Thermal and physicochemical properties of starches from three Colombian rice varieties
Propiedades térmicas y fisicoquímicas de almidones de tres variedades de arroz colombianas
DOI:
https://doi.org/10.15446/agron.colomb.v35n1.65711Keywords:
Oryza sativa, swelling capacity, gelatinization, solubility, amylose content (en)Oryza sativa, capacidad de hinchamiento, gelatinización, solubilidad, contenido de amilosa (es)
Downloads
Muestras de almidón obtenidas de arroz partido de tres variedades cultivadas en Colombia fueron analizadas para determinar sus propiedades fisicoquímicas y térmicas: Fedearroz 473 (F473), Fedearroz 50 (F50) y Fedearroz 60 (F60). Se determinó el tamaño de gránulo, la solubilidad, el poder de hinchamiento, el contenido de amilosa, la sinéresis, la turbidez, las propiedades térmicas y las propiedades de empastamiento de los almidones. El tamaño granular promedio de las muestras F473, F50 y F60 fue de 9,4; 7,4 y 7,2 µm respectivamente. El contenido de amilosa mostró diferencias significativas entre las variedades estudiadas y sus valores oscilaron entre de 21,4 y 23,0%. La turbidez osciló entre 1,95 y 2,34 unidades de absorbancia a 620 nm. Las propiedades térmicas, evaluadas mediante calorimetría diferencial de barrido (DSC), registraron valores entre 61,6 y 64,6°C para la temperatura de inicio, entre 66,6 and 69,3°C para la temperatura pico, entre 72,1 y 73,9°C para la temperatura de finalización, y entre 8,38 y 9,47 J g-1 para la entalpía de gelatinización. Los almidones con mayor contenido de amilosa mostraron un mayor tamaño granular, turbidez, sinéresis, temperatura y entalpia de gelatinización, viscosidad, y un menor poder de hinchamiento y solubilidad. El presente estudio es la primera investigación reportada en propiedades fisicoquímicas y funcionales de almidones de arroz provenientes de estas variedades cultivadas en Colombia.
References
Bao, J. and J.C. Bergman. 2004. The functionality of rice starch. pp. 258-294. En: Eliasson, A.-C. (ed.). Starch in food: Structure, function and applications. CRC Press, New York, USA.
Bello-Perez, L. A., P. Roger, B. Baud, and P. Colonna. 1998. Macromolecular features of starches determined by aqueous highperformance size exclusion chromatography. J. Cereal Sci. 27(3), 267-278. Doi:10.1006/jcrs.1998.0186.
Cai, J., J. Man, J. Huang, Q. Liu, W. Wei, and C. Wei. 2015. Relation-ship between structure and functional properties of normal rice starches with different amylose contents. Carbohydr. Polym. 125, 35-44. Doi: 10.1016/j.carbpol.2015.02.067.
Chang, Y.H., J.H. Lin, and C.L. Pan. 2010. Type and concentration of acid on solubility and molecular size of acid-methanol-treated rice starches differing in amylose content. Carbohydr. Polym. 79(3), 762-768. Doi: 10.1016/j.carbpol.2009.10.002.
Cooke, D. and M. Gidley. 1992. Loss of crystalline and molecular order during starch gelatinization: Origin of the enthalpic transition. Carbohydr. Res. 227, 103-112. Doi: 10.1016/0008-6215(92)85063-6.
Craig, S., C. Maningat, P. Seib, and R. Hoseney. 1989. Starch paste clarity. Cereal Chem. 66(3), 173-182.
DANE. 2016. Censo nacional arrocero. En: En: http://www.dane.gov.co/files/investigaciones/agropecuario/censo-nacional-arrocero/boletin-tecnico-4to-censo-nacional-arrocero-2016.pdf ; consulted: March 2017.
Deepa, G., V. Singh, and K.A. Naidu. 2008. Nutrient composi-tion and physicochemical properties of Indian medicinal rice - Njavara. Food Chem. 106(1), 165-171. Doi: 10.1016/j.foodchem.2007.05.062.
Devi, A., K. Fibrianto, P. Torley, and B. Bhandari. 2009. Physical properties of cryomilled rice starch. J. Cereal Sci. 49(2), 278-284. Doi: 10.1016/j.jcs.2008.11.005.
Falade, K.O. and A.S. Christopher. 2015. Physical, functional, pasting and thermal properties of flours and starches of six Nigerian rice cultivars. Food Hydrocoll. 44, 478-490. Doi: 10.1016/j.foodhyd.2014.10.005.
FAO. 2006. El mercado de almidón añade valor a la yuca. Departamento de Agricultura, Bioseguridad, Nutrición y Protección del Consumidor, FAO, Rome.
FAOSTAT. Suministro alimentario - Cultivos equivalente primario. 2013. In: In: http://www.fa.o.org/faostat/es/#data/CC ; consulted: March 2017.
Granados, C., L. Guzmán, D. Acevedo, M. Díaz, and A. Herrera. 2014. Propiedades funcionales del almidón de sagú (Maranta arundinacea). Biotecnol. Sect. Agropecu. Agroind. 12(2), 90-96.
Hernández, M., J. Torruco, L. Guerrero, and D. Betancour. (2008). Caracterización fisicoquímica de almidones de tubérculos cultivados en Yucatán. Food Sci. Tech. 28(3), 718-726. Doi: 10.1590/S0101-20612008000300031.
Hoover, R. 2001 Composition, molecular structure, and physicochemical properties of tuber and roots starches: a review. Carbohydr. Polym. 45(3), 253-267. Doi: 10.1016/S0144-8617(00)00260-5.
Hoover, R. 2002. Effect of heat-moisture treatment on the structure and physicochemical properties of tuber and root starches. Carbohydr. Polym. 49(4), 425-437. Doi: 10.1016/S0144-8617(01)00354-X.
Juliano, B.O. 1985. Criteria and test for rice grain qualities. pp. 443-524. In: Juliano, B.O. (ed.). Rice chemistry and technology. American Association of Cereal Chemists, St Paul, MN, USA.
Lin, Q., H. Xiao, X. Fu, W. Tian, L. Li, and F. Yu. 2011. Physicochemical properties of flour, starch, and modified starch oftwo rice varieties. Agric. Sci. China 10(6), 960-968. Doi: 10.1016/S1671-2927(11)60082-5.
Mahmood, T., M.A. Turner, and F.L. Stoddard. 2007. Comparison of methods for colorimetric amylose determination in cereal grains. Starch 59(8), 357-365. Doi: 10.1002/star.200700612.
Noosuk, P., S. Hill, P. Pradipasena, and J. Mitchell. 2003. Structure-viscosity relationships for Thai rice starches. Starch-Stárke, 55(8), 337-344. Doi: 10.1002/star.200300193.
Novelo, C. and A. Betancur. 2005. Chemical and functional properties of Phaseolus lunatus and Manihot esculenta starch blends. Starch 57(9), 431-441. Doi: 10.1002/star.200500398.
Park, I., A.M. Ibánez, F. Zhong, and C.F. Shoemaker. 2007. Gelatinization and pasting properties of waxy and non-waxy rice starches. Starch 59, 388-396. Doi: 10.1002/star.200600570.
Patindol, J., B. Gonzalez, Y. Wang, and A. McClung. 2007. Starch fine structure and physicochemical properties of specialty rice for canning. J. Cereal Sci. 45(2), 209-218. Doi: 10.1016/j.jcs.2006.08.004.
Peterson, D. and R. Fulcher. 2001. Variation in Minnesota HRS wheats: starch granule size distribution. Food Res. Int. 34(4), 357-363. Doi:10.1016/S0963-9969(00)00175-7.
Rodríguez-Torres, Murillo-Arango, Vaquiro-Herrera, and Solanilla-Duque: Thermal and physicochemical properties of starches from three Colombian rice varieties 123.
Riley, C. K., A.O. Wheatley, I. Hassan, M.H. Ahmad, E.S.Y. Morrison, and H.N. Asemota. 2004. In vitro digestibility of raw starches extracted from five yam (Dioscorea spp.) species grown in Jamaica. Starch 56(2), 69-73. Doi: 10.1002/star.200300195.
Singh, N., L. Kaur, K.S. Sandhu, J. Kaur, and K. Nishinari. 2006. Relationships between physicochemical, morphological, thermal, rheological properties of rice starches. Food Hydrocoll. 20(4), 532-542. Doi: 10.1016/j.foodhyd.2005.05.003.
Singh, N., Y. Nakaura, N. Inouchi, and K. Nishinari. 2007. Fine structure, thermal and viscoelastic properties of starches separated from indica rice cultivars. Starch 59(1), 10-20. Doi: 10.1002/star.200600527.
Singh, N., J. Singh, L. Kaur, N.S. Sodhi, and B.S. Gill. 2003. Morphological, thermal and rheological properties of starches from different botanical sources. Food Chem. 81(2), 219-231. Doi: 10.1016/S0308-8146(02)00416-8.
Sodhi, N.S. and N. Singh. 2003. Morphological, thermal and rheological properties of starches separated from rice cultivars grown in India. Food Chem. 80(1), 99-108. Doi: 10.1016/S0308-8146(02)00246-7.
Suh, D.S. and J.L. Jane. 2003. Comparison of starch pasting properties at various cooking conditions using the micro viscoamylo-graph and the rapid visco analyser. Cereal Chem. 80(6), 745-749. Doi: 10.1094/CCHEM.2003.80.6.745.
Szczodrak, J. and Y. Pomeranz. 1992. Starch-lipid interactions and formation of resistant starch in high-amylose barley. Cereal Chem. 69, 626-632.
Vandeputte, G. and J. Delcour. 2004. From sucrose to starch granule to physical behaviour: a focus on rice starch. Carbohydr. Polym. 58(3), 245-266. Doi: 10.1016/j.carbpol.2004.06.003.
Varavinit, S., S. Shobsngob, W. Varanyanond, P. Chinachoti, and O. Naivikul. 2003. Effect of amylose content on gelatinization, retrogradation and pasting properties of flours from different cultivars of Thai rice. Starch 55(9), 410-415. Doi: 10.1002/star.200300185.
Wang, L. and Y. Wang. 2004. Rice starch isolation by neutral protease and high intensity ultrasound. J. Cereal Sci. 39(2), 291-296. Doi: 10.1016/j.jcs.2003.11.002.
Wang, L .F., Y.J. Wang, and R. Porter. 2002. Structures and physicochemical properties of six wild rice starches. J. Agric. Food Chem. 50(9), 2695-2699. Doi: 10.1021/jf011379r.
Wang, L., B. Xie, J. Shi, S. Xue, Q. Deng, and Y. Wei. 2010. Physicochemical properties and structure of starches from Chinese rice cultivars. Food Hydrocoll. 24(2), 208-216. Doi: 10.1016/j.foodhyd.2009.09.007.
Wang, Y.J., V.D. Truong, and L. Wang. 2003. Structures and rheological properties of corn starch as affected by acid hydrolysis. Carbohydr. Polymers 52(3): 327-333. Doi: 10.1016/S0144-8617(02)00323-5.
Wickramasinghe, H. and T. Noda. 2008. Physicochemical properties of starches from Sri Lankan rice varieties. Food Sci. Tech. Res. 14(1), 49-54. Doi: 10.3136/fstr.14.49.
Yamin, F., M. Lee, L. Pollak, and P. White. 1999. Thermal properties of starch in corn variants isolated after chemical mutagenesis of inbred lines B73. Cereal Chem. 76, 175-181. Doi: 10.1094/CCHEM.1999.76.2.175.
Yang, C. Z., X.L. Shu, L.L. Zhang, X. Wang, H. Zhao, C.X. Ma, and D.X. Wu. 2006. Starch properties of mutant rice high in resistant starch. J. Agric. Food Chem. 54(2), 523-528. Doi: 10.1021/jf0524123.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. N A Mohd Ali, N Abdullah, S H Jong, N Muhammad, M C Tan. (2021). Effect of different banana pseudostem parts on their starch yield, morphology and thermal properties. IOP Conference Series: Earth and Environmental Science, 736(1), p.012038. https://doi.org/10.1088/1755-1315/736/1/012038.
2. Innani Mukarromatus Sholehah, Didik Pudji Restanto, Kyung-Min Kim, Tri Handoyo. (2020). Diversity, Physicochemical, and Structural Properties of Indonesian Aromatic Rice Cultivars. Journal of Crop Science and Biotechnology, 23(2), p.171. https://doi.org/10.1007/s12892-019-0370-0.
3. Diego Montoya, Luis Oveimar Barbosa, Jonh Méndez, Walter Murillo. (2020). Morphological, Structural, and Functional Evaluation of Rice Starch Acylated in a System Catalyzed by the B‐Lipase of Candida antarctica. Starch - Stärke, 72(11-12) https://doi.org/10.1002/star.202000010.
4. Norramon Thanyapanich, Ampa Jimtaisong, Saroat Rawdkuen. (2021). Functional Properties of Banana Starch (Musa spp.) and Its Utilization in Cosmetics. Molecules, 26(12), p.3637. https://doi.org/10.3390/molecules26123637.
5. Catalina Fuentes, In Kang, Jangjae Lee, Dongsup Song, Malin Sjöö, Jaeyeong Choi, Seungho Lee, Lars Nilsson. (2019). Fractionation and characterization of starch granules using field-flow fractionation (FFF) and differential scanning calorimetry (DSC). Analytical and Bioanalytical Chemistry, 411(16), p.3665. https://doi.org/10.1007/s00216-019-01852-9.
6. Heena Singh, Rakhi Singh, Nishant Kumar, Barjinder Pal Kaur, Ashutosh Upadhyay. (2024). Effects of Wet‐Milling Extraction Methods on Nutritional, Functional, and Structural Properties of Barnyard Millet Starch. Starch - Stärke, 76(11-12) https://doi.org/10.1002/star.202300136.
7. Euis Hermiati, Dewi Sondari, Titi Candra Sunarti. (2023). Handbook of Natural Polymers, Volume 1. , p.19. https://doi.org/10.1016/B978-0-323-99853-6.00012-7.
8. Kudirat Titilope Araoye, Stephen Abiola Akinola, Adetutu Mercellina Oyelade, Sarah Ogagar, Mary Bose Oyewale, Eunice Moriyike Ogunbusola, Toibudeen Adesegun Sanni, Oluwatooyin Faramade Oludahunsi. (2024). Effect of acetylation on the functional characteristics of lima bean (Phaseolus lunatus). Food and Humanity, 2, p.100237. https://doi.org/10.1016/j.foohum.2024.100237.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2017 Agronomía Colombiana

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
© Centro Editorial de la Facultad de Ciencias Agrarias, Universidad Nacional de Colombia
Reproduction and quotation of material appearing in the journal is authorized provided the following are explicitly indicated: journal name, author(s) name, year, volume, issue and pages of the source. The ideas and observations recorded by the authors are their own and do not necessarily represent the views and policies of the Universidad Nacional de Colombia. Mention of products or commercial firms in the journal does not constitute a recommendation or endorsement on the part of the Universidad Nacional de Colombia; furthermore, the use of such products should comply with the product label recommendations.
The Creative Commons license used by Agronomia Colombiana journal is: Attribution - NonCommercial - ShareAlike (by-nc-sa)

Agronomia Colombiana by Centro Editorial of Facultad de Ciencias Agrarias, Universidad Nacional de Colombia is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional License.
Creado a partir de la obra en http://revistas.unal.edu.co/index.php/agrocol/.