Optimization of fermentation process conditions for chili pepper (Capsicum frutescens) fruit using Response Surface Methodology
Optimización del proceso de fermentación de frutos de ají (Capsicum frutescens) utilizando el Método de Superficie Respuesta
DOI:
https://doi.org/10.15446/agron.colomb.v36n1.69164Keywords:
yeasts, lactic fermentation, lactic acid bacteria, glucose, NaCl. (en)levaduras, fermentación láctica, bacterias ácido lácticas, glucosa, NaCl. (es)
Downloads
The consumption of chili pepper fruits (CPF) is widespread throughout the world. However, countries without tropical climates can only consume few CPF varieties. The lactic fermentation (LF) of CPF is a good alternative for their preservation and consumption in those regions where they are not cultivated. The main objective of this research was to optimize the fermentation process conditions for a CPF variety (Capsicum frutescens) modifying the Sodium Chloride (NaCl) and glucose concentrations to increase the acidification rate. The Response Surface Methodology was used applying a Central Composite Design to integrate a desirability approach. The growth of the microorganisms responsible for the fermentation process was also evaluated. The addition of NaCl and glucose significantly affected the acidification rate for LF of CPF. The optimum fermentation parameters determined to maximize the acidification rate were 6.25% NaCl and 1.77% glucose concentrations with an acidification rate of 0.113% acidity/day. However, this value was slightly lower than predicted. Lactic acid bacteria and yeasts were the main microorganisms throughout the fermentations.
El consumo de ajíes está ampliamente extendido en el mundo. Sin embargo, países con climas no tropicales pueden consumir una restringida cantidad de variedades de ajíes. La fermentación láctica (FL) de ajíes es una buena alternativa para su conservación y consumo en regiones donde no son cultivados. El objetivo de este trabajo fue optimizar el proceso de fermentación para una variedad de ají (Capsicum frutescens), modificando las concentraciones del Cloruro de Sodio (NaCl) y glucosa para incrementar la velocidad de acidificación. Se utilizó el método de Superficie Respuesta usando el Diseño Compuesto Central e integrando la función de deseabilidad. El crecimiento de los microorganismos responsables de la fermentación también fue evaluado. La adición de NaCl y glucosa influyó significativamente en la velocidad de acidificación para la FL de los ajíes. Los parámetros de fermentación óptimos determinados para maximizar la velocidad de acidificación fueron las concentraciones de 6.25% de NaCl y 1.77% de glucosa con una velocidad de acidificación de 0.113% de acidez/día. Sin embargo, este valor fue ligeramente menor al predicho. Las bacterias ácido lácticas y levaduras fueron los principales microorganismos identificados durante el proceso de fermentación.
References
Akabanda, F., J. Owusu-Kwarteng, K. Tano-Debrah, C. Parkouda, and L. Jespersen. 2014. The use of lactic acid bacteria starter culture in the production of Nunu, a spontaneously fermented milk product in Ghana. Int. J. Food Sci. Doi: 10.1155/2014/721067
Arroyo-López, F.N., A. Querol, J. Bautista-Gallego, and A. Garrido-Fernández. 2008. Role of yeasts in table olive production. Int. J. Food Microbiol. 128, 189-196. Doi: 10.1016/j.ijfoodmicro.2008.08.018
Ballesteros, C., L. Palop, and I. Sánchez. 1999. Influence of sodium chloride concentration on the controlled lactic acid fermentation of "Almagro" eggplants. Int. J. Food Microbiol. 53, 13-20. Doi: 10.1016/S0168-1605(99)00130-0
Bosland, P.W. and E.J. Votava. (eds.). 2012. Peppers: Vegetable and spice capsicums. Cambridge, UK. Doi: 10.1079/9781845938253.0000
Box, G.E.P. and K.B. Wilson. 1951. Experimental attainment of optimum conditions. J. R. Stat. Soc. 13, 1-45. Doi: 10.1007/978-1-4612-4380-9_23
Buckenhüskes, H.J. 1997. Fermented vegetables. pp. 595-609. In: P.D. Doyle, L.R. Beuchat, T.J. Montville (eds.). Food microbiology: fundamentals and frontiers. ASM Press, Washington, DC.
Demir, N., K.S. Bachçeci, and J. Acar. 2006. The effects of different initial Lactobacillus plantarum concentrations on some properties of fermented carrot juice. J. Food Process. Pres. 30, 352-363. Doi: 10.1111/j.1745-4549.2006.00070.x
Di Scala, K. and G. Crapiste. 2008. Drying kinetics and quality changes during drying of red pepper. LWT - Food Sci. Technol. 41, 789-795. Doi: 10.1016/j.lwt.2007.06.007
Fleming, H.P. 1982. Fermented vegetables. pp. 52-70. In: Rose, A.H., (ed.). Economic microbiology of fermented foods. Academic Press, New York, USA.
Fukuzaki, S. 2006. Mechanisms of actions of sodium hypochlorite in cleaning and disinfection processes. Biocontrol Sci. 11, 147-157. Doi: 10.4265/bio.11.147
Gaggia, F., D. Di Gioia, L. Baffoni, and B. Biavati. 2011. The role of protective and probiotic cultures in food and feed and their impact on food safety. Trends Food Sci. Technol. 22, 58-66. Doi: 10.1016/j.tifs.2011.03.003
Ghosh, S., R. Chakraborty, and U. Raychaudhuri. 2012. Optimizing process conditions for palm (Borassus flabelliffer) wine fermentation using response surface methodology. Int. Food Res. J. 19, 1633-1639. Doi: 10.1002/jib.153
Gomes, T., C. Barradas, T. Dias, J. Verdial, J. Sá Morais, E. Ramalhosa, and L.M. Estevinho. 2013. Optimization of mead production using Response Surface Methodology. Food Chem. Toxicol. 59, 680-686. Doi: 10.1016/j.fct.2013.06.034
Howard, L.R., and R.E.C. Wildman. 2007. Antioxidant vitamin and phytochemical content of fresh and processed pepper fruit (Capsicum annuum). pp. 165-191. In: R.E.C. Wildman (ed.). Handbook of nutraceuticals and functional foods (2nd ed.). CRC Press, Boca Raton, USA.
Jaiswal, A.K., S. Gupta, and N. Abu-Ghannam. 2012. Optimization of lactic acid fermentation of York cabbage for the development of potential probiotic products. Int. J. Food Sci. Technol. 47, 1605-1612. Doi: 10.1111/j.1365-2621.2012.03010.x
Joshi, V.K., A. Chauhan, S. Devi, and V. Kumar. 2015. Application of response surface methodology in optimization of lactic acid fermentation of radish: effect of addition of salt, additives and growth stimulators. J. Food Sci. Technol. 52, 4935-4944. Doi: 10.1007/s13197-014-1570-9
Jou, Y.T., W.T. Lin, W.C. Lee, and T.M. Yeh. 2014. Integrating the Taguchi method and response surface methodology for process parameter optimization of the injection molding. Appl. Math. Inf. Sci. 8, 1277-1285. Doi: 10.12785/amis/080342
Karovicová, J. and Z. Kohajdová. 2003. Lactic acid fermented vegetable juices. Hortic. Sci. 30, 152-158. Doi: 10.1556/AAlim.34.2005.3.5
Lee, Y.K. and S. Salminen. 1995. The coming age of probiotics. Trends Food Sci. Technol. 6, 241-245. Doi: 10.1016/S0924-2244(00)89085-8
Meckelmann, S.W., D.W. Riegel, M.J. Van Zonneveld, L. Ríos, K. Peña, R. Ugas, L. Quiñonez, E. Mueller-Seitz, and M. Petz. 2013. Compositional characterization of native Peruvian chili peppers (Capsicum spp.). J. Agric. Food Chem. 61, 2530-2537. Doi: 10.1021/jf304986q
Miller, G.L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analyt. Chem. 31, 426-428. Doi: 10.1021/ac60147a030
Montet, D., G. Loiseau, and N. Kakhia-Rozis. 2006. Microbial technology of fermented vegetables. In R.C. Ray, O.P. Ward (eds.). Microbial biotechnology in horticulture (Vol. 1, 309-344). Science Publishers, Inc. New Hampshire, USA.
Muyanja, C.M., J.A., Narvhus, J., Treimo, and T., Langsrud. 2003. Isolation, characterization and identification of lactic acid bacteria from bushera: An Ugandan traditionally fermented beverage. Int. J. Food Microbiol. 80, 201-210. Doi: 10.1016/S0168-1605(02)00148-4
Nwabueze, T.U., and F.O. Odunsi. 2013. Optimization of process conditions for cassava (Manihot esculenta) Lafun production. Afr. J. Food Sci. Res. 1, 1-9.
Ogunjobi, A.A., B.C. Adebayo-Tayo, and A.A. Ogunshe. 2005. Microbiological, proximate analysis and sensory evaluation of processed Irish potato fermented in brine solution. Afr. J.Biotechnol. 4, 1409-1412.
Panda, S.H., S. Panda, P.S. Shiva Kumar, and R.C. Ray. 2009. Anthocyaninrich sweet potato lacto-pickle: production, nutritional and proximate composition. Int. J. Food Sci. Technol. 44, 445-455. Doi: 10.1111/j.1365-2621.2008.01730.x
Peng, B., Y. Lei, H. Zhao, and L. Cui. 2015. Response surface methodology for optimization of fermentation process parameters for improving apple wine quality. J. Food Sci. Technol. 52, 7513-7518. Doi: 10.1007/s13197-015-1872-6
Pérez-Díaz, I.M., F. Breidt, R.W. Buescher, F.N. Arroyo-López, R. Jiménez-Díaz, A. Garrido-Fernández, J. Bautista-Gallego, S.S. Yoon, and S.D. Johanningsmeier. 2013. Fermented and acidified vegetables. pp. 521-532. In: Downes, F.P. and K. Ito (eds.). Compendium of methods for the microbiological examination of foods. American Public Health Association, Washington DC.
Pickersgill, B. 2007. Domestication of plants in the Americas: insights from mendelian and molecular genetics. Ann. Bot. 100, 925-940. Doi: 10.1093/aob/mcm193
Ramamurthy, T., A. Ghosh, G.P. Pazhani, and S. Shinoda. 2014. Current perspectives on viable but non-culturable (VBNC) pathogenic bacteria. Front. Public Health. 2, 1-9. Doi: 10.3389/fpubh.2014.00103
Rao, M.S., J. Pintado, W.F. Stevens, and J.P. Guyot. 2004. Kinetic growth parameters of different amylolytic and non-amylolytic Lactobacillus strains under various salt and pH conditions. Bioresour Technol. 94, 331-337. Doi: 10.1016/j.biortech.2003.11.028
Ray, R.C. and S.H. Panda. 2007. Lactic acid fermented fruits and vegetables: an overview. In M.V. Palino (ed.). Food microbiology research trends. Nova Science Publishers Inc., Hauppauge, New York, USA.
Rodríguez, H., J.A. Curiel, J.M. Landete, B. De las Rivas, F.L. De Felipe, C. Gómez-Cordovés, J.M. Mancheño, and R. Muñoz. 2009. Food phenolics and lactic acid bacteria. Int. J. Food Microbiol. 132, 78-90. Doi: 10.1016/j.ijfoodmicro.2009.03.025
Ross, R.P., S. Morgan, and C. Hill. 2002. Preservation and fermentation: past, present and future. Int. J. Food Microbiol.79, 3-16. Doi: 10.1016/S0168-1605(02)00174-5
Sherman, P.W., and J. Billing. 1999. Darwinian Gastronomy: Why we use spices: Spices taste good because they are good for us. BioScience 49, 453-463. Doi: 10.2307/1313553
Spyropoulou, K.E., N.G. Chorianopoulos, P.N. Skandamis, and G.J.E. Nychas. 2001. Control of Escherichia coli O157: H7 during the fermentation of Spanish-style green table olives (conservolea variety) supplemented with different carbon sources. Int. J. Food Microbiol. 66, 3-11. Doi: 10.1016/S0168-1605(00)00510-9
Steinkraus, K.H. (ed.). (1996). Handbook of indigenous fermented foods. New York, USA.
Steinkraus, K.H. 1997. Classification of fermented foods: worldwide review of household fermentation techniques. Food Control. 8, 311-317. Doi: 10.1016/S0956-7135(97)00050-9
Topuz, A. and F. Ozdemir. 2007. Assessment of carotenoids, capsaicinoids and ascorbic acid composition of some selected pepper cultivars (Capsicum annuum L.) grown in Turkey. J. Food Compost Anal. 20, 596-602. Doi: 10.1016/j.jfca.2007.03.007
Wang, C.Y., Y.W. Liu, J.Q. Jia, T.R. Sivakumar, T. Fan, and Z.Z. Gui. 2013. Optimization of fermentation process for preparation of mulberry fruit wine by response surface methodology. Afr. J. Microbiol. Res., 7, 227-236.
Wouters, D., N. Bernaertb, W. Conjaertsa, B. Van Droogenbroeckb, M. De Looseb, and L. De Vuyst. 2013. Species diversity, community dynamics, and metabolite kinetics of spontaneous leek fermentations. Food Microbiol. 33, 185-196. Doi: 10.1016/j.fm.2012.09.016
Wu, Y.W. 2002. Testing design and data processing. Suzhou University Press, Suzhou, China.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Emma Mani-López, Nelly Ramírez-Corona, Aurelio López-Malo. (2024). Latilactobacillus sakei as a starter culture to ferment pepper fruits. Food and Humanity, 2, p.100233. https://doi.org/10.1016/j.foohum.2024.100233.
2. Alberta N.A. Aryee, James Owusu-Kwarteng, Zachary Senwo, Marikis N. Alvarez. (2022). Characterizing fermented habanero pepper (Capsicum chinense L). Food Chemistry Advances, 1, p.100137. https://doi.org/10.1016/j.focha.2022.100137.
3. Siva Raseetha, F.M.N.A. Aida, Rashidah Sukor, Abdul Malek Azilah, Syaril M. Ramli. (2022). Postharvest and Postmortem Processing of Raw Food Materials. , p.121. https://doi.org/10.1016/B978-0-12-818572-8.00001-2.
4. Biadge Kefale, Mulugeta Admasu Delele, Solomon Workneh Fanta, Solomon Abate. (2025). Effect of packaging materials and storage temperature on the shelf stability of Awaze paste. Frontiers in Nutrition, 11 https://doi.org/10.3389/fnut.2024.1503328.
5. Hazal Gül, Mine Güngörmüşler. (2022). Utilizing response surface methodology to evaluate the process parameters of indigenous cucumber fermentation. Zeitschrift für Naturforschung C, 77(9-10), p.417. https://doi.org/10.1515/znc-2022-0009.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2019 Agronomía Colombiana
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
© Centro Editorial de la Facultad de Ciencias Agrarias, Universidad Nacional de Colombia
Reproduction and quotation of material appearing in the journal is authorized provided the following are explicitly indicated: journal name, author(s) name, year, volume, issue and pages of the source. The ideas and observations recorded by the authors are their own and do not necessarily represent the views and policies of the Universidad Nacional de Colombia. Mention of products or commercial firms in the journal does not constitute a recommendation or endorsement on the part of the Universidad Nacional de Colombia; furthermore, the use of such products should comply with the product label recommendations.
The Creative Commons license used by Agronomia Colombiana journal is: Attribution - NonCommercial - ShareAlike (by-nc-sa)
Agronomia Colombiana by Centro Editorial of Facultad de Ciencias Agrarias, Universidad Nacional de Colombia is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional License.
Creado a partir de la obra en http://revistas.unal.edu.co/index.php/agrocol/.