A tailor-made crop growth model for the tomato production systems in Colombia
Modelo de crecimiento de cultivo diseñado a medida para los sistemas de cultivo de tomate de Colombia
DOI:
https://doi.org/10.15446/agron.colomb.v35n3.65615Keywords:
crop modeling, cropping system, protected cultivation, thermal time, yield potential. (en)modelado de cultivos, sistema de cultivo, cultivo protegido, tiempo termico, rendimiento potencial (es)
Downloads
Potential crop models simulate the plant growth under nonlimiting biophysical conditions with no other factor than the climate to which the plants are exposed to. These models may fail to adequately represent the crop performance if they are not adapted to the local conditions. The particularities of Colombian tomato systems (greenhouse and open field) demand the recalibration of existing models to make a more realistic representation of those systems. Therefore, a locally calibrated crop model was proposed considering both production systems. To this purpose, four on-farm calibration experiments were carried out, two under greenhouse conditions with average temperatures of 17.4 and 17.9ºC in Santa Sofía (Boyacá) and two under open field conditions in Páramo and San Gil (Santander), with average temperatures of 20.6 and 24.0ºC, respectively. The crops were commercially managed according to the local practices. Plant data was collected through destructive measurements carried out on a fortnightly basis, while climate data were collected for the entire crop growth cycle. Independent calibration of the dry matter fractions allocated at the plant organs in function of thermal time resulted in an acceptable model performance. The calibration of the model under commercial conditions gave a better representation of the local systems but at the expense of accuracy since on-farm experiments cannot be controlled as those performed in research facilities.
References
Acock, B., D.A. Charles-Edwards, D.J. Fitter, D.W. Hand, L.J. Lud-wig, J.W. Wilson, and A.C. Withers. 1978. The contribution of leaves from different levels within a tomato crop to canopy net photosynthesis: An experimental examination of two canopy models. J Exp Bot. 29, 815-827. Doi: 10.1093/jxb/29.4.815.
Atherton, J. and J. Rudich (eds.). 2012. The tomato crop: a scientific basis for improvement. Springer Science & Business Media Dordrecht, The Netherlands.
Battista, P., B. Rapi, A. Raschi, M. Romani, D. Massa, G. Carmassi, C. Diara, L. Incrocci, and A. Pardossi. 2015. Modified TOMGRO outputs as guide factors to estimate evapotranspiration and water use efficiency of three tomato fresh cultivars, grown in a low-tech Italian greenhouse. Acta Hortic. 1150, 39-46. Doi: 10.17660/ActaHortic.2017.1150.6.
Besford, R.T. and G.A. Maw. 1974. Uptake and distribution of potassium in tomato plants. Plant Soil, 41(3), 601-618. Doi: 10.1007/BF02185819.
Bojacá, C.R., K.A.G. Wyckhuys, and E. Schrevens. 2014. Life cycle assessment of Colombian greenhouse tomato production based on farmer-level survey data. J Clean Prod. 69, 26-33. Doi: 10.1016/j.jclepro.2014.01.078.
Bojacá, C.R., L.A. Arias, D.A. Ahumada, H.A. Casilimas, and E. Schrevens. 2013. Evaluation of pesticide residues in open field and greenhouse tomatoes from Colombia. Food Control 30, 400-403. Doi: 10.1016/j.foodcont.2012.08.015.
Bojacá, C.R., R. Gil, and A. Cooman. 2009. Use of geostatistical and crop growth modeling to assess the variability of greenhouse tomato yield caused by spatial temperature variations. Comput Electron Agr. 65, 219-227. Doi: 10.1016/j.compag.2008.10.001.
Boote, K.J., J.W. Jones, G. Hoogenboom, and J.W. White. 2012. The role of crop systems simulation in agriculture and environment. pp. 326-339. In: Papajorgji, P. and F. Pinet (eds.). New Technologies for Constructing Complex Agricultural and Environmental Systems. IGI Global, Hershey, PA, USA. Doi: 10.4018/jaeis.2010101303.
Boote, K.J., J.W. Jones, J.W. White, S. Asseng, and J.I. Lizaso. 2013. Putting mechanisms into crop production models. Plant Cell Environ. 36, 1658-1672. Doi: 10.1111/pce.12119.
Cooman, A. 2002. Feasibility of protected tomato cropping in the high altitude tropics using statistical and system dynamic models for plant growth and development. PhD thesis, Katholieke Universiteit Leuven, Leuven, Belgium.
Craufurd, P.Q., V. Vadez, S.V. Krishna Jagadish, P.V. Vara Prasad, and M. Zaman-Allah. 2013. Crop science experiments designed to inform crop modeling. Agr Forest Meteorol. 170, 8-18. Doi: 10.1016/j.agrformet.2011.09.003.
De Viesser, P.H., G.H. Buck-Sorlin, and G. van Der Heijden. 2014. Optimizing illumination in the greenhouse using a 3D model of tomato and a ray tracer. Front Plant Sci. 5, 48. Doi: 10.3389/fpls.2014.00048.
Di Paola, A., R. Valentini, and M. Santini. 2015. An overview of available crop growth and yield models for studies and assessments in agriculture. J Sci Food Agr. 96(3), 709-714. Doi: 10.1002/jsfa.7359.
Fan, X., M. Kang, E. Heuvelink, P. de Reffye, and B. Hu. 2015. A knowledge-and-data-driven modeling approach for simulating plant growth: A case study on tomato growth. Ecol Modell. 312, 363-373. Doi: 10.1016/j.ecolmodel.2015.06.006.
Gil, R., C.R. Bojacá, and E. Schrevens. 2017. Environmental savings in tomato production under optimal agrochemicals management: a modeling approach. Acta Hortic. 1154, 137-144. Doi: 10.17660/ActaHortic.2017.1154.18.
Grassini, P., L.G.J. van Bussel, J. Van Wart, J. Wolf, L. Claessens, H. Yang, H. Boogaard, H. de Groot, M.K. van Ittersum, and K.G. Cassman. 2015. How good is good enough? Data requirements for reliable crop yield simulations and yield-gap analysis. Field Crop Res. 177, 49-63. Doi: 10.1016/j.fcr.2015.03.004.
Guilpart, N., P. Grassini, V.O. Sadras, J. Timsina, and K.G. Cassman. 2017. Estimating yield gaps at the cropping system level. Field Crops Res. 206, 21-32. Doi: 10.1016/j.fcr.2017.02.008.
Hernández, M.I., J.M. Salgado, M. Chailloux, V. Moreno, and M. Mojena. 2009. Relaciones nitrógeno-potasio en fertirriego para el cultivo protegido del tomate (Solanum lycopersicum L.) y su efecto en la acumulación de biomasa y extracción de nutrientes. Cultivos Tropicales 30(4), 71-78.
Heuvelink, E. 1999. Evaluation of a dynamic simulation model for tomato crop growth and development. Ann. Bot. 83, 413-422. Doi: 10.1006/anbo.1998.0832.
Jizhang, W., L. Pingping, and M. Hanping. 2006. Decision support systems for greenhouse environment management based on crop growth and control cost. T. Chinese Soc. Agr. Eng. 9, 033.
Jones, J.W., J.M. Antle, B. Basso, K.J. Boote, R.T. Conant, I. Foster, C.J. Godfray, M. Herrero, R.E. Howitt, S. Janssen, B.A. Keating, R. Munoz-Carpena, C.H. Porter, C. Rosenzweig, and T.R. Wheeler. 2016. Toward a new generation of agricultural system data, models, and knowledge products: State of agricultural systems science. Agr. Sys. (article in press). Doi: 10.1016/j.agsy.2016.09.021.
Jones, J.W., G. Hoogenboom, C.H. Porter, K.J. Boote, W.D. Batchelor, L.A. Hunt, P.W. Wilkens, U. Singh, A.J. Gijsman, and J.T. Ritchie. 2003. DSSAT Cropping System Model. Eur. J. Agron. 18:235-265. Doi: 10.1016/S1161-0301(02)00107-7.
Jones, J.W., E. Dayan, H. Allen, H. Van Keulen, and H. Challa. 1991. A dynamic tomato growth and yield model (Tomgro). T ASAE 34, 663-672. Doi: 10.13031/2013.31715.
Kelley, C.T. (ed.). 1999. Iterative methods for optimization. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA.
Leewius, C. (ed.). 2004. Communication for rural innovation: rethinking agricultural extensión. Blackwell Publishing, Oxford, UK.
Massa, D., L. Incrocci, A. Pardossi, P. Delli Paoli, and A. Battilani. 2013. Application of a decision support system for increasing economic and environmentally sustainability of processing tomato cultivated in Mediterranean climate. Acta Hortic. 971, 51-58. Doi: 10.17660/ActaHortic.2013.971.3.
Mavromatis, T., K.J. Boote, A. Irmak, D. Shinde, and G. Hoogen-boom. 2001. Developing genetic coefficients for crop simulation models with data from crop performance trials. Crop Sci. 41, 40-51. Doi: 10.2135/cropsci2001.41140x.
R Core Team. 2015. R: A language and environment for statistical computing. Viena, Austria. Retrieved from: http://www.R-project.org.
Robertson, R., G. Nelson, T. Thomas, and M. Rosegrant. 2013. Incorporating process-based crop simulation models into global economic analyses. Am. J. Agr. Econ. 95, 228-235. Doi: 10.1093/ajae/aas034.
Scholberg, J.M.S., K.J. Boote, J.W. Jones, and B.L. McNeal. 1997. Adaptation of the CROPGRO model to simulate the growth of field-grown tomato. pp. 135-151. In: Kropff, M.J.; P.S. Teng, P.K. Aggarwal, J. Bouma, B.A.M. Bouman, J.W. Jones and H.H. van Laar (eds.). Applications of system approaches at the field level. Springer, Dordrecht, The Netherlands. Doi: 10.1007/978-94-017-0754-1_9.
Sim, S.-C., M.D. Robbins, A. Van Deynz, A.P. Michel, and D.M. Francis. Population structure and genetic differentiation associated with breeding history and selection in tomato (Solanum lycopersicum L.). Heredity 106, 927-935. Doi: 10.1038/hdy.2010.139.
Soto, F., M. Gallardo, C. Giménez, T. Peña-Fleitas, and R.B. Thompson. 2014. Simulation oftomato growth, water and N dynamics using the EU-Rotate_N model in Mediterranean greenhouses with drip irrigation and fertigation. Agr. Water Manage. 132, 46-59. Doi: 10.1016/j.agwat.2013.10.002.
Stöckle, C.O., A.R. Kemanian, R.L. Nelson, J.C. Adam, R. Sommer, and B. Carlson. 2014. CropSyst model evolution: From field to regional to global scales and from research to decision support systems. Environ. Modell Softw. 62, 361-369. Doi: 10.1016/j.envsoft.2014.09.006.
Tittonell, P. and K.E. Giller. 2013. When yield gaps are poverty traps: The paradigm of ecological intensification in African smallholder agriculture. Field Crops Res. 143, 76-90. Doi: 10.1016/j.fcr.2012.10.007.
Valdés-Gómez, H., C. Gary, N. Brisson, and F. Matus. 2014. Modelling indeterminate development, dry matter partitioning and the effect of nitrogen supply in tomato with the generic STICS crop-soil model. Sci. Hortic. 175, 44-56. Doi: 10.1016/j.scienta.2014.05.030.
Vanthhor, B.H.E., P.H.B. de Visser, C. Stanghellini, and E.J. van Henten. 2011. A methodology for model-based greenhouse design: Part 2, description and validation of a tomato yield model. Biosyst Eng. 111(4), 350-368. Doi: 10.1016/j.biosystemseng.2012.01.005.
Varadhan, R. and H.W. Borchers. 2016. dfoptim: Derivative-free optimization. R package version 2016.7-1. Retrieved from: http://CRAN.R-project.org/package=dfoptim.
Wallach, D. 2006. Evaluating crop models. pp. 11-53. In: Wallach, D., D. Makowski, and J.W. Jones (eds.). Working with dynamic crop models. Elsevier, Amsterdam, The Netherlands.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. R. Gil, C.R. Bojacá, E. Schrevens. (2020). Does optimized agrochemicals management help to reduce the environmental impact in tomato production? A comparative analysis between greenhouse and open field systems. Acta Horticulturae, (1296), p.1145. https://doi.org/10.17660/ActaHortic.2020.1296.145.
2. Omar Ahumada, Xaimarie Hernández-Cruz, Rodrigo Ulloa, Miguel Peinado-Guerrero, Francisca Quijada, J. Rene Villalobos. (2023). A tactical planning model for fresh produce production considering productive potential and changing weather patterns. Biosystems Engineering, 232, p.13. https://doi.org/10.1016/j.biosystemseng.2023.06.009.
3. R. Gil, C.R. Bojacá, R. Heuts, E. Schrevens. (2020). Validation of an adapted soil-plant model to study the water and nitrogen flows of Colombian greenhouse tomato systems. Acta Horticulturae, (1296), p.441. https://doi.org/10.17660/ActaHortic.2020.1296.57.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2017 Agronomía Colombiana
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
© Centro Editorial de la Facultad de Ciencias Agrarias, Universidad Nacional de Colombia
Reproduction and quotation of material appearing in the journal is authorized provided the following are explicitly indicated: journal name, author(s) name, year, volume, issue and pages of the source. The ideas and observations recorded by the authors are their own and do not necessarily represent the views and policies of the Universidad Nacional de Colombia. Mention of products or commercial firms in the journal does not constitute a recommendation or endorsement on the part of the Universidad Nacional de Colombia; furthermore, the use of such products should comply with the product label recommendations.
The Creative Commons license used by Agronomia Colombiana journal is: Attribution - NonCommercial - ShareAlike (by-nc-sa)
Agronomia Colombiana by Centro Editorial of Facultad de Ciencias Agrarias, Universidad Nacional de Colombia is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional License.
Creado a partir de la obra en http://revistas.unal.edu.co/index.php/agrocol/.