Published

2018-01-01

Efecto de diferentes fuentes de nitrógeno sobre el crecimiento vegetativo de agraz (Vaccinium meridionale Swartz)

Effect of different sources of nitrogen on the vegetative growth of Andean blueberry (Vaccinium meridionale Swartz)

115/5000 Efeito de diferentes fontes de nitrogênio no crescimento vegetativo de agraz (Vaccinium meridionale Swartz)

DOI:

https://doi.org/10.15446/agron.colomb.v36n1.69304

Keywords:

macronutrientes, estacas, índices de crecimiento, Ericaceae. (es)
macronutrients, cuttings, growth indexes, Ericaceae. (en)
macronutrientes, estacas, índices de crescimento, Ericaceae (pt)

Authors

  • Laura Katalina González Universidad Nacional de Colombia - Sede Bogotá - Faculty of Agricultural Sciences
  • Laura Natalia Rugeles Universidad Nacional de Colombia - Sede Bogotá - Faculty of Agricultural Sciences
  • Stanislav Magnitskiy Universidad Nacional de Colombia - Sede Bogotá - Faculty of Agricultural Sciences

El agraz Vaccinium meridionale Swartz es un arbusto silvestre pequeno, que crece en Colombia en zonas de subparamo, con un alto potencial para posicionarse en el mercado internacional, gracias a su alto contenido de antioxidantes en los frutos. El presente trabajo tuvo como objetivo evaluar el efecto de la fertilizacion con diferentes fuentes de nitrogeno sobre el crecimiento de plantas de agraz en etapa vegetativa, con cuatro tratamientos: testigo sin aplicacion del N, 50% NH4+-50%NO3-, 100% NO3- y 100% NH4+. Se utilizo la dosis de 70 mg L-1 del N en los tratamientos con la aplicacion del nitrogeno. Las plantasM fertilizadas con fuentes amoniacales tuvieron el mejor crecimiento, siendo el tratamiento de 100% NH4+ el que obtuvo el mayor numero de brotes (22), mayor numero de hojas (254) por planta y mayores pesos secos de los organos a los 148 dias despues de la siembra de estacas enraizadas, seguido del tratamiento con 50%NH4 +-50%NO3-. Los tratamientos con 0% N y 100% NO3- tuvieron una mayor sintesis de antocianinas y una menor cantidad de clorofilas en hojas con respecto a las plantas fertilizadas con fuentes de NH4+. Las plantas fertilizadas con 0% N y 100% NO3- presentaron un crecimiento menor que aquellas fertilizadas con 50% NH4+-50%NO3- y 100%NH4+. Este estudio permite afirmar que el agraz requiere planes de fertilización con fuentes amoniacales.

The Andean blueberry (Vaccinium meridionale Swartz) is a small wild shrub that grows in Colombia in sub-paramo areas. The berry has a high export potential due to the high content of antioxidants in the fruits. The objective of the present research was to evaluate the effect of fertilization with different nitrogen sources on the vegetative growth of plants with four treatments: a control of 0% N, 50%NH4 +-50%NO3 -, 100% NO3 -, and 100% NH4+. The dose of 70 mg L-1 N was used in the treatmentsM with application of N. The plants with best growth were those fertilized with ammonia sources. The treatment with 100% NH4+ obtained the highest average number of shoots (22) and leaves (254) per plant, and the highest dry weight of plant

organs at 148 d after planting of rooted cuttings followed by treatment with 50%NH4 +-50%NO3-. Applications of 0% N and 100% NO3- resulted in higher rates of anthocyanin synthesis and lower contents of chlorophyll in leaves regarding to the N sources containing NH4+. The plants fertilized with 0% N and 100% NO3- presented lesser growth than those fertilized with 50%NH4 +-50%NO3 -and 100% NH4+. This study allows to conclude that the Andean blueberry requires a fertilization Mplan with ammonia sources.

O mirtilo andino (Vaccinium meridionale Swartz) é um pequeno arbusto selvagem, que cresce na Colômbia em áreas de subpáramo, com alto potencial de exportação nos mercados internacionais, devido ao alto teor de antioxidantes nos frutos. O objetivo da presente pesquisa foi avaliar o efeito da fertilização com diferentes fontes de nitrogênio no crescimento vegetativo de plantas com quatro tratamentos: 100% NO3-, 100% NH4 +, 50% NH4 + -50% NO3- e controle de 0 % N. Foi utilizada a dose de 70 mg L-1 N nos tratamentos com aplicação de N. As plantas com melhor crescimento foram as fertilizadas com fontes amoniacais. O tratamento com 100% de NH4 + obteve o maior número médio de rebentos (22) e folhas (254) por planta e pesos secos de órgãos de plantas aos 148 dias após o plantio de estacas enraizadas, seguido de tratamento com 50% de NH4 + -50% de NO3- . Aplicações de 0% de N e 100% de NO3 resultaram em síntese de taxas mais elevadas de síntese de antocianinas em folhas e síntese menor de clorofila em relação a N fontes contendo NH4 +. As plantas fertilizadas com 0% de N e 100% de NO3 apresentaram menor crescimento do que as fertilizadas com 50% de NH4 + -50% de NO3 e 100% de NH4 + de acordo com os índices de crescimento. Este estudo permite concluir que o mirtilo andino apresenta um comportamento semelhante ao dos mirtilos cultivados (Vaccinium sp.) Em termos de assimilação de N, implicando que ele requer planos de fertilização com fontes amoniacais.

References

Abreu, O.A., G. Barreto, and S. Prieto. 2014. Vaccinium (Ericaceae): Ethnobotany and pharmacological potentials. Emirat. J. Food Agric. 26(7), 577-591. Doi: 10.9755/ejfa.v26i7.16404

Alt, D.S., J.W. Doyle, and A. Malladi. 2017. Nitrogen-source preference in blueberry (Vaccinium sp.): Enhanced shoot nitrogen assimilation in response to direct supply of nitrate. J. Plant Physiol. 216, 79-87. Doi: 10.1016/j.jplph.2017.05.014

Birkhold, K.T. and R.L. Darnell. 1993. Contribution of storage and currently assimilated nitrogen to vegetative and reproductive growth of rabbiteye blueberry. J. Amer. Soc. Hort. Sci. 118(1), 101-108.

Bryant, J.P., F.S. Chapin, and D.R. Klein. 1983. Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos 40, 357-368.

Bryla, D.R. and B.C. Strik. 2015. Nutrient requirements, leaf tissue standards, and new options for fertigation of northern high-bush blueberry. HortTech. 25(4), 464-470.

Chamorro, F.J. and G. Nates-Parra. 2015. Floral and reproductive biology of Vaccinium meridionale (Ericaceae) in the Eastern Andes of Colombia. Rev. Biol. Trop. 63(4), 1197-1212.

Contreras, J., L. Calderón-Jaimes, E. Guerra-Hernández, and B. García-Villanova. 2011. Antioxidant capacity, phenolic content and vitamin C in pulp, peel and seed from 24 exotic fruits from Colombia. Food Res. Int. 44(7), 2047-2053. Doi: 10.1016/j.foodres.2010.11.003

Curtis, P.S. and A. Láuchli. 1986. The role of leaf area development and photosynthetic capacity in determining growth of kenat under moderate salt stress. Aust. J. plant physiol. 18, 553-565.

Fang, Y., J. Williamson, R. Darnell, Y. Li, and G. Liu. 2017. Nitrogen uptake and allocation at different growth stages of young southern highbush blueberry plants. HortSci. 52(6), 905-909. Doi: 10.21273/HORTSCI11723-17

Ferlemi, A.V. and F.N. Lamari. 2016. Berry leaves: an alternative source of bioactive natural products of nutritional and medicinal value. Antioxidants 5(2), 1-20. Doi: 10.3390/antiox5020017

Flórez, V. and R. Cruz. 2004. Guías de Laboratorio de Fisiología Vegetal. Unibiblos, Universidad Nacional de Colombia, Bogotá.

Glonek, J. and A. Komosa. 2013. Fertigation of highbush blueberry (Vaccinium corymbosum L.). Part I. The effect on growth and yield. Acta Sci. pol., Hortorum Cultus 12(3), 47-57.

Garzón, G.A., C.E. Narváez, K.M. Riedl, and S.J. Schwartz. 2010. Chemical composition, anthocyanins, non-anthocyanin phenolics and antioxidant activity of wild bilberry (Vaccinium meridionale Swartz) from Colombia. Food Chem. 122, 980-986. Doi: 10.1016/j.foodchem.2010.03.01

González, M., I. Samudio, L.G. Sequeda-Castañeda, C. Celis, J. Iglesias, and L. Morales. 2017. Cytotoxic and antioxidant capacity of extracts from Vaccinium meridionale Swartz (Ericaceae) in transformed leukemic cell lines. J. Appl. pharm. Sci. 7(3), 24-30. Doi: 10.7324/JApS.2017.70305

Greidanus, T., L.A. Peterson, L.E. Schrader, and M.N. Dana. 1972. Essentiality of ammonium for cranberry nutrition. J. Amer. Soc. Hort. Sci. 97, 272-277.

Hunt, R. 2013. Basic growth analysis: plant growth analysis for beginners. Unwin Hyman Ltd., London.

IGAC. 2006. Métodos analíticos del laboratorio de suelos. 6th ed. Instituto Geográfico Agustín Codazzi, Bogotá.

Korcak, R.F. 1988. Nutrition of blueberry and other calcifuges. Hort. Rev. 10, 183-227.

Lee, J., R.W. Durst, and R.E. Wrolstad. 2005. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: Collaborative study. J. AOAC Int. 88(5), 1269-1278.

Leitzke, L., L. Picolotto, I. Pereira, G. Vignolo, J. Schmitz, M. Vizzotto, and L. Antunes. 2015. Nitrogen fertilizer affects the chemical composition of the substrate, the foliar nutrient content, the vegetative growth, the production and fruit quality of blueberry. Científica, 43(4), 316-324.

Li, D., B. Li, Y. Ma, X. Sun, Y. Lin, and X. Meng. 2017. Polyphenols, anthocyanins, and flavonoids contents and the antioxidant capacity of various cultivars of highbush and half-high blueberries. J. Food Composit. Anal. 62, 84-93. Doi: 10.1016/j.jfca.2017.03.006

Ligarreto, G.A., M.D.P. Patiño, and S.V. Magnitskiy. 2011. Phenotypic plasticity of Vaccinium meridionale (Ericaceae) in wild populations of mountain forests in Colombia. Rev. Biol. Trop. 59(2), 569-583.

López־Padilla, A., D. Martín, D. Villanueva, L. Jaime, A. Ruiz-Rodríguez, C.E. Restrepo, D.M. Rivero, and T. Fornari. 2017. Vaccinium meridionale Swartz extracts and their addition in beef burgers as antioxidant ingredient. J. Sci. Food Agric. 97, 1097-1110. Doi: 10.1002/jsfa.8483

Maldonado, M.E., S.S. Arango-Varela, and B.A. Rojano. 2014. Free radical scavenging capacity and cytotoxic and antiproliferative effects of Vaccinium meridionale Sw. against colon cancer cell lines. Rev. Cubana plant Med. 19(2), 172-184.

Maqbool, R. 2013. Nitrogen cycling, optimization of plant nutrition and remote sensing of leaf nutrients in wild blueberries (Vaccinium angustifolium Ait.). PhD Thesis, Dalhousie University, Halifax, Canada.

Merhaut, D. and R. Darnell. 1995. Ammonium and nitrate accumulation in containerized southern highbush blueberry plants. HortSci. 30, 1378-1381.

Merhaut, D. and R. Darnell. 1996. Vegetative growth and nitrogen/ carbon partitioning in blueberry as influenced by nitrogen fertilization. HortSci. 121(5), 875-879.

Montoya, C.G., J.D.H. Arredondo, M.L. Arias, C.I.M. Cano, and B.A. Rojano 2012. Cambios en la actividad antioxidante en frutos de mortiño (Vaccinium meridionale Sw.) durante su desarrollo y maduración. Rev. Fac. Nal. Agr. Medellín 65(1), 6487-6495. Doi: 10.15446/rfnam

Percival, D.C. and J.P. Privé. 2002. Nitrogen formulation influences plant nutrition and yield components of lowbush blueberry (Vaccinium angustifolium Ait). Acta Hort. 574, 347-351. Doi: 10.17660/ActaHortic.2002.574.52

Peterson, L.A., E.J. Stang, and M.N. Dana. 1988. Blueberry response to NH4+-N and NO3 --N. J. Amer. Soc. Hort. Sci. 113, 9-12.

Poonnachit, U. and R. Darnell. 2004. Effect of ammonium and nitrate on ferric chelate reductase and nitrate reductase in Vaccinium species. Annals Bot. 93, 399-405. Doi: 10.1093/aob/mch053

Routray, W. and V. Orsat. 2011. Blueberries and their an-thocyanins: factors affecting biosynthesis and properties. Compr. Rev. Food Sci. Food Safety 10(6), 303-320. Doi: 10.1111/j.1541-4337.2011.00164.x

Salisbury, F.B. and C.W. Ross. 2000. Fisiología de las plantas. Desarrollo de las plantas y Fisiología Ambiental. Editorial Paraninfo, Madrid.

Sugiyama, N. and K. Ishigaki. 1994. Uptake of nitrate-nitrogen by blueberry plants. J. plant Nutr. 17(11), 1975-1982. Doi: 10.1080/01904169409364859

Tamada, T. 2004. Effects of nitrogen sources on growth and leaf nutrient concentrations of 'Tifblue'rabbiteye blueberry under water culture. Small Fruits Rev. 3(1-2), 149-158. Doi: 10.1300/J301v03n01_15

Takamizo, T. and N. Sugiyama. 1991. Growth responses to N forms in rabbiteye and highbush blueberries. J. Jpn. Soc. Hort. Sci. 60, 41-45.

Townsend, L.R. 1967. Effect of ammonium nitrogen and nitrate nitrogen, separately and in combination, on the growth of highbush blueberry. Can. J. plant Sci. 47, 555-562.

Townsend, L.R. 1969. Influence of form of nitrogen and pH on growth and nutrient levels in the leaves and roots of the low-bush blueberry. Can. J. plant Sci. 49, 333-338.

Williams, L. and T.E. Martinson. 2003. Nondestructive leaf area estimation of 'Niagara' and 'DeChaunac' grapevines. Sci. Hort. 98, 493-498.

Zapata, I.C., V. Villacorta, M.E. Maldonado, D. Castro-Restrepo, and B. Rojano. 2015. Antioxidant and cytotoxic activity of black and green tea from Vaccinium meridionale Swartz leaves. J. Med. Plants Res. 9(13), 445-453. Doi: 10.5897/JMpR2014.5744

Zapata, I.C., S. Ochoa, M.E. Maldonado, A.D. Zapata, and B.I. Rojano. 2016. Cytotoxic effect and antioxidant activity of Andean berry (Vaccinium meridionale Sw) wine. J. Med. plants Res. 10(27), 402-408. Doi: 10.5897/JMpR2016.6100

Yepes, A. and M.S. Buckeridge. 2011. Respuestas de las plantas ante los factores ambientales del cambio climático global: Revisión. Colombia Forestal 14(2), 213-232. Doi: 10.14483/issn.2256-201X

How to Cite

APA

González, L. K., Rugeles, L. N. and Magnitskiy, S. (2018). Efecto de diferentes fuentes de nitrógeno sobre el crecimiento vegetativo de agraz (Vaccinium meridionale Swartz). Agronomía Colombiana, 36(1), 58–67. https://doi.org/10.15446/agron.colomb.v36n1.69304

ACM

[1]
González, L.K., Rugeles, L.N. and Magnitskiy, S. 2018. Efecto de diferentes fuentes de nitrógeno sobre el crecimiento vegetativo de agraz (Vaccinium meridionale Swartz). Agronomía Colombiana. 36, 1 (Jan. 2018), 58–67. DOI:https://doi.org/10.15446/agron.colomb.v36n1.69304.

ACS

(1)
González, L. K.; Rugeles, L. N.; Magnitskiy, S. Efecto de diferentes fuentes de nitrógeno sobre el crecimiento vegetativo de agraz (Vaccinium meridionale Swartz). Agron. Colomb. 2018, 36, 58-67.

ABNT

GONZÁLEZ, L. K.; RUGELES, L. N.; MAGNITSKIY, S. Efecto de diferentes fuentes de nitrógeno sobre el crecimiento vegetativo de agraz (Vaccinium meridionale Swartz). Agronomía Colombiana, [S. l.], v. 36, n. 1, p. 58–67, 2018. DOI: 10.15446/agron.colomb.v36n1.69304. Disponível em: https://revistas.unal.edu.co/index.php/agrocol/article/view/69304. Acesso em: 12 jul. 2024.

Chicago

González, Laura Katalina, Laura Natalia Rugeles, and Stanislav Magnitskiy. 2018. “Efecto de diferentes fuentes de nitrógeno sobre el crecimiento vegetativo de agraz (Vaccinium meridionale Swartz)”. Agronomía Colombiana 36 (1):58-67. https://doi.org/10.15446/agron.colomb.v36n1.69304.

Harvard

González, L. K., Rugeles, L. N. and Magnitskiy, S. (2018) “Efecto de diferentes fuentes de nitrógeno sobre el crecimiento vegetativo de agraz (Vaccinium meridionale Swartz)”, Agronomía Colombiana, 36(1), pp. 58–67. doi: 10.15446/agron.colomb.v36n1.69304.

IEEE

[1]
L. K. González, L. N. Rugeles, and S. Magnitskiy, “Efecto de diferentes fuentes de nitrógeno sobre el crecimiento vegetativo de agraz (Vaccinium meridionale Swartz)”, Agron. Colomb., vol. 36, no. 1, pp. 58–67, Jan. 2018.

MLA

González, L. K., L. N. Rugeles, and S. Magnitskiy. “Efecto de diferentes fuentes de nitrógeno sobre el crecimiento vegetativo de agraz (Vaccinium meridionale Swartz)”. Agronomía Colombiana, vol. 36, no. 1, Jan. 2018, pp. 58-67, doi:10.15446/agron.colomb.v36n1.69304.

Turabian

González, Laura Katalina, Laura Natalia Rugeles, and Stanislav Magnitskiy. “Efecto de diferentes fuentes de nitrógeno sobre el crecimiento vegetativo de agraz (Vaccinium meridionale Swartz)”. Agronomía Colombiana 36, no. 1 (January 1, 2018): 58–67. Accessed July 12, 2024. https://revistas.unal.edu.co/index.php/agrocol/article/view/69304.

Vancouver

1.
González LK, Rugeles LN, Magnitskiy S. Efecto de diferentes fuentes de nitrógeno sobre el crecimiento vegetativo de agraz (Vaccinium meridionale Swartz). Agron. Colomb. [Internet]. 2018 Jan. 1 [cited 2024 Jul. 12];36(1):58-67. Available from: https://revistas.unal.edu.co/index.php/agrocol/article/view/69304

Download Citation

CrossRef Cited-by

CrossRef citations5

1. Mariam Vásquez-Martínez, Pedro Lizarazo-Peña, Enrique Darghan, Liz Patricia Moreno-Fonseca, Stanislav Magnitskiy. (2022). Leaf area prediction models from growth measurements in Andean blueberry (Vaccinium meridionale Swartz) in the nursery. Agronomía Colombiana, 40(3), p.361. https://doi.org/10.15446/agron.colomb.v40n3.105039.

2. Oliver G. LEAL-AYALA, Manuel SANDOVAL-VILLA, Libia I. TREJO-TÉLLEZ, Alberto SANDOVAL-RANGEL, Marcelino CABRERA-DE LA FUENTE, Adalberto BENAVIDES-MENDOZA. (2021). Nitrogen form and root division modifies the nutrimental and biomolecules concentration in blueberry (Vaccinium corymbosum L.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 49(1), p.11998. https://doi.org/10.15835/nbha49111998.

3. Mitchell Andrews, John A. Raven. (2022). Root or shoot nitrate assimilation in terrestrial vascular plants – does it matter?. Plant and Soil, 476(1-2), p.31. https://doi.org/10.1007/s11104-021-05164-9.

4. Stanislav Magnitskiy. (2023). Native plants from the genus Vaccinium in Colombia and their potential uses. A review. Revista Colombiana de Ciencias Hortícolas, 17(1) https://doi.org/10.17584/rcch.2023v17i1.15503.

5. S.E. Parks, J. Jarvis, D. Unsworth, M. Simpson, D. Sun. (2023). Better management of soilless potting media for southern highbush blueberry, an Australian case study. Acta Horticulturae, (1357), p.79. https://doi.org/10.17660/ActaHortic.2023.1357.12.

Dimensions

PlumX

Article abstract page views

666

Downloads

Download data is not yet available.