Published

2018-01-01

Screening of Colombian soybean genotypes for Agrobacterium mediated genetic transformation conferring tolerance to Glyphosate

Tamizaje de genotipos de soya colombianos para transformación genética mediada por Agrobacterium confiriendo tolerancia a glifosato

DOI:

https://doi.org/10.15446/agron.colomb.v36n1.67440

Keywords:

Glycine max, herbicide, genetically modified organism, in vitro regeneration, transgenic plant. (en)
Glycine max, herbicida, organismo genéticamente modificado, regeneracion in vitro, planta transgenica. (es)

Downloads

Authors

  • Adriana Rojas Universidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Biología - Plant Genetic Engineering Research Group
  • Silvio Lopez-Pazos Universidad Antonio Nariño - Sciences Faculty
  • Alejandro Chaparro-Giraldo Universidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Biología - Plant Genetic Engineering Research Group https://orcid.org/0000-0003-4999-8804
Soybean is a very important crop worldwide due to its multiple uses as raw material for industry and to its high nutritional value. Colombia consumes a large amount of imported soybean because domestic production does not supply demand. There are soybean varieties adapted to the environmental conditions in the Colombian territory, but none of them have been enhanced by genetic engineering to confer competitive advantages compared to imported product. In this research, the Colombian soybean varieties SK7, p29 and Soyica p34 ability to be genetically transformed by Agrobacterium tumefaciens strains AGL0 and EHA105 using a Glyphosate tolerance cassette was tested. It was found that SK7 variety presented a better regeneration performance from the cotyledonary node, and also had the highest transformation frequency with AGL0 strain. The p29 variety was also transformed, but a lower efficiency was registered. It was not possible to transform Soyica p34 variety under the established parameters. This research is an advance towards the construction of a platform to enhance the generic transgenic crops in Colombia.
La soya es un cultivo muy importante a nivel mundial debido a sus múltiples usos en la industria y a su alto valor nutricional. Colombia consume una gran cantidad de soya, principalmente importada, porque la producción interna no suple la demanda. Existen variedades de soya adaptadas a las condiciones medioambientales del territorio colombiano, pero ninguna de ellas ha sido mejorada por ingeniería genética para conferir ventajas competitivas al cultivo frente a las importaciones. En este trabajo se evaluaron las variedades de soya SK7, p29 y Soyica p34 respecto a su capacidad para ser transformadas genéticamente por las cepas de Agrobacterium tumefaciens AGLO y EHA105, utilizando un casete de tolerancia a glifosato. Se encontró que la variedad SK7 presentó un mejor desempeño en regeneración a partir de nudo cotiledonar, e igualmente tuvo la mayor frecuencia de transformación con la cepa AGLO. La variedad p29 también fue transformada, aunque con una eficiencia menor. No fue posible transformar la variedad Soyica p34 bajo los parámetros establecidos. Este trabajo fue un avance hacia la construcción de una plataforma de generación de cultivos transgénicos genéricos en Colombia.

References

Arun, M., K. Subramanyam, T.S. Mariashibu, J. Theboral, G. Shivanandhan, M. Manickavasagam, and A. Ganapathi. 2015. Application of sonication in combination with vacuum infiltration enhances the Agrobacterium-mediated genetic transformation in Indian soybean cultivars. Appl. Biochem. Biotechnol. 175, 2266-2287. Doi: 10.1007/s12010-014-1360-x

Atif, R.M., E.M. Patat-Ochatt, L. Svabova, V. Ondrej, H. Klenoticova, L. Jacas, M. Griga, and S.J. Ochatt. 2013. Gene transfer in legumes. pp. 37-100. In: Luttge, U., W. Beyschlag, D. Francis, and J. Cushman (eds.). Progress in Botany 74. Springer-Verlag, Berlin Heidelberg. Doi: 10.1007/978-3-642-30967-0_2

Bonny, S. 2008. Genetically modified Glyphosate-tolerant soybean in the USA: adoption factors, impacts and prospects. A review. Agron. Sustain. Dev. 28, 21-32. Doi: 10.1051/agro:2007044

Bourras, S., T. Rouxel, and M. Meyer. 2015. Agrobacterium tumefaciens gene transfer: how a plant pathogen hacks the nuclei of plant and nonplant organisms. Phytopathol. 105, 1288-1301. Doi: 10.1094/PHYTO-12-14-0380-RVW

Cai, Y., L. Chen, X. Liu, C. Guo, S. Sun, C. Wu, B. Jiang, T. Han, and W. Hou. 2018. CRISPR/Cas9-mediated targeted mutagenesis of GmFT2a delays flowering time in soya bean. Plant Biotechnol. J. 16, 176-185. Doi: 10.1111/pbi.12758

Clemente, T.E., B.J. LaVallee, A.R. Howe, D. Conner-Ward, R.J. Rozman, P.E. Hunter, D.L. Broyles, D.S. Kasten, and M.A. Hinchee. 2000. Progeny analysis of Glyphosate selected transgenic soybeans derived from Agrobacterium-mediated transformation. Crop Sci. 40, 797-803. Doi: 10.2135/cropsci2000.403797x

Doyle, J. 1991. DNA protocols for plants. pp. 283-293. In: Hewitt G.M., A.W.B. Johnston, and J.P.W. Young (eds.). Molecular techniques in taxonomy. Vol 57. Springer, Berlin, Heidelberg.

Doi: 10.1007/978-3-642-83962-7_18

Du, H., X. Zeng, M. Zhao, X. Cui, Q. Wang, H. Yang, H. Cheng, and D. Yu. 2016. Efficient targeted mutagenesis in soybean by TALENs and CRISPR/Cas9. J. Biotechnol. 217, 90-97. Doi:

1016/j.jbiotec.2015.11.005

Duke, S.O. and A.L. Cerdeira. 2010. Transgenic crops for herbicide resistance. pp. 133-166. In: Kole C., C.H. Michler, A.G. Abbott, and T.C. Hall (eds.). Transgenic crop plants volume 2:

Utilization and biosafety. Springer, Heidelberg, Germany. Doi: 10.1007/978-3-642-04812-8_3

Duke, S.O. and S.B. Powles. 2008. Glyphosate: a once-in-a-century herbicide. Pest Manag. Sci. 64, 319-325. Doi: 10.1002/ps.1518

Eisel, D., O. Seth, S. Grunewald-Janho, B. Kruchen, and B. Ruger (eds.). 2008. DIG Application Manual for Filter Hybridization. Editorial Roche Diagnostics GmbH.

Fenalce - Federacion Nacional de Cultivadores de Cereales y Leguminosas. 2017. Situacion del sector soya. Informe del Departamento de Informacion Economica y Estadistica. URL: http://www.fenalce.org/nueva/plantillas/arch_web/Situacion_del_Sector_II_Trimestre_2017_-_Soya.pdf (accessed August 2017).

Gamborg, O.L., R.A. Miller, and K. Ojima. 1968. Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res. 50, 151-158. Doi: 10.1016/0014-4827(68)90403-5

Hood, E.E., S.B. Gelvin, L.S. Melchers, and A. Hoekema. 1993. New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Res. 2, 208-218. Doi: 10.1007/BF01977351

Hollander, M., D.A. Wolfe, and E. Chicken. 2014. Nonparametric statistical methods. John Wiley & Sons, Hoboken, New Jersey, USA. Doi: 10.1002/9781119196037

Hussain, B., S.J. Lucas, and H. Budak. 2018. CRISPR/Cas9 in plants: at play in the genome and at work for crop improvement. Brief. Funct. Genomics 1-10. Doi: 10.1093/bfgp/ely016

ICA - Instituto Colombiano Agropecuario. 2010. Resolucion No 2404 del 19 de Julio de 2010, Por la cual se autoriza siembras comerciales de soya Roundup Ready® (MON-O4O32-6) para la subregión natural de la Orinoquia.

ILSI Research Foundation. 2017. GM crop database. ILSI Research Foundation, Washington D.C. URL: http://cera-gmc.org/gmcropdatabase (accessed August 2017).

ISAAA. 2016. Global status of commercialized Biotech/GM crops: 2016. ISAAA Brief No. 52. Ithaca, NY, USA.

Jefferson, D.J., G.D. Graff, C.L. Chi-Ham, and A.B. Bennett. 2015. The emergence of agbiogenerics. Nature Biotechnol. 33, 819-823. Doi: 10.1038/nbt.3306

Jia, Y., X. Yao, M. Zhao, Q. Zhao, Y. Du, C. Yu, and F. Xie. 2015. Comparison of soybean transformation efficiency and plant factors affecting transformation during the Agrobacterium infection process. Int. J. Mol. Sci. 16, 18522-18543. Doi: 10.3390/ijms160818522

Jimenez, J.P. 2014. Diseno de genes semi-sinteticos que confieran tolerancia a herbicidas en soya. MSc. thesis. Universidad Nacional de Colombia, Bogota.

Kanazashi, Y., A. Hirose, I. Takahashi, M. Mikami, M. Endo, S. Hirose, S. Toki, A. Kaga, K. Naito, M. Ishimoto, J. Abe, and T. Yamada. 2018. Simultaneous site-directed mutagenesis of duplicated loci in soybean using a single guide RNA. Plant Cell Rep. 37, 553-563. Doi: 10.1007/s00299-018-2251-3

Klumper, W. and M. Qaim. 2014. A meta-analysis of the impacts of genetically modified crops. PLOS One. 9, e111629. Doi: 10.1371/journal.pone.0111629

Kuma, K.M., V.S. Lopes-Caitar, C.C.T. Romero, S.M.H. Silva, M.K. Kuwahara, M.C.C.G. Carvalho, R.V. Abdelnoor, W.P. Dias, and F.C. Marcelino-Guimaraes. 2015. A high efficient protocol for soybean root transformation by Agrobacterium rhizogenes and most stable reference genes for RT-qPCR analysis. Plant Cell Rep. 34, 1987-2000. Doi: 10.1007/s00299-015-1845-2

Lazo, G.R., P.A. Stein, and R.A. Ludwig. 1991. A DNA Transformation-competent Arabidopsis genomic library in Agrobacterium. Nature Biotechnol. 9, 963-967. Doi: 10.1038/nbt1091-963

Li, H.Q., C. Chen, R.R. Chen, X.W. Song, J.N. Li, Y.M. Zhu, and X.D. Ding. 2018. Preliminary analysis of the role of GmSnRK1.1 and GmSnRK1.2 in the ABA and alkaline stress response of the soybean using the CRISPR/Cas9-based gene double-knockout system. Yi Chuan 40, 496-507. Doi: 10.16288/j.yczz.17-424

Li, S., Y. Cong, Y. Liu, T. Wang, Q. Shuai, N. Chen, J. Gai, and Y. Li. 2017. Optimization of Agrobacterium-mediated transformation in soybean. Front. Plant Sci. 8, 246. Doi: 10.3389/fpls.2017.00246

Liu, Z., H. Xiong, H. Xie, Y. Tao Qin, Z. Ran, and B. Guo. 2013. A technique for Agrobacterium-mediated transformation via germinating seeds of soybean. Adv. Mater. Res. 749, 413-417.

Doi: 10.4028/www.scientific.net/AMR.749.413

Liu, H.K., C. Yang, and Z.M. Wei, 2004. Efficient Agrobacterium tumefaciens-mediated transformation of soybeans using an embryonic tip regeneration system. Planta 219, 1042-1049.

Doi: 10.1007/s00425-004-1310-x

Murashige, T. and F. Skoog. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 15, 473-497. Doi: 10.1111/j.1399-3054.1962.tb08052.x

Olhoft, P.M., L.E. Flagel, C.M. Donovan, and D.A. Somers. 2003. Efficient soybean transformation using hygromycin B selection in the cotyledonary-node method. Planta 216, 723-735.

Paz, M.M., H. Shou, Z. Guo, Z. Zhang, A.K. Banerjee, and K. Wang. 2004. Assessment of conditions affecting Agrobacterium-mediated soybean transformation using the cotyledonary node explant. Euphytica 136, 167-179. Doi: 10.1023/B:EUPH.0000030669.75809.dc

Paz, M.M., J.C. Martinez, A.B. Kalvig, T.M. Fonger, and K. Wang. 2006. Improved cotyledonary node method using an alternative explant derived from mature seed for efficient Agrobacterium-mediated soybean transformation. Plant Cell Rep. 25, 206-213. Doi: 10.1007/s00299-005-0048-7

R Development Core Team. 2008. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. URL: http://www.R-project.org

Song, Z., J. Tian, W. Fu, L. Li, L. Lu, L. Zhou, Z. Shan, G. Tang, and H. Shou. 2013. Screening Chinese soybean genotypes for Agrobacterium-mediated genetic transformation suitability. J. Zhejiang Univ. Sci. B 14, 289-298. Doi: 10.1631/jzus.B1200278

Soto, N., C. Delgado, Y. Hernandez, Y. Rosabal, A. Ferreira, M. Pujol, F. Aragao, and G.A. Enriquez. 2016. Efficient particle bombardment-mediated transformation of Cuban soybean (INCASoy-

using Glyphosate as a selective agent. Plant Cell Tissue Organ Cult. 128, 187-196. Doi: 10.1007/s11240-016-1099-x

Soto, N., A. Ferreira, C. Delgado, and G.A. Enriquez. 2013. In vitro regeneration of soybean plants of the Cuban Incasoy-36 variety. Biotecnol. Aplicada 30, 34-38.

Tillmann, M. and S. West. 2004. Identification of genetically modified soybean seeds resistant to Glyphosate. Sci. Agric. 61, 336-341. Doi: 10.1590/S0103-90162004000300017

USDA - United States Department of Agriculture. 2017. Oilseeds: world markets and trade. Informative circular from the foreign agricultural service. URL: https://apps.fas.usda.gov/psdonline/circulars/oilseeds.pdf (accessed August 2017).

Valencia, R.A. and G.A. Ligarreto. 2010. Mejoramiento genético de la soya (Glycinemax [L.] Merril) para su cultivo en la altillanura colombiana: una vision conceptual prospectiva. Agron.

Colomb. 28, 155-163.

Widholm, J.M., J.J. Finer, L.O. Vodkin, H.N. Trick, P. LaFayette, J. Li, and W. Parrott. 2010. Soybean. pp. 473-498. In: Kempken F. and C. Jung (eds.). Genetic modification of plants, biotechnology in agriculture and forestry. vol. 64, Springer-Verlag, Berlin, Heidelberg. Doi: 10.1007/978-3-642-02391-0_24

Xue, R.G., H.F. Xie, and B. Zhang. 2006. A multi-needle-assisted transformation of soybean cotyledonary node cells. Biotechnol. Lett. 28, 1551-1557. Doi: 10.1007/s10529-006-9123-6

Yang, X.F., X.Q. Yu, Z. Zhou, W.J. Ma, and G.X. Tang. 2016. A highefficiency Agrobacterium tumefaciens mediated transformation system using cotyledonary node as explants in soybean (Glycine max L.). Acta Physiol. Plant. 38, 60. Doi: 10.1007/s11738-016-2081-2

Yukawa, K., H. Kaku, H. Tanaka, Y. Koga-Ban, and M. Fukuda. 2008. Enhanced soybean infection by the legume ‘‘Super-Virulent’’Agrobacterium tumefaciens strain KAT23. Biosci. Biotechnol. Biochem. 72, 1809-1816. Doi: 10.1271/bbb.80080

Zeng, P., D.A. Vadnais, Z. Zhang, and J.C. Polacco. 2004. Refined glufosinate selection in Agrobacterium-mediated transformation of soybean [Glycine max (L.) Merrill]. Plant Cell Rep. 22, 478-482. Doi: 10.1007/s00299-003-0712-8

Zhang, Z., A. Xing, P. Staswick, and T.E. Clemente. 1999. The use of glufosinate as a selective agent in Agrobacterium-mediated transformation of soybean. Plant Cell Tissue Organ Cult. 56, 37-46. Doi: 10.1023/A:1006298622969

How to Cite

APA

Rojas, A., Lopez-Pazos, S. and Chaparro-Giraldo, A. (2018). Screening of Colombian soybean genotypes for Agrobacterium mediated genetic transformation conferring tolerance to Glyphosate. Agronomía Colombiana, 36(1), 24–34. https://doi.org/10.15446/agron.colomb.v36n1.67440

ACM

[1]
Rojas, A., Lopez-Pazos, S. and Chaparro-Giraldo, A. 2018. Screening of Colombian soybean genotypes for Agrobacterium mediated genetic transformation conferring tolerance to Glyphosate. Agronomía Colombiana. 36, 1 (Jan. 2018), 24–34. DOI:https://doi.org/10.15446/agron.colomb.v36n1.67440.

ACS

(1)
Rojas, A.; Lopez-Pazos, S.; Chaparro-Giraldo, A. Screening of Colombian soybean genotypes for Agrobacterium mediated genetic transformation conferring tolerance to Glyphosate. Agron. Colomb. 2018, 36, 24-34.

ABNT

ROJAS, A.; LOPEZ-PAZOS, S.; CHAPARRO-GIRALDO, A. Screening of Colombian soybean genotypes for Agrobacterium mediated genetic transformation conferring tolerance to Glyphosate. Agronomía Colombiana, [S. l.], v. 36, n. 1, p. 24–34, 2018. DOI: 10.15446/agron.colomb.v36n1.67440. Disponível em: https://revistas.unal.edu.co/index.php/agrocol/article/view/67440. Acesso em: 25 apr. 2024.

Chicago

Rojas, Adriana, Silvio Lopez-Pazos, and Alejandro Chaparro-Giraldo. 2018. “Screening of Colombian soybean genotypes for Agrobacterium mediated genetic transformation conferring tolerance to Glyphosate”. Agronomía Colombiana 36 (1):24-34. https://doi.org/10.15446/agron.colomb.v36n1.67440.

Harvard

Rojas, A., Lopez-Pazos, S. and Chaparro-Giraldo, A. (2018) “Screening of Colombian soybean genotypes for Agrobacterium mediated genetic transformation conferring tolerance to Glyphosate”, Agronomía Colombiana, 36(1), pp. 24–34. doi: 10.15446/agron.colomb.v36n1.67440.

IEEE

[1]
A. Rojas, S. Lopez-Pazos, and A. Chaparro-Giraldo, “Screening of Colombian soybean genotypes for Agrobacterium mediated genetic transformation conferring tolerance to Glyphosate”, Agron. Colomb., vol. 36, no. 1, pp. 24–34, Jan. 2018.

MLA

Rojas, A., S. Lopez-Pazos, and A. Chaparro-Giraldo. “Screening of Colombian soybean genotypes for Agrobacterium mediated genetic transformation conferring tolerance to Glyphosate”. Agronomía Colombiana, vol. 36, no. 1, Jan. 2018, pp. 24-34, doi:10.15446/agron.colomb.v36n1.67440.

Turabian

Rojas, Adriana, Silvio Lopez-Pazos, and Alejandro Chaparro-Giraldo. “Screening of Colombian soybean genotypes for Agrobacterium mediated genetic transformation conferring tolerance to Glyphosate”. Agronomía Colombiana 36, no. 1 (January 1, 2018): 24–34. Accessed April 25, 2024. https://revistas.unal.edu.co/index.php/agrocol/article/view/67440.

Vancouver

1.
Rojas A, Lopez-Pazos S, Chaparro-Giraldo A. Screening of Colombian soybean genotypes for Agrobacterium mediated genetic transformation conferring tolerance to Glyphosate. Agron. Colomb. [Internet]. 2018 Jan. 1 [cited 2024 Apr. 25];36(1):24-3. Available from: https://revistas.unal.edu.co/index.php/agrocol/article/view/67440

Download Citation

CrossRef Cited-by

CrossRef citations4

1. Julian Mora-Oberlaender, Jenny Jiménez-Barreto, Yadira Rodríguez-Abril, Meike Estrada-Arteaga, Alejandro Chaparro-Giraldo. (2022). Cisgenic Crops: Potential and Prospects. Concepts and Strategies in Plant Sciences. , p.89. https://doi.org/10.1007/978-3-031-06628-3_6.

2. Karen Daniela Gómez, Vanessa Parra-González, Juan Camilo Marín-Loaiza, Jesús Gil, Diego Luis Durango. (2023). Isoflavonoid composition and antioxidant activity on elicited and non-elicited sprouts of six soy cultivars grown in Colombia. Bragantia, 82 https://doi.org/10.1590/1678-4499.20220189.

3. Julian Mora-Oberlaender, Yadira Rodriguez-Abril, Meike Estrada-Arteaga, Luisa Galindo-Sotomonte, Juan David Romero-Betancourt, Jenny Paola Jiménez-Barreto, Camilo López-Carrascal, Alejandro Chaparro-Giraldo. (2024). Agbiogeneric soybean with glyphosate tolerance: Genetic transformation of new Colombian varieties. Crop Breeding and Applied Biotechnology, 24(1) https://doi.org/10.1590/1984-70332024v24n1a13.

4. Deeksha Rawat, Aarti Bains, Prince Chawla, Ravinder Kaushik, Rahul Yadav, Anil Kumar, Kandi Sridhar, Minaxi Sharma. (2023). Hazardous impacts of glyphosate on human and environment health: Occurrence and detection in food. Chemosphere, 329, p.138676. https://doi.org/10.1016/j.chemosphere.2023.138676.

Dimensions

PlumX

Article abstract page views

529

Downloads

Download data is not yet available.