Published

2019-05-01

Variability of P26 and P10 genes in Colombian isolates of Potato yellow vein virus (PYVV)

Variabilidad de los genes P26 y P10 en aislamientos colombianos del Potato yellow vein virus (PYVV)

DOI:

https://doi.org/10.15446/agron.colomb.v37n2.72638

Keywords:

tripartite genome, Crinivirus, Solanum tuberosum, negative selection (en)
genoma tripartito, Crinivirus, Solanum tuberosum, selección negativa (es)

Downloads

Authors

  • Jhon Calderón Universidad Nacional de Colombia - Sede Bogotá
  • Teresa Mosquera Vásquez Universidad Nacional de Colombia - Sede Bogotá
  • Ángela María Vargas Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA)

Potato yellow vein virus (PYVV) is the causal agent of the potato yellow vein disease and can reduce potato production up to 50%. This virus also infects tomatoes and can remain asymptomatic in plants. PYVV transmission is mediated by vegetative seed, the vector Trialeurodes vaporariorum, and grafts. Its genome has the P26 and P10 genes that are orthologues in the Crinivirus genus, which have been characterized as pathogenic factors and have not been studied in PYVV. We analyzed the variability of P26 and P10 from 45 and 48 sequences, which were obtained by RT-PCR amplification of the total RNA of symptomatic potato leaves from the provinces of Nariño, Cundinamarca, and Boyaca (Colombia). We included sequences of each gene of the PYVV genome of potato and tomato isolates from GenBank. The variability in these genes is influenced by the flow and uncontrolled use of vegetative seed between different provinces, that favor the dispersion of viral variants. In addition, the variability analysis based on maximum likelihood trees, haplotypes, and diversity indices showed that P26 is more variable than P10 and both are more variable in Andigena than in Phureja potatoes. The Tajima and Fu and Li tests revealed
that these genes are subject to negative selection.

El virus Potato yellow vein virus (PYVV), en español virus del amarillamiento de las venas de la papa, es el agente causal de la
enfermedad conocida como amarillamiento de venas de la papa y puede reducir la producción hasta un 50%. Este virus también infecta tomate y puede permanecer en plantas asintomáticas. Su transmisión está mediada por semilla vegetativa, el vector Trialeurodes vaporariorum e injertos. Su genoma codifica los genes P26 y P10 que son ortólogos en el género Crinivirus, en el cual se han caracterizado como factores de patogenicidad y no han sido estudiados en PYVV. Se analizó la variabilidad de P26 y P10 a partir de 45 y 48 secuencias respectivamente, obtenidas de la amplificación por RT-PCR del RNA total de hojas sintomáticas de papa de los departamentos de Nariño, Cundinamarca y Boyacá (Colombia), incluyendo tres secuencias de cada gen de los genomas de PYVV de aislamientos de papa y tomate reportados en GenBank. La variabilidad en estos genes está influenciada por el flujo y uso no controlado de semilla vegetativa entre diferentes departamentos, lo que favorece la dispersión de variantes virales. Además, los análisis de variabilidad basados en árboles de máxima verosimilitud, haplotipos e índices de diversidad mostraron que P26 es más variable que P10 y que ambos son más variables en papa Andígena que en Phureja. Las pruebas de Tajima y Fu and Li revelaron que estos genes están sometidos a la selección negativa.

References

Bandelt, H.J., P. Forster, and A. Röhl. 1999. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16, 37-48. Doi: 10.1093/oxfordjournals.molbev.a026036

Barragán, C.E. and M. Guzmán-Barney. 2014. Molecular detection of Potato yellow vein virus in the natural whitefly vector Trialeurodes vaporariorum, Westwood. Rev. Prot. Veg. 29(3), 168-176.

Chaves-Bedoya, G., M. Guzmán-Barney, and L. Ortiz-Rojas. 2013. Genetic structure and evidence of putative Darwinian diversifying selection in Potato yellow vein virus (PYVV). Agron. Colomb. 31(2), 161-168.

Cubillos, K. and M. Guzmán-Barney. 2015. Molecular variability of three genes of Potato vein yellow virus infecting Solanum tuberosum, using single strand conformational polymorphism. Acta Biol. Colomb. 20(1), 233-237. Doi: 10.15446/abc.v20n1.40993

Domingo, E. and J. Holland. 1997. RNA virus mutations and fitness for survival. Annu. Rev. Microbiol. 51,151-178. Doi: 10.1146/annurev.micro.51.1.151

Eliasco, E., I.C. Livieratos, G. Müller, M. Guzman, L.F. Salazar, and R.H. Coutts. 2006. Sequences of defective RNAs associated with Potato yellow vein virus. Arch. Virol. 151, 201-204. Doi: 10.1007/s00705-005-0625-7

Erkiş-Güngör, G. and B. Çevik. 2019. Genetic Diversity and phylogenetic

analysis of Citrus tristeza virus isolates from Turkey. Adv. Virol. 2019, 7163747. Doi: 10.1155/2019/7163747

EEPO (European and Mediterranean plant protection Organization). URL: https://gd.eppo.int/taxon/PYVV00 (accessed 7 July 2019).

Fu, Y.X. and W.H. Li. 1993. Statistical tests of neutrality of mutations. Genetics 133, 693-709.

Gamarra, H., C. Chuquillanqui, and G. Müller. 2002. Transmisión del virus del amarillamiento de las venas de la papa en variedades y clones de Solanum tuberosum L. Proceedings of the Entomological National Convention. Potato International Center (CIP), Lima.

García-Arenal, F. and A. Fraile. 2011. Population dynamics and genetics of plant infection by viruses. pp. 263-281. In: Caranta, C., M.A. Aranda, M. Tepfer, and J.J. Lopez-Moya (eds.). Recent Advances in Plant Virology. Caister Academic Press, Norfolk, UK.

García-Arenal, F., A. Fraile, and J.M. Malpica. 2001. Variability and genetic structure of plant virus populations. Annu. Rev. Phytopathol. 39, 157-186. Doi: 10.1146/annurev.phyto.39.1.157

Grimsley, N., B. Hohn, T. Hohn, and R. Walden. 1986. “Agroinfection,” an alternative route for viral infection of plants by using the Ti plasmid. Proc. Natl. Acad. Sci. USA. 83 (10), 3282-3286. Doi: 10.1073/pnas.83.10.3282

Guzmán, M., E. Ruiz, N. Arciniegas, and R. Coutts. 2006. Occurrence and variability of Potato yellow vein virus in three departments of Colombia. J, Phytopathol. 154, 748-750. Doi: 10.1111/j.1439-0434.2006.01174.x

Genbank. 2019. URL: https://www.ncbi.nlm.nih.gov/genom/?term=Potato+yellow+vein+virus (accessed June 2019).

Guzmán-Barney, M., P.A. Rodríguez-Burgos, and J. Calderón-Romero. 2013. Detección por inmunoimpresión de Potato yellow vein virus (PYVV) en diferentes órganos de papa: herramienta sencilla y útil en diagnóstico del virus de amarillamiento de nervaduras de papa y certificación de semillas.

Editorial UN, Bogota.

Hernández, A. and M. Guzmán-Barney. 2014. Potato yellow vein virus detection in different organs of Solanum tuberosum Phureja group cv Criolla Colombia by conventional and real time qRT-PCR. Rev. Colomb. Biotecnol. 16(1), 74-85. Doi: 10.15446/rev.colomb.biote.v16n1.44226

Huang, X. and A. Madan. 1999. CAP3: A DNA sequence assembly program. Genome Res. 9, 868-877. Doi: 10.1101/gr.9.9.868

Kiss, Z., V. Medinaand, and W.B. Falk. 2013. Crinivirus replication and host interactions. Front. Microbiol. 4(99), 1-11. Doi: 10.3389/fmicb.2013.00099

Koressaar, T. and M. Remm. 2007. Enhancements and modifications of primer design program Primer3. Bioinformatics 23(10), 1289-1291. Doi: 10.1093/bioinformatics/btm091

Koloniuk, I., T. Thekke-Veetil, J.S. Reynard, P. Mavrič, J. Přibylová, J. Brodard, I. Kellenberger, T. Sarkisova, J. Špak, J. Lamovšek, S. Massart, T. Ho, J.D. Postman, and I.E. Tzanetakis. 2014. Molecular characterization of divergent Closterovirus isolates infecting Ribes species. Viruses 10(7), 2-11. Doi: 10.3390/v10070369

Kumar, S., G. Stecher, and K. Tamura. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33(7), 1870-1874. Doi: 10.1093/molbev/msw054

Librado, P. and J. Rozas. 2009. DnaSP v5: a software for comprehensive

analysis of DNA polymorphism data. Bioinformatics 25, 1451-1452. Doi: 10.1093/bioinformatics/btp187

Livieratos, I., E. Eliasco, G. Muller, R. Olsthoorn, L. Salazar, W. Pleij, and R.H Coutts. 2004. Analysis of the RNA of Potato yellow vein virus: evidence for a tripartite genome and conserved 3’-terminal structures among members of the genus Crinivirus. J. Gen. Virol. 85(7), 2065-2075. Doi: 10.1099/vir.0.79910-0

Martelli, A., N. Abou Ghanem-Sabanadzovic, A.A. Agranovsky, M. Al Rwahnih, V.V. Dolja, C.I. Dovas, M. Fuchs, P. Gugerli, J.S. Hu, W. Jelkmann, N.I. Katis, V.I. Maliogka, M.J. Melzer, W. Menzel, A. Minafra, M.E. Rott, A. Rowhani, S. Sabanadzovic, and P. Saldarelli. 2012. Taxonomic revision of the family Closteroviridae with special reference to the grapevine leafrollassociated members of the genus Ampelovirus and the putative

species unassigned to the family. J. Plant Pathol. 94(1), 7-19.

Medina, V., G. Rodrigo, T. Tian, V.V. Dollja, and M. Achon. 2003. Comparative cytopathology of Crinivirus infections in different plant hosts. Ann. Appl. Biol. 143, 99-100. Doi: 10.1111/j.1744-7348.2003.tb00274.x

Medina, V., M.R. Sudarshanab, T. Tianb, K.S. Ralstonb, H.H. Yehb, and B.W. Falk. 2005. The Lettuce infectious yellows virus (LIYV)-encoded P26 is associated with plasmalemma deposits within LIYV-infected cells. Virology 333(2), 367-373. Doi: 10.1016/j.virol.2005.01.012

Moncef, B. 2010. Selective pressure, putative recombination events and evolutionary relationships among members of the family Closteroviridae: A proposal for a new classification. Biochem. Syst. Ecol. 38(6), 1185-1192.

Muhire, B.M., A. Varsani, and D.P. Martin. 2014. SDT: a Virus classification tool based on pairwise sequence alignment and identity calculation. PLoS One 9: e108277. Doi: 10.1371/journal.pone.0108277

Muñoz, D., P.A. Gutiérrez, and M. Marín. 2016. Detección y caracterización

molecular del Potato virus Y (PVY) en cultivos de papa (Solanum tuberosum L.) del norte de Antioquia, Colombia. Rev. Prot. Veg. 31, 9-19.

Nei, M. and S. Kumar. 2000. Molecular evolution and phylogenetics. Oxford University Press, New York, USA.

Ñústez, C.E. 2011. Variedades de papa liberadas en Colombia. URL: http://www.papaunc.com/variedades-liberadas-porla-universidad-nacional-de-colombia (accessed 7 July 2019).

Offei, S., N. Arciniegas, G. Müller, M. Guzman-Barney, L. Salazar, and R. Coutts. 2003. Molecular variation of Potato yellow vein virus isolates. Arch. Virol. 149(4), 821-827. Doi: 10.1007/s00705-003-0250-2

Pérez-Losada, M., M. Arenas, J.C. Galán, F. Palero, and F. González-Candelas. 2015. Recombination in viruses: mechanisms, methods of study, and evolutionary consequences. Infect. Genet. Evol. 30, 296-307. Doi: 10.1016/j.meegid.2014.12.022

Rubio, L., J. Guerri, and P. Moreno. 2013. Genetic variability and evolutionary dynamics of viruses of the family Closteroviridae. Front. Microbiol. 4(151). Doi: 10.3389/fmicb.2013.00151

Ruiz, L., A. Simón, C. García, L. Velasco, and D. Janssen. 2018. First natural crossover recombination between two distinct species of the family Closteroviridae leads to the emergence of a new disease. PLoS One 13(9), e0198228. Doi: 10.1371/journal.pone.0198228

Salazar, L.F., G. Müller, M. Querci, L.J. Zapata, and R.A. Owens. 2000. Potato yellow vein disease: its host range, distribution in South America, and identification as a Crinivirus transmitted by Trialeurodes vaporariorum. Ann. Appl. Biol. 137(1), 7-19. Doi: 10.1111/j.1744-7348.2000.tb00052.x

Stewart, L.R., V. Medina, M.R. Sudarshana, and B.W. Falk. 2009. Lettuce infectious yellows virus-encoded P26 induces plasmalemma deposit cytopathology. Virology 388, 212-220. Doi: 10.1016/j.virol.2009.03.016

Sanjuán, R., M.R. Nebot, N. Chirico, L.M. Mansky, and R. Belshaw. 2010. Viral mutation rates. J. Virol. 84(19), 9733-9748. Doi: 10.1128/JVI.00694-10

Sanjuán, R. and P. Domingo-Calap. 2016. Mechanisms of viral mutation. Cell. Mol. Life Sci. 73, 4433-4448. Doi: 10.1007/s00018-016-2299-6

Tajima, F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585-595.

Templeton, A.R., K.A. Crandall, and C.F. Sing. 1992. A cladistic analysis of phenotypic association with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics 132, 619-633.

Townsend, A. 2014. Defining viral species: making taxonomy useful. J. Virol. 11(1) 131. Doi: 10.1186/1743-422X-11-131

Untergasser, A., I. Cutcutache, T. Koressaar, J. Ye, B.C. Faircloth, M. Remm, and S.G. Rozen. 2012. Primer3 - new capabilities and interfaces. Nucleic Acids Res. 40(15), e115. Doi: 10.1093/nar/gks596

Wale, S., B. Platt, and N. D. Cattlin. 2008. Diseases, pests and disorders of potatoes: a colour handbook. CRC Press, Boca Raton, USA. Doi: 10.1111/j.1365-3059.2008.01936.x

Wang, J., M. Turina, L.R. Stewart, J.A. Lindbo, and B.W. Falk. 2009. Agroinoculation of the Crinivirus, Lettuce infectious yellows virus, for systemic plant infection. Virology 392(1), 131-136. Doi: 10.1016/j.virol.2009.06.034

How to Cite

APA

Calderón, J., Mosquera Vásquez, T. and Vargas, Ángela M. (2019). Variability of P26 and P10 genes in Colombian isolates of Potato yellow vein virus (PYVV). Agronomía Colombiana, 37(2), 129–143. https://doi.org/10.15446/agron.colomb.v37n2.72638

ACM

[1]
Calderón, J., Mosquera Vásquez, T. and Vargas, Ángela M. 2019. Variability of P26 and P10 genes in Colombian isolates of Potato yellow vein virus (PYVV). Agronomía Colombiana. 37, 2 (May 2019), 129–143. DOI:https://doi.org/10.15446/agron.colomb.v37n2.72638.

ACS

(1)
Calderón, J.; Mosquera Vásquez, T.; Vargas, Ángela M. Variability of P26 and P10 genes in Colombian isolates of Potato yellow vein virus (PYVV). Agron. Colomb. 2019, 37, 129-143.

ABNT

CALDERÓN, J.; MOSQUERA VÁSQUEZ, T.; VARGAS, Ángela M. Variability of P26 and P10 genes in Colombian isolates of Potato yellow vein virus (PYVV). Agronomía Colombiana, [S. l.], v. 37, n. 2, p. 129–143, 2019. DOI: 10.15446/agron.colomb.v37n2.72638. Disponível em: https://revistas.unal.edu.co/index.php/agrocol/article/view/72638. Acesso em: 24 apr. 2024.

Chicago

Calderón, Jhon, Teresa Mosquera Vásquez, and Ángela María Vargas. 2019. “Variability of P26 and P10 genes in Colombian isolates of Potato yellow vein virus (PYVV)”. Agronomía Colombiana 37 (2):129-43. https://doi.org/10.15446/agron.colomb.v37n2.72638.

Harvard

Calderón, J., Mosquera Vásquez, T. and Vargas, Ángela M. (2019) “Variability of P26 and P10 genes in Colombian isolates of Potato yellow vein virus (PYVV)”, Agronomía Colombiana, 37(2), pp. 129–143. doi: 10.15446/agron.colomb.v37n2.72638.

IEEE

[1]
J. Calderón, T. Mosquera Vásquez, and Ángela M. Vargas, “Variability of P26 and P10 genes in Colombian isolates of Potato yellow vein virus (PYVV)”, Agron. Colomb., vol. 37, no. 2, pp. 129–143, May 2019.

MLA

Calderón, J., T. Mosquera Vásquez, and Ángela M. Vargas. “Variability of P26 and P10 genes in Colombian isolates of Potato yellow vein virus (PYVV)”. Agronomía Colombiana, vol. 37, no. 2, May 2019, pp. 129-43, doi:10.15446/agron.colomb.v37n2.72638.

Turabian

Calderón, Jhon, Teresa Mosquera Vásquez, and Ángela María Vargas. “Variability of P26 and P10 genes in Colombian isolates of Potato yellow vein virus (PYVV)”. Agronomía Colombiana 37, no. 2 (May 1, 2019): 129–143. Accessed April 24, 2024. https://revistas.unal.edu.co/index.php/agrocol/article/view/72638.

Vancouver

1.
Calderón J, Mosquera Vásquez T, Vargas Ángela M. Variability of P26 and P10 genes in Colombian isolates of Potato yellow vein virus (PYVV). Agron. Colomb. [Internet]. 2019 May 1 [cited 2024 Apr. 24];37(2):129-43. Available from: https://revistas.unal.edu.co/index.php/agrocol/article/view/72638

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

839

Downloads

Download data is not yet available.