Published

2019-09-01

Sulfur effects on sugar content, enzyme activity and seed yield of rapeseed (Brassica napus L.)

Efectos del azufre sobre el contenido de azúcar, la actividad enzimática y el rendimiento de semillas de canola (Brassica napus L.)

DOI:

https://doi.org/10.15446/agron.colomb.v37n3.71830

Keywords:

correlation, fertilizer, nitrate reductase, nutrient, variation (en)
correlación, fertilizante, nitrato reductasa, nutriente, variación (es)

Downloads

Authors

  • Valiollah Rameeh Mazandaran Agricultural and Natural Resources Research and Education Center, AREEO, Sari (Islamic Republic of Iran).
  • Maryan Niakan Islamic Azad University - Gorgan Branch
  • Mohammad Hossein Mohammadi Islamic Azad University - Gorgan Branch

A field experiment was conducted in a randomized complete block design with four sulfur levels, S0, S1, S2 and S3, including 0, 12, 24 and 36 kg ha-1 (respectively) along with 115 kg N ha-1, to evaluate the economic yield of the rapeseed variety (Hyola401) in Abandankash in the Central District of Sari County in Northern Iran. Parameters such as leaf nitrate reductase, root nitrate, leaf and root sugars, root peroxidase, leaf catalase, as well as seed yield were recorded. The results of the analysis of variance revealed that there were highly significant differences between characters for the majority of the traits such as leaf and root nitrate, leaf and root sugars, root peroxidase, leaf catalase, and seed yield. Due to significant positive correlations between root nitrate reductase and seed yield, increasing this enzyme in roots by sulfur application would have an accelerating effect on rapeseed seed yield. A highly significant positive correlation determined between leaf sugar content and seed yield (0.75**) indicated that increasing levels of sulfur had a direct effect on leaf sugar content, which had an accelerating effect on the weight of kernel yield. Sulfur application significantly increased seed yield compared to the control (S0 level), and it ranged from 2744 to 3215 kg ha-1 in S0 and S3.

Se realizó un experimento de campo en un diseño de bloques
completos al azar con cuatro niveles de azufre, S0, S1, S2 y S3,
incluyendo 0, 12, 24 y 36 Kg ha-1 (respectivamente) junto con
115Kg N ha-1, para evaluar el rendimiento económico de una
variedad de canola (Hyola401) en Abandankash en el distrito
central del condado de Sari en el norte de Irán. Se registraron
parámetros tales como actividad de la nitrato-reductasa de la
hoja, nitrato de raíz, azúcares de hoja y raíz, peroxidasa de raíz, catalasa de hoja y rendimiento de semilla. Los resultados del análisis de varianza revelaron diferencias altamente significativas entre los caracteres para la mayoría de los rasgos como nitrato de hojas y raíces, azúcares de hojas y raíces, peroxidasa de raíces, catalasa de hojas y rendimiento de semillas. Debido a una correlación positiva significativa entre la nitrato- reductasa de la raíz y el rendimiento de la semilla, el aumento de esta enzima en la raíz mediante la aplicación de azufre tiene un efecto acelerador en el rendimiento de la semilla de colza. Una correlación positiva altamente significativa determinada entre el contenido de azúcar en la hoja y el rendimiento de la semilla (0.75**) indica que los niveles crecientes de azufre tuvieron un efecto directo sobre el contenido de azúcar en la hoja, lo que tuvo un efecto acelerador sobre el peso del rendimiento del grano. La aplicación de azufre aumentó significativamente el rendimiento de la semilla sobre el control (nivel de S0) y varió de 2744 a 3215 kg ha-1 en S0 y S3, respectivamente.

References

Aebi, H. 1984. Catalase in vitro. Methods Enzymol. 105, 121-126.

Ahmad, A. and M.Z. Abdin. 2000. Interactive effect of sulphur and nitrogen on the oil and protein contents and on the fatty acid profiles of oil in the seeds of rapeseed (Brassica campestris L.) and mustard (Brassica juncea L. Czern. and Coss.). J. Agron. Crop Sci. 185(1), 49-54. Doi: 10.1046/j.1439-037X.2000.00401.x

Ahmad, G., A. Jan, I. Arif, and M. Arif. 2006. Phenology and physiology of canola as affected by nitrogen and sulphur fertilization. J. Agron. 5, 555-562. Doi: 10.3923/ja.2006.555.562

Balint, T. and Z. Rengel. 2009. Differential sulphur efficiency in canola genotypes at vegetative and grain maturity stage. Crop Past. Sci. 60, 262-270. Doi: 10.1071/CP08224

Bashir, H., M.M. Ibrahim, R. Bagheri, J. Ahmad, I.A. Arif, M.A. Baig, and M.I. Qureshi. 2015. Influence of sulfur and cadmium on antioxidants, phytochelatins and growth in Indian mustard. AoB PLANTS 7(1), 1-13. Doi:10.1093/aobpla/plv001

Beauchamp, C. and I. Fridovich. 1971. Superoxidase dismutase: improved assays and an assay applicable to acrylamide gels. Anal. Bioch. 44, 276-286. Doi:10.1016/0003-2697(71)90370-8

Bowler, C., M.W. Montagu, and D. Inze. 1992. Superoxide dismutase and stress tolerance. Ann. Rev. Plant Physiol. Plant Mol. Biol. 43, 83-116. Doi: 10.1146/annurev.pp.43.060192.000503

Castellano, S.D. and R.P. Dick. 1991. Cropping and sulphur fertilization influence on sulphur transformation in soil. Soil Sci. Soc. Am. J. 55, 1, 114-121.

Chen, X.J., Z.J. Zhu, X.L. Ni, and Q.Q. Qlan. 2006. Effect of nitrogen and sulfur supply on glucosinolates in Brassica campestris ssp. chinensis. Agric. Sci. China 5(8), 603-608.

Fridovich, I. 1986. Biological effects of superoxide radical. Arch. Biochem. Biophysic. 247(1), 1-11. Doi: 10.1016/0003-9861(86)90526-6

Giannopolitis, C.N. and S.K. Ries. 1977. Superoxide dismutases: I. occurrence in higher plants. Plant Physiol. 59, 309-314.

Grant, J.J. and G.J. Loake. 2000. Role of reactive oxygen intermediates and cognate redox signaling in disease resistance. Plant Physiol. 124, 21-29. Doi: 10.1104/pp.124.1.21

Hernandez, J.A., A. Jimenez, P. Mullineaux, and F. Sevilla. 2000. Tolerance of pea (Pisum sativum L.) to long-term salt stress is associated with induction of antioxidant defences. Plant Cell Environ. 23, 853-862. Doi: 10.1046/j.1365-3040.2000.00602.x

Hernandez, J.A., E. Olmos, F.J. Corpas, F. Sevilla, and L.A. Del Rio. 1995. Salt-induced oxidative stress in chloroplasts of pea plants. Plant Sci. 105, 151-167. Doi:10.1016/0168-9452(94)04047-8

Holmes, M.R.J. 1980. Nutrition of the oilseed rape crop. Applied Science Publishers ltd. London.

Imlay, J.A. and S. Linn. 1998. DNA damage and oxygen radical toxicity. Science 240, 1302-1309. Doi: 10.1126/science.3287616

Jackson, G.D. 2000. Effects of nitrogen and sulfur on canola yield and nutrient uptake. Agron. J., 92(4), 644-649. Doi: 10.2134/agronj2000.924644x

Jan, A., G. Ahmad, T. Jan, M. Jamal, and F. Subhan. 2008. Oil yields of Canola as affected by N and S levels and methods of application under rainfed condition. Sarhad J. Agric. 24(1), 1-10.

Jan, A., N. Khan, I.A. Khan, and B. Khattak. 2002. Chemical composition of canola as affected by nitrogen and sulphur. Asian J. Plant Sci. 1, 519-521. Doi: 10.3923/ajps.2002.519.521

Kandil, H. and N. Gad. 2012. Growth and oil production of canola as affected by different sulphur sources. J. Basic. Appl. Sci. Res. 2, 5196-5202.

Kayupova, G.A. and L.K. Klyshev. 1984. Superoxide dismutase of pea root under the influence of high NaCl concentrations. Plant Physiol. 31, 441-445.

Khanna-Chopra, R. and D.S. Selote. 2007. Acclimation to drought stress generates oxidative stress tolerance in drought-resistant than -susceptible wheat cultivar under field conditions. Environ Exp Bot. 60, 276-283. Doi: 10.1016/j.envexpbot.2006.11.004

Khanpara, V.N., B.L. Porwal, and J.E. Patel. 1993. Effect of levels and modes of sulphur application on biochemical changes in mustard (Brassica juncea) leaves. Indian J. Agron. 38(3), 410-413.

Kumar, R., D. Singh, and H. Singh. 2002. Growth and yield of Brassica species as influence by sulphur application and sowing dates. Indian J. Agron. 47(3), 418-421.

Malhi, S., Y. Gan, and J. Raney. 2007. Yield, seed quality and sulphur uptake of Brassica oil seed crops in response to sulphur fertilization. Agron. J. 99, 570-577. Doi: 10.2134/agronj2006.0269

Malhi, S.S. and K.S. Gill. 2002. Effectiveness of sulphate-S fertilization at different growth stages for yield, seed quality and S uptake of canola. Can. J. Plant Sci. 82, 665-674. Doi: 10.4141/P01-184

Marschner, P. 2012. Mineral Nutrition of Higher Plants (3rd ed.). Academic Press, London.

Moller, I.M., P.E. Jensen, and A. Hansson. 2007. Oxidative modifications to cellular components in plants. Ann. Rev. Plant Biol. 58, 459-481. Doi: 10.1146/annurev.arplant.58.032806.103946

Nelson, N. 1994. A photometric adaptation of the Somogyi method for determination of glucose. J. Biol. Chem. 53, 375-378.

Polle, A., T. Otter, and F. Seifert. 1994. Apoplastic peroxidases and lignification in needles of Norway Spruce (Picea abies L.). Plant Physiol. 106, 53-60. Doi: 10.1104/pp.106.1.53

Rameeh, V., A. Rezai, and G. Saeidi. 2004. Study of salinity tolerance in rapeseed. Commun. Soil Sci. Plant Anal. 35, 2849-2866. Doi: 10.1081/CSS-200036472

Rehmanuh, Q., M. Iqbal, I. Farooq, and S.M.A. Afzal. 2013. Sulphur application improves the growth, seed yield and oil quality of canola. Acta Physiol. Plant. 35(10), 1331-339. Doi: 10.1007/s11738-013-1331-9

SAS INSTITUTE INC. 2004. SAS/STAT user’s guide. Version 9. Fourth Edition. Statistical Analysis Institute Inc. Cary, North Carolina, USA.

Sattar, A., M.A. Cheema, M.A. Wahid, M.F. Saleem, and M. Hassan. 2011. Interactive effect of sulphur and nitrogen on growth, yield and quality of canola. Crop Environ. 2, 32-37.

Scherer, H.W. 2001. Sulphur in crop production. Eur. J. Agron. 14(2), 81-111. Doi: 10.1016/S1161-0301(00)00082-4

Sharifi, R.S. 2012. Sulphur fertilizer effects on grain yield and the sum of physiological indices of canola (Brassica napus L.). Ann. Biol. Res. 3(11), 5034-5041.

Sreenivasasula, N., B. Grimm, U. Wobus, and W. Weschke. 2000. Differential response of antioxidant compounds to salinity stress in salt-tolerant and salt-sensitive seedlings of foxtail millet (Setaria italica). Physiol. Plant. 109, 435-442. Doi: 10.1034/j.1399-3054.2000.100410.x

Steel, R.G.D. and J.H. Torrie. 1980. Principles and procedures of statistics: a biometrical approach. 2nd Ed. McGraw Hill Book Co., New York, USA.

Thompson, J.F., I.K. Smith, and J.T. Madison. 1986. Sulfur metabolism in plants. In: Tabatabai, M.A. (ed.). Sulfur in Agriculture. Agronomy Society of America, Madison, USA.

Zhao, F., P.E. Bilsborrow, E.J. Evans, and J.K. Syers. 1993. Sulphur turnover in the developing pods of single and double low varieties of oilseed rape (Brassica napus L.). J. Sci. Food Agric. 62(2), 111-119. Doi: 10.1002/jsfa.2740620203

How to Cite

APA

Rameeh, V., Niakan, M. and Mohammadi, M. H. (2019). Sulfur effects on sugar content, enzyme activity and seed yield of rapeseed (Brassica napus L.). Agronomía Colombiana, 37(3), 311–316. https://doi.org/10.15446/agron.colomb.v37n3.71830

ACM

[1]
Rameeh, V., Niakan, M. and Mohammadi, M.H. 2019. Sulfur effects on sugar content, enzyme activity and seed yield of rapeseed (Brassica napus L.). Agronomía Colombiana. 37, 3 (Sep. 2019), 311–316. DOI:https://doi.org/10.15446/agron.colomb.v37n3.71830.

ACS

(1)
Rameeh, V.; Niakan, M.; Mohammadi, M. H. Sulfur effects on sugar content, enzyme activity and seed yield of rapeseed (Brassica napus L.). Agron. Colomb. 2019, 37, 311-316.

ABNT

RAMEEH, V.; NIAKAN, M.; MOHAMMADI, M. H. Sulfur effects on sugar content, enzyme activity and seed yield of rapeseed (Brassica napus L.). Agronomía Colombiana, [S. l.], v. 37, n. 3, p. 311–316, 2019. DOI: 10.15446/agron.colomb.v37n3.71830. Disponível em: https://revistas.unal.edu.co/index.php/agrocol/article/view/71830. Acesso em: 16 jul. 2024.

Chicago

Rameeh, Valiollah, Maryan Niakan, and Mohammad Hossein Mohammadi. 2019. “Sulfur effects on sugar content, enzyme activity and seed yield of rapeseed (Brassica napus L.)”. Agronomía Colombiana 37 (3):311-16. https://doi.org/10.15446/agron.colomb.v37n3.71830.

Harvard

Rameeh, V., Niakan, M. and Mohammadi, M. H. (2019) “Sulfur effects on sugar content, enzyme activity and seed yield of rapeseed (Brassica napus L.)”, Agronomía Colombiana, 37(3), pp. 311–316. doi: 10.15446/agron.colomb.v37n3.71830.

IEEE

[1]
V. Rameeh, M. Niakan, and M. H. Mohammadi, “Sulfur effects on sugar content, enzyme activity and seed yield of rapeseed (Brassica napus L.)”, Agron. Colomb., vol. 37, no. 3, pp. 311–316, Sep. 2019.

MLA

Rameeh, V., M. Niakan, and M. H. Mohammadi. “Sulfur effects on sugar content, enzyme activity and seed yield of rapeseed (Brassica napus L.)”. Agronomía Colombiana, vol. 37, no. 3, Sept. 2019, pp. 311-6, doi:10.15446/agron.colomb.v37n3.71830.

Turabian

Rameeh, Valiollah, Maryan Niakan, and Mohammad Hossein Mohammadi. “Sulfur effects on sugar content, enzyme activity and seed yield of rapeseed (Brassica napus L.)”. Agronomía Colombiana 37, no. 3 (September 1, 2019): 311–316. Accessed July 16, 2024. https://revistas.unal.edu.co/index.php/agrocol/article/view/71830.

Vancouver

1.
Rameeh V, Niakan M, Mohammadi MH. Sulfur effects on sugar content, enzyme activity and seed yield of rapeseed (Brassica napus L.). Agron. Colomb. [Internet]. 2019 Sep. 1 [cited 2024 Jul. 16];37(3):311-6. Available from: https://revistas.unal.edu.co/index.php/agrocol/article/view/71830

Download Citation

CrossRef Cited-by

CrossRef citations2

1. Tayyaba Samreen, Saba Rashid, Muhammad Zulqernain Nazir, Umair Riaz, Saima Noreen, Faisal Nadeem, Sehrish Kanwal, Hassan Munir, Sidra Tul-Muntaha. (2022). Co-application of Boron, Sulphur, and Biochar for Enhancing Growth and Yield ofBrassica napusunder Calcareous Soil. Communications in Soil Science and Plant Analysis, 53(9), p.1050. https://doi.org/10.1080/00103624.2022.2043339.

2. soraya ghasem beiki, parastoo majidian, vali allah rameeh, mahyar gerami, Bahram Masoudi. (2020). Management of Sulfur Application some Morphological Properties and Yield of L17 Promising Canola Line. Journal of Crop Breeding, 12(36), p.205. https://doi.org/10.52547/jcb.12.36.205.

Dimensions

PlumX

Article abstract page views

775

Downloads

Download data is not yet available.