-88. Doi: 10.17660/ActaHortic.2014.1016.9
Guo, T., Yao, P., Z. Zhang, J. Wang, and M. Wang. 2012. Involvement of Antioxidative Defence System in Rice Seedlings Exposed to Aluminum Toxicity and Phosphorus Deficiency. Rice Science, 19(3): 207-212. Doi: 10.1016/S1672-63-08(12)60042-2
Hare, P.D., W.A. Cress, and J. van Staden. 1998. Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environment 21: 535-553. Doi: 10.1046/j.1365-3040.1998.00309.x
Hawkesford, M., W. Horst, T. Kichey, H. Lambers, J. Schjoerring, M.I. Skrumsager, and F. White. 2012. Functions of Macronutrients. In Mineral Nutrition of Higher Plants, eds. P. Marschner, 135-178. Elsevier, USA.
Hermans, C., J.P. Hammond, P.J. White, and N. Verbruggen. 2006. How do plants respond to nutrient shortage by biomass allocation?. Trends in Plant Science 11: 610-617. Doi: 10.1016/j.tplants.2006.10.007
Ismail, M. 2005. Aluminum-phosphorus interactions on growth and some physiological traits of carrot and radish plants. Acta Agronomica Hungarica 53: 293-301. Doi: 10.1556/AAgr.53.2005.3.6
Jacob J., and D.W. Lawlor. 1992. Dependence of photosynthesis of sunflower and maize leaves on phosphate supply, ribulose-1, 5-bisphosphate carboxylase/oxygenase activity, and ribulose-1, 5-bisphosphate pool size. Plant Physiology 98: 801-807. Doi: 10.1104/pp.98.3.801
Juszczuk, I., E. Malusà, and A.M. Rychter. 2001. Oxidative stress during phosphate deficiency in roots of bean plants (Phaseolus vulgaris L.). Journal of Plant Physiolgy 158: 1299-1305. Doi: 10.1078/0176-1617-00541
Khavari-Nejad, R.A., F. Najafi, and C. Tofighi. 2009. Diverse responses of tomato to N and P deficiency. International Journal of Agriculture and biology 11: 209-213.
Kireyko, A., I. Veselova, and T. Shekhovtsova. 2006. Mechanisms of peroxidase oxidation of o-dianisidine, 3, 3´, 5, 5´- tetramethylbenzidine and o-phynylenediamine in the presence of sodium dodecylfulfate. Russian Journal of Bioorganic Chemistry 32: 71-77. Doi: 10.1134/S1068162006010079
Kirschbaum, M.U.F., and D.Tompkins.1990. Photosynthetic responses to phosphorus nutrition in Eucalyptus grandis seedlings. Australian Journal of Plant Physiology 17: 527-535.
Lichtenthaler, H. 1987. Chlorophylls and Carotenoids: pigments of pthotosynthetic biomembranes. In Methods in Enzymology, eds. R. Dource and L. Packer, 350-382. Academic Press Inc., New York. Doi: 10.1016/0076-6879(87)48036-1
Maathuis, F.J. 2009. Physiological functions of mineral macronutrients. Current Opinion in Plant Biology 12: 250-258. Doi: 10.1016/j.pbi.2009.04.003
Malusa, E., E. Laurenti, I. Juszczuk, R.P. Ferrari, and A.M. Rychter. 2002. Free radical production in roots of Phaseolus vulgaris subjected to phosphate deficiency stress. Plant Physiolgy and Biochemistry 40: 963–967. Doi: 10.1016/S0981-9428(02)01459-6
Manschadi, A.M., H.-P. Kaul, J. Vollmann, J. Eitzinger, and W. Wenzel. 2014. Reprint of “Developing phosphorus-efficient crop varieties – An interdisciplinary research frame work. Field Crop Research 165: 49-60. Doi: 10.1016/j.fcr.2014.06.027
Misson, J., K.G. Raghothama, A. Jain, J. Jouhet, et al. 2005. A genome-wide transcriptional analysis using Arabidopsis thaliana affymetrix gene chips determined plant responses to phosphate deprivation. Proccedings of the National Academy of Sciences. 102(33): 11934-11939. Doi: 10.1073/pnas.0505266102
Mollier, A., and S. Pellerin. 1999. Maize root system growth and development as influenced by P deficiency. Journal of Experimental Botany 50: 487-497. Doi: 10.1093/jxb/50.333.487
Nakamura, Y. 2013. Review: Phosphate starvation and membrane lipid remodeling in seed plants. Progress in Lipid Research 52: 43-50. Doi: 10.1016/j.plipres.2012.07.002
Newman, E. I., and K. Ritz. 1986. Evidence on the pathways of phosphorus transfer between vesicular-arbuscular mycorrhizal plants. New Phytologist 104: 77-87. Doi: 10.1111/j.1469-8137.1986.tb00635.x
Nielsen, K.I., A. Eshel, and J.P. Lynch. 2001. The effect of phosphorus availability on the carbon economy of contrasting common bean genotypes. Journal of Experimental Botany 52(355): 329-339. Doi: 10.1093/jexbot/52.355.329
Plénet, D., A. Mollier, and S. Pellerin. 2000. Growth analysis of maize field crops under phosphorus deficiency. II. Radiation-use efficiency, biomass accumulation and yield component. Plant and Soil 224: 259-272. Doi: 10.1023/A:1004835621371
Puente, L.A., S.A. Pinto-Muñoz, E.S. Castro, and M. Cortés. 2011. Physalis peruviana Linnaeus, the multiple properties of a highly functional fruit: a review. Food Research International 44: 1733-1740. Doi: 10.1016/j.foodres.2010.09.034
Radin, J.W., and M.P. Eidenbock. 1984. Hydraulic conductance as a factor limiting leaf expansion of phosphorus-deficient cotton plants. Plant Physiology 75: 372-377. Doi: 10.1104/pp.75.2.372
Ramaekers, L., R. Remans, R.I.M. Rao, M. Blair, and J. Vanderleyden. 2010. Strategies for improving phosphorus acquisition efficiency of crop plants. Field Crops Research 117: 169-176. Doi: 10.1016/j.fcr.2010.03.001
Ramadan, M.F., and J.T. Mörcel. 2003. Oil Goldenberry (Physalis peruviana L.). Journal of Agricultural and Food Chemistry 51: 969-974. Doi: 10.1021/jf020778z
Ramírez, F., G. Fischer, T.L. Davenportc, J.C.A. Pinzón, and C. Ulrichse. 2013. Cape gooseberry (Physalis peruviana L.) phenology according to the BBCH phenological scale. Scientia Horticulturae 162: 39-42.
Rao, I.M., and N. Terry. 1995. Leaf phosphate status, photosynthesis, and carbon partitioning in sugar beet. IV. Changes with time following increased supply of phosphate to low-phosphate plants. Plant Physiology 107: 1313-1321. Doi.org/10.1104/pp.107.4.1313
Reich, P.B., J. Oleksyn, and I.J. Wright. 2009. Leaf phosphorus influences the photosynthesis–nitrogen relation: a cross-biome analysis of 314 species. Oecologia 160(2): 207-212. Doi: 10.1007/s00442-009-1291-3
Rodríguez, P., A. Torrecillas, M. Morales, M. Ortuño, and M. Sánchez. 2004. Effects of NaCl salinity and water stress on growth and leaf water relations of Asteriscus maritimus plants. Environmental and Experimental Botany 53: 113-123. Doi.org/10.1016/j.scienta.2009.06.032
Sánchez, P.A. 1976. Properties and Management of Soils in the Tropics. John Wiley and Sons, New York, USA.
Sarker, B.C., and J.L. Karmoker. 2011. Effects of phosphorus deficiency on accumulation of biochemical compounds in lentil (Lens culinaris medik.). Bangladesh Journal of Botany 40(1): 23-27. Doi: 10.3329/bjb.v40i1.7992
Schobert, B., and H. Tschesche. 1978. Unusual solution properties of proline and its interaction with proteins. Biochimica et Biophysica Acta 541: 270-277. Doi: 10.1016/0304-4165(78)90400-2
Singh, S.K., G. Badgujarb, R. Vangimalla, D.H. Reddyb, J. Fleisherb, and A. Bunce. 2013. Carbon dioxide diffusion across stomata and mesophyll and photo-biochemical processes as affected by growth CO2 and phosphorus nutrition in cotton. Journal of Plant Physiology 170: 801-813. Doi: 10.1016/j.jplph.2013.01.001
Tewari, R.K., P. Kumara, N. Tewari, S. Srivastava, and P.N. Sharma. 2004. Macronutrient deficiencies and differential antioxidant responses influence on the activity and expression of superoxide dismutase in maize. Plant Science 166: 687-694.
Thomas, D., D.S. Thomas, K.D. Montagu, and J.P. Conroy. 2006. Leaf inorganic phosphorus as a potential indicator of phosphorus status photosynthesis and growth of Eucalyptus grandis seedlings. Forest Ecology and Management 223: 267-274. Doi: 10.1016/j.foreco.2005.11.006
Ulrich, B.H. 1974. Catalase. Methods of Enzymatic Analysis. New York: Academic Press.
Vance, C.P., C. Uhde-Stone, and D.L. Allan. 2003. Phosphorus acquisition and use, critical adaptations by plants for securing a nonrenewable resource. New Phytologist 15: 423-447. Doi: 10.1046/j.1469-8137.2003.00695.x
Yang, Y. H., and S.M. Chen. 2001. Physiological effects of aluminum/calcium ratios on Aluminum toxicity of mungbean seedling growth. Journal of Plant Nutrition 24: 585-597. Doi: 10.1081/PLN-100104982
Yao, Q., K. Yang, G. Pan, and T. Rong. 2007. The effects of low phosphorus stress on morphological and physiological characteristics of maize (Zea mays L.) Landraces. Agricultural Sciences in China 6(5): 559-566. Doi.org/10.1016/S1671-2927(07)60083-2
Zhang, Y., F. Chen, X. Chen, L. Long, K. Gao, L. Yuan, F. Zhang, and G. Mi. 2013. Genetic Improvement of Root Growth Contributes to Efficient Phosphorus Acquisition in maize (Zea mays L.). Journal of Integrative Agriculture 12(6): 1098-1111. Doi: 10.1016/S2095-3119(13)60489-X
Zribi, O.T., Z. Barhoumi, S. Kouas, M. Ghandour, I. Slama, and C. Abdelly. 2015. Insigths into de physiological responses of the facultative halophyte Aeluropus littoralis to the combined effects of salinity and phosphorus availability. Journal of Plant physiology 189: 1-10. doi: 10.1016/j.jplph.2015.08.007
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Lucas Esteban Cano-Gallego, Nube Minchalá-Buestan, Ruby Alejandra Loaiza-Ruíz, José Régulo Cartagena-Valenzuela, Oscar de Jesús Córdoba-Gaona. (2022). Gas exchange and chlorophyll fluorescence in spearmint (Mentha spicata L.) leaves influenced by mineral nutrition. Revista Colombiana de Ciencias Hortícolas, 16(1) https://doi.org/10.17584/rcch.2022v16i1.13685.
2. Marcos Vinícius Miranda Aguilar, Caroline Castro Kuinchtner, Daiane Franchesca Senhor, Thalía Preussler Birck, Charleston dos Santos Lima, Matheus Severo de Souza Kulmann, Maristela Machado Araujo, Álvaro Luís Pasquetti Berghetti, Gustavo Brunetto, Luciane Almeri Tabaldi. (2024). Selecting Eucalyptus spp. Clones to Enable Higher Phosphorus Uptake Efficiency. Journal of Plant Growth Regulation, 43(3), p.854. https://doi.org/10.1007/s00344-023-11145-2.
3. Gerhard Fischer, Helber Enrique Balaguera-López, Luz Marina Melgarejo. (2024). Handbook of Goldenberry (Physalis Peruviana). , p.101. https://doi.org/10.1016/B978-0-443-15433-1.00010-8.
4. Suresh Kumar, Anuradha Agrawal, Karishma Seem, Santosh Kumar, K. K. Vinod, Trilochan Mohapatra. (2022). Transcriptome analysis of a near-isogenic line and its recurrent parent reveals the role of Pup1 QTL in phosphorus deficiency tolerance of rice at tillering stage. Plant Molecular Biology, 109(1-2), p.29. https://doi.org/10.1007/s11103-022-01254-z.
5. Fatima Dahlia, Khaled Boufares, Soria Barouagui, Abdelkader Guennouni, Djamel Khebbaz. (2025). Mycorrhization affects the morpho-physiological traits and rhizosphere proprieties of three lucerne cultivars ( Medicago sativa L.) in phosphorus-deficient situations . New Zealand Journal of Agricultural Research, 68(7), p.2161. https://doi.org/10.1080/00288233.2025.2498495.
6. Karishma Seem, Tamil S. Selvan, K. K. Vinod, Suresh Kumar, Trilochan Mohapatra. (2024). Phosphorus uptake 1 (Pup1) QTL performs major regulatory functions under phosphorus starvation/deficiency stress in rice (Oryza sativa L.). Discover Agriculture, 2(1) https://doi.org/10.1007/s44279-024-00086-3.
7. Yongqiang You, Fang Ma, Weijie Zhang, Haijuan Guo, Li Liu, Ying Zhang. (2025). Modulation by arbuscular mycorrhizal fungi on biochar – Phragmites australis system in P-deficient environment: Cd tolerance and migration. Journal of Hazardous Materials, 490, p.137747. https://doi.org/10.1016/j.jhazmat.2025.137747.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2019 Agronomía Colombiana

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
© Centro Editorial de la Facultad de Ciencias Agrarias, Universidad Nacional de Colombia
Reproduction and quotation of material appearing in the journal is authorized provided the following are explicitly indicated: journal name, author(s) name, year, volume, issue and pages of the source. The ideas and observations recorded by the authors are their own and do not necessarily represent the views and policies of the Universidad Nacional de Colombia. Mention of products or commercial firms in the journal does not constitute a recommendation or endorsement on the part of the Universidad Nacional de Colombia; furthermore, the use of such products should comply with the product label recommendations.
The Creative Commons license used by Agronomia Colombiana journal is: Attribution - NonCommercial - ShareAlike (by-nc-sa)

Agronomia Colombiana by Centro Editorial of Facultad de Ciencias Agrarias, Universidad Nacional de Colombia is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional License.
Creado a partir de la obra en http://revistas.unal.edu.co/index.php/agrocol/.







