Published

2019-09-01

Diversity of arbuscular mycorrhizal fungi communities associated with cape gooseberry (Physalis peruviana L.) crops

Diversidad de comunidades de hongos formadores de micorrizas arbusculares asociados a los cultivos de uchuva (Physalis peruviana L.)

DOI:

https://doi.org/10.15446/agron.colomb.v37n3.74008

Keywords:

diversity, richness, Colombian Andes, Glomeromycota (en)
diversidad, riqueza, Andes Colombianos, Glomeromycota (es)

Downloads

Authors

  • Margarita Ramírez-Gómez Corporación Colombiana de Investigación Agropecuaria
  • Urley Pérez-Moncada Corporación Colombiana de Investigación Agropecuaria
  • Diana Serralde-Ordoñez Corporación Colombiana de Investigación Agropecuaria
  • Andrea Peñaranda-Rolón Corporación Colombiana de Investigación Agropecuaria
  • Gabriel Roveda-Hoyos ingeniero agrónomo consultor independiente
  • Alia Rodriguez Universidad Nacional de Colombia - Bogotá - Facultad de Ciencias - Departamento de Biología

The diversity of arbuscular mycorrhizal fungi (AMF) communities in agricultural systems depends on biotic and abiotic factors as well as on cultural practices. This research aimed to evaluate the diversity of AMF present in an altitudinal transect cultivated with cape gooseberry (Physalis peruviana L.). A set of 13 soil samples from cape gooseberry plantations located in the Colombian Andean mountains in the provinces of Cundinamarca and Boyaca were collected during dry (0-20 mm/month) and rainy (150-330 mm/month) seasons between 1500 and 3000 m a.s.l., in order to establish the relationship between the altitudinal characteristics and AMF diversity. The evaluation of the abundance of spores and species and diversity indexes showed the presence of 46 AMF species in the dry season and 31 in the rainy season. This shows the high diversity of AMF in the tropical Andes with spore abundance between 20 and 120 spores 10 g-1 of soil in the rainy season and between 127 and 1531 spores 10 g-1 of soil in the dry season.

La diversidad de las comunidades hongos formadores de micorrizas (HFMA) en sistemas agrícolas depende de factores
bióticos y abióticos, así como de prácticas culturales. La investigación tuvo como propósito evaluar la diversidad de los HFMA presentes en un transecto altitudinal (1500 a 3000 msnm) cultivado con uchuva (Physalis peruviana L.). Se recolectaron 13 muestras compuestas de suelo de plantaciones de uchuva localizadas en Los Andes colombianos de los Departamentos de Cundinamarca y Boyacá, durante las temporadas seca (0-20 mm/mes) y lluviosa (150-330 mm/mes), para establecer la relación entre las características altitudinales y la diversidad de HFMA. La evaluación de la abundancia de esporas y especies e índices de diversidad evidenció la presencia de 46 especies de HFMA en época seca y 31 en época de lluvias. Esto muestra la alta diversidad de HFMA en los Andes tropicales, con una abundancia entre 20 y 120 esporas 10 g-1 de suelo en temporada de lluvias y entre 127 y 1531 esporas 10 g-1 de suelo en época seca.

References

Abdel-Azeem, A.M., T.S. Abdel-Moneim, M.E. Ibrahim, M.A.A. Hassan, and M.Y. Saleh. 2007. Effects of long-term heavy metal contamination on diversity of terricolous fungi and nematodes in Egypt: a case study. Water Air Soil Pollut. 186, 233-254. Doi: 10.1007/s11270-007-9480-3

Aguilar-Fernández, M., V.J. Jaramillo, L. Varela-Fregoso, and M.E. Gavito. 2009. Short-term consequences of slash-and-burn practices on the arbuscular mycorrhizal fungi of a tropical dry forest. Mycorrhiza 19, 179-186. Doi: 10.1007/s00572-009-0229-2

Aidar, M.P.M., R. Carrenho, and C.A. Joly. 2004. Aspects of arbuscular mycorrhizal fungi in an atlantic forest chronosequence in parque estadual turístico do Alto Ribeira (PETAR), SP. Biota Neotrop. 4, 1-15. Doi: 10.1590/S1676-06032004000200005

Allen, M.F. 1983. Formation of vesicular-arbuscular mycorrhizae in Atriplex gardneri (Chenopodiaceae): seasonal response in a cold desert. Mycologia 75, 773-776. Doi: 10.2307/3792769

Allen, M., and J.A. MacMahon. 1985. Importance of disturbance on cold desert fungi: comparative microscale dispersion patterns. Pedobiologia 28, 215-224.

Alves Da Silva, D., N. De Oliveira Freitas, G. Cuenca, M.L. Costa, and F. Oehl. 2008. Scutellospora pernambucana, a new fungal species in the Glomeromycetes with a diagnostic germination orb. Mycotaxon 106, 361-370.

Allen, M.F. 1983. Formation of vesicular-arbuscular mycorrhizae in Atriplex gardneri (Chenopodiaceae): seasonal response in a cold desert. Mycologia 75, 773-776. Doi: 10.2307/3792769

Bashan, Y., T. Khaosaad, B.G. Salazar, J.A. Ocampo, A. Wiemken, F. Oehl, and V. Vierheilig. 2007. Mycorrhizal characterization of the boojum tree, Fouquieria columnaris, an endemic ancient tree from the Baja California Peninsula, Mexico. Trees 21, 329-335. Doi: 10.1007/s00468-007-0126-2

Blaszkowski, J. 1991. Polish Glomales VIII. Scutellospora nodosa, a new species with Knobby spores. Mycologia 83, 537-542. Doi: 10.2307/3760369

Blaszkowski, J., C. Renker, and F. Buscot. 2006. Glomus drummondii and Glomus walkeri, two new species of arbuscular mycorrhizal fungi (Glomeromycota). Mycol. Res. 110, 555-566. Doi: 10.1016/j.mycres.2006.02.006

Blaszkowski, J., B. Czerniawska, T. Wubet, T. Schafer, F. Buscot, and C. Renker. 2008. Glomus irregulare a new arbuscular mycorrhizal fungus in the Glomeromycota. Mycotaxon 106, 247-267.

Bonfante, P. and A. Genre. 2008. Plants and arbuscular mycorrhizal fungi: an evolutionary developmental perspective. Trends Plant Sci. 13, 492-498. Doi: 10.1016/j.tplants.2008.07.001

Bonfim, J.A., R.L.F. Vasconcellos, S.L. Stürmer, and E.J. Cardoso, 2013. Arbuscular mycorrhizal fungi in the Brazilian Atlantic forest: a gradient of environmental restoration. Appl. Soil Ecol. 71, 7-14. Doi: 10.1016/j.apsoil.2013.04.005

Boonlue, S., W. Surapat, C. Pukahuta, P. Suwanarit, A. Suwanarit, and T. Morinaga. 2012. Diversity and efficiency of arbuscular mycorrhizal fungi in soils from organic chili (Capsicum frutescens) farms. Mycoscience 53, 10-16. Doi: 10.1007/s10267-011-0131-6

Bouza, C. and D. Covarrubias. 2005. Estimación del índice de diversidad de Simpson en m sitios de muestreo. Revista Investigación Operacional 26, 187-197.

Brachmann, A. and M. Parniske. 2006. The most widespread symbiosis on earth. PLOS Biology 4, 239-240. Doi: 10.1371/journal.pbio.0040239

Breuninger, M. and N. Requena. 2004. Recognition events in AM symbiosis: analysis of fungal gene expression at the early appressorium stage. Fungal Genet. Biol. 41, 794-80. Doi: 10.1016/j.fgb.2004.04.002

Brundrett, M., L. Melville, and L. Peterson. 1994. Practical methods in mycorrhiza research. Mycologue Publications. University of Guelph, Guelph, Canada

Bryla, D.R. and J.M. Duniway. 1997. Water uptake by safflower and wheat roots infected with arbuscular mycorrhizal fungi. New Phytol. 136, 591-601. Doi: 10.1046/j.1469-8137.1997.00781.x

Caproni, A.L., A.A. Franco, R.L.L. Berbara, S.B. Trufem, J.R. Granha, and A.B. Monteiro. 2003. Arbuscular mycorrhizal fungi occurrence in revegetated areas after bauxite mining at Porto Trombetas, Pará State, Brazil. Pesq. Agropec. Bras. 38, 1409-1418. Doi: 10.1590/S0100-204X2003001200007

Castillo, C. 2005. Biodiversidad y efectividad de hongos micorrízicos arbusculares en ecosistemas agro-forestales del Centro-Sur de Chile. PhD thesis, Universidad de La Frontera, Chile.

Castillo, C., F. Borie, R. Godoy, R. Rubio, and E. Sieverding. 2005. Diversity of mycorrhizal plant species and arbuscular mycorrhizal fungi in evergreen forest, deciduous forest and grassland ecosystems of Southern Chile. J. Appl. Bot. Food Qual. 80, 40-47.

Chia, C.L., M.S. Nishima, and D.O. Evans. 1997. Poha. CTAHR Fact Sheet. Horticultural Commodity No 3. University of Hawai, Manoa.

Chifflot, V., D. Rivest, A. Olivier, A. Cogliastro, and D. Khasa. 2009. Molecular analysis of arbuscular mycorrhizal community structure and spores distribution in tree-based intercropping and forest systems. Agri. Ecosys. Environ. 131, 32-39. Doi: 10.1016/j.agee.2008.11.010

Courty, P.E., A. Franc, and J. Garbaye. 2008. Temporal changes in the ectomycorrhizal community in two soil horizons of a temperate oak forest. Appl. Environ. Microbiol. 74, 5792-5801. Doi: 10.1128/AEM.01592-08

Cowden, C. and C. Peterson. 2009. A multi-mutualist simulation: applying biological market models to diverse mycorrhizal communities. Ecol. Model. 220, 1522-1533. Doi: 10.1016/j.ecolmodel.2009.03.028

Criollo, E.H. and C.V. Ibarra. 1992. Germinación de la uvilla (Physalis peruviana) bajo diferentes grados de madurez y tiempo de almacenamiento. Acta Hortic. 310, 183-187.

Davey, M.L., E. Heegaard, R. Halvorsen, M. Ohlson, and H. Kauserud. 2012. Seasonal trends in the biomass and structure of bryophyte associated fungal communities explored by 454 pyrosequencing. New Phytol. 195, 844-856. Doi: 10.1111/j.1469-8137.2012.04215.x

Davidson, D.E. and M. Christensen. 1977. Root-microfungal and mycorrhizal associations in a shortgrass prairie. pp. 279-287. In: Marshall, J.K. (ed.). The Belowground Eco systems: a synthesis of plant-associated processes. Colorado State University Press, Collins, USA.

De Carvalho, F., F. De Souza, R. Carrenho, F. De Souza Moreira, E. Da Conceicao, and G. Fernandes. 2012. The mosaic of habitats in the high-altitude Brazilian rupestrian fields is a hotspot for arbuscular mycorrhizal fungi. Appl. Soil Ecol. 52, 9-19. Doi:10.1016/j.apsoil.2011.10.001

De Oliveira Freitas, R., E. Buscardo, L. Nagy, A.S. dos Santos Maciel, R. Carrenho, and R. Luizão. 2014. Arbuscular mycorrhizal fungal communities along a pedo-hydrological gradient in a Central Amazonian terra firme forest. Mycorrhiza 24, 21-32. Doi: 10.1007/s00572-013-0507-x

Espinal, C.F., H.J. Martínez, and Y. Peña. 2005. La cadena de los frutales de exportación en Colombia una mirada global de su estructura y dinámica 1991-2005. Work document no. 67. Ministerio de Agricultura y Desarrollo Rural, Observatorio Agrocadenas, Bogota. URL: http://www.agrocadenas.gov.co/ (accessed 6 June 2017).

Fernández, M.A., V.J. Jaramillo, L. Varela-Fregoso, and M.E. Gavito. 2009. Short-term consequences of slash-and-burn practices on the arbuscular mycorrhizal fungi of a tropical dry forest. Mycorrhiza 19, 179-186. Doi: 10.1007/s00572-009-0229-2

Fischer, G. 2000. Crecimiento y desarrollo. In: Flórez, V.J, G. Fischer, and A.D. Sora (eds.). Producción, poscosecha y exportación de la uchuva (Physalis peruviana L.). Unibiblos, Universidad Nacional de Colombia, Bogota.

Franke-Snyder, M., D. Douds, L. Galvez, J. Phillips, P. Wagoner, L. Drinkwater, and J. Morton. 2001. Diversity of communities of arbuscular mycorrhizal (AM) fungi present in conventional versus low-input agricultural sites in eastern Pennsylvania, USA. Appl. Soil Ecol. 16, 35-48. Doi: 10.1016/S0929-1393(00)00100-1

Garbaye, J. 1994. Helper bacteria: a new dimension to the mycorrhizal symbiosis. New Phytol. 128, 197-210. Doi: 10.1111/j.1469-8137.1994.tb04003.x

Gavito, M.E., D. Pérez-Castillo, C.F. González-Monterrubio, T. Vieyra-Hernández, and M. Martínez-Trujillo. 2000. High compatibility between arbuscular mycorrhizal fungal communities and seedlings of different land use types in a tropical dry ecosystem. Mycorrhiza 19, 47-60. Doi: 10.1007/s00572-008-0203-4

Gehring, C.A. and T.G. Whitham. 2002. Mycorrhizae-herbivore interactions: population and community consequences. pp. 295-320. In: van der Heijden, M.G.A. and I.R. Sanders (eds.). Mycorrhizal Ecology. Ecological studies 157. Springer, Berlin, Heidelberg. Doi: 10.1007/978-3-540-38364-2_12

Genre, A., M. Chabaud, T. Timmers, P. Bonfante, and D. Barkerb. 2005. Arbuscular mycorrhizal fungi elicit a novel intracellular apparatus in Medicago truncatula root epidermal cells before infection. Plant Cell 17, 3489-3499. Doi: 10.1105/tpc.105.035410

Genre, A., M. Chabaud, A. Faccio, D. Barker, and P. Bonfante. 2008. Prepenetration apparatus assembly precedes and predicts the colonization patterns of arbuscular mycorrhizal fungi within the root cortex of both Medicago truncatula and Daucus carota. Plant Cell 20, 1407-1420. Doi: 10.1105/tpc.108.059014

Gerdemann, J. and T. Nicholson. 1963. Spores of mycorrhizal Endogone species, extracted from soil by wet-sieving and decanting. Trans. Br. Mycol. Soc. 46, 235-244. Doi: 10.1016/S0007-1536(63)80079-0

Giovannetti, M. and B. Mosse. 1980. An evaluation of techniques for measuring vesicular arbuscular infection in roots. New Phytol. 84, 489-500. Doi: 10.1111/j.1469-8137.1980.tb04556.x

Goto, B., G.A. Silva, L. Maia, R.G. Souza, D. Coyne, A. Tchabi, L. Lawouin, F. Hountondji, and F. Oehl. 2011. Racocetra tropicana, a new species in the Glomeromycetes from tropical areas. Nova Hedwigia 92, 69-82. Doi: 10.1127/0029-5035/2011/0092-0069

Gove, J.H., G.P. Patil, B.F. Swinde, and C. Taille. 1994. Ecological diversity and forest management. pp. 409-462. In: Patil, G.P. and C.R. Rao (eds.). Handbook of statistics 12. Elsevier Science B.V., UK. Doi: 10.1016/S0169-7161(05)80014-8

Grime, P., L. Mackey, S.H. Hillier, and D.J. Read. 1987. Floristic diversity in a model system using experimental microcosms. Nature 328, 420-422. Doi: 10.1038/328420a0

Guadarrama, P. and F.J. Álvarez-Sánchez. 1999. Abundance of arbuscular mycorrhizal fungi spores in different environments in a tropical rain forest, Veracruz, Mexico. Mycorrhiza 8, 267-270. Doi: 10.1007/s005720050244

Guadarrama-Chávez, P., S.L. Camargo-Ricalde, L. Hernández-Cuevas, and S. Castillo. 2007. Los hongos micorrizógenos arbusculares de la región de Nizanda, Oaxaca, México. Bol. Soc. Bot. Mex. 81, 133-139. Doi: 10.17129/botsci.1770

Guadarrama, P., S. Castillo, J.A. Ramos-Zapata, L.V. Hernandez-Cuevas, and S.L. Camargo-Ricalde. 2014. Arbuscular mycorrhizal fungal communities in changing environments: the effects of seasonality and anthropogenic disturbance in a seasonal dry forest. Pedobiologia 57, 87-95. Doi: 10.1016/j.pedobi.2014.01.002

Hart, M. and J. Klironomos. 2002. Diversity of Arbuscular mycorrhizal fungi and ecosystem functioning. In: van der Heijden, M.G.A., and I.R. Sanders (eds). Mycorrhizal Ecology. Springer, Berlin, Heidelberg. Doi: 10.1007/978-3-540-38364-2_9

Hassan, D.S., E. Boon, M. St-Arnaud, and M. Hijri. 2011. Molecular biodiversity of arbuscular mycorrhizal fungi in trace metal-polluted soils. Mol. Ecol. 20, 3469-3483. Doi: 10.1111/j.1365-294X.2011.05142.x

Helgason, T., T.J. Daniell, R. Husband, A.H. Fitter, and J.P.W. Young. 1998. Ploughing up the wood-wide web? Nature 394, 431. Doi: 10.1038/28764

Hijri, I., Z. Sykorova, F. Oehl, K. Ineichen, P. Mader, A. Wiemken, and D. Redecker. 2006. Communities of arbuscular mycorrhizal fungi in arable soils are not necessarily low in diversity. Mol. Ecol. 15, 227-2289. Doi: 10.1111/j.1365-294X.2006.02921.x

Huang, H., S. Zhang, X.Q. Shan, B.D. Chen, Y.G. Zhu, and J.N. Bell. 2007. Effect of arbuscular mycorrhizal fungus (Glomus caledonium) on the accumulation and metabolism of atrazine in maize (Zea mays L.) and atrazine dissipation in soil. Environ. Pollut. 146, 452-457. Doi: 10.1016/j.envpol.2006.07.001

Hurlbert, S.H. 1971. The nonconcept of species diversity: a critique and alternative parameters. Ecology 52, 577-586. Doi: 10.2307/1934145

Husband, R., E.A. Herre, S.L. Turner, R. Gallery, and J.P.W. Young. 2002a. Molecular diversity of arbuscular mycorrhizal fungi and patterns of host association over time and space in a tropical forest. Mol. Ecol. 11, 2669-2678. Doi: 10.1046/j.1365-294x.2002.01647.x

Husband, R., E.A. Herre, and J. Young. 2002b. Temporal variation in the arbuscular mycorrhizal communities colonizing seedlings in a tropical forest. FEMS Microbiol. Ecol. 42, 131-136. Doi:10.1111/j.1574-6941.2002.tb01002.x

Jansa, J., A. Mozafar, G. Kuhn, T. Anken, R. Ruh, I.R. Sanders, and E. Frossard. 2003. Soil tillage affects the community structure of mycorrhizal fungi in maize roots. Ecol. Appl. 13, 1164-1176. Doi: 10.1890/1051-0761(2003)13[1164:STATCS]2.0.CO;2

Jansa, J., C. Thonar, and E. Frossard. 2009. Enhancement of symbiotic benefits through manipulation of the mycorrhizal community composition. Aspects Appl. Biol. 98, 9-15.

Jayachandran, K. and K. Shetty. 2003. Growth response and phosphorus uptake by arbuscular mycorrhizae of wet prairie sawgrass. Aquat. Bot. 76, 281-290. Doi: 10.1016/S0304-3770(03)00075-5

Jeffries, P., T. Spyropoulos, and E. Vardavarkis. 1988. Vesiculararbuscular mycorrhizal status of various crops in different agricultural soils of northern Greece. Biol. Fertil. Soils. 5, 333-337. Doi: 10.1007/BF00262142

Johnson, N.C., D. Tilman, and D. Wedin. 1992. Plant and soil controls on mycorrhizal fungal communities. Ecology 73, 2034-2042. Doi: 10.2307/1941453

Kernaghan, G. 2005. Mycorrhizal diversity: cause and effect? Pedobiologia 49, 511-520. Doi: 10.1016/j.pedobi.2005.05.007

Koske, R.E. and B. Tessier. 1983. A convenient permanent slide mounting medium. Mycol. Soc. Am. Newsl. 34, 59.

Krishnamoorthy, R., K. Kim, C. Kim, and T. Sa. 2014. Changes of arbuscular mycorrhizal traits and community structure with respect to soil salinity in a coastal reclamation land. Soil Biol. Biochem. 72, 1-10. Doi: 10.1016/j.soilbio.2014.01.017

Kwaśna, H., G. Bateman, and E. Ward. 2008. Determining species diversity of microfungal communities in forest tree roots by pure-culture isolation and DNA sequencing. App. Soil Ecol. 40, 44-56. Doi: 10.1016/j.apsoil.2008.03.005

Landis, F.C., A. Gargas, and T.J. Givnish. 2004. Relationships among arbuscular mycorrhizal fungi, vascular plants and environmental conditions in oak savannas. New Phytol. 164, 493-504. Doi: 10.1111/j.1469-8137.2004.01202.x

Lekberg, Y., R.T. Koide, J.R. Rohr, L. Aldrich-Wolfe, and J.B. Morton. 2007. Role of niche restrictions and dispersal in the composition of arbuscular mycorrhizal fungal communities. J. Ecol. 95, 95-100. Doi: 10.1111/j.1365-2745.2006.01193.x

Li, Y., X. He, and L. Zhao. 2010. Tempo-spatial dynamics of arbuscular mycorrhizal fungi under clonal plant Psammochloa villosa Trin. Bor in Mu Us sandland. Eur. J. Soil Biol. 46, 295-301. Doi: 10.1016/j.ejsobi.2010.05.004

Lindahl, B., R. Nilsson, L. Tedersoo, K. Aberenkov, T. Carlsen, R. Kjoller, U. Kojalg, T. Pennanen, S. Rosendahl, J. Stenlid, and H. Kauserud. 2013. Fungal community analysis by high through put sequencing of amplified markers - a user’s guide. New Phytol. 199, 288-299. Doi: 10.1111/nph.12243

Lodge, D.J. 1989. The influence of soil moisture and flooding on formation of VA-endo- and ectomycorrhizae in Populus and Salix. Plant Soil 117, 243-253. Doi: 10.1007/BF02220718

Lopes, P., J.O. Siqueira, and S.D. Stürmer. 2013. Switch of tropical Amazon forest to pasture affects taxonomic composition but not species abundance and diversity of arbuscular mycorrhizal fungal community. Appl. Soil Ecol. 71, 72-80. Doi: 10.1016/j.apsoil.2013.05.010

Mahdhi, M., T. Tounekti, T.A. Al-Turki, and H. Khemira. 2017. Composition of the root mycorrhizal community associated with Coffea arabica in Fifa Mountains (Jazan region, Saudi Arabia). J. Basic Microbiol. 57, 691-698. Doi: 10.1002/jobm.201700075

Mason, P.A., M.O. Musoko, and F.T. Last. 1992. Short-term changes in vesicular-arbuscular mycorrhizal spore populations in Terminalia plantations in Cameroon. pp. 261-267. In: Read, D.J., D.H. Lewis, A.H. Fitter, and L.J. Alexander (eds). Mycorrhizas in Ecosystems. CAB International, UK.

Medina, M. 1991. El cultivo de la uchuva tipo exportación. Agricultura Tropical 28, 55-58.

Miller, P. 2000. Arbuscular mycorrhizal colonization of semi-aquatic grasses along a wide hydrologic gradient. New Phytol. 145,145-155. Doi: 10.1046/j.1469-8137.2000.00566.x

Miller, P. and R.R. Sharitz. 2000. Manipulation of flooding and arbuscular mycorrhizal formation influences growth and nutrition of two semi-aquatic species. Funct. Ecol. 14, 738-748. Doi: 10.1046/j.1365-2435.2000.00481.x

Ming, T. and C. Hui. 1999. Effects of arbuscular mycorrhizal fungi on alkaline phosphatase activities on Hippophae rhamnoides drought-resistance under water stress conditions. Trees 14, 113-115. Doi: 10.1007/PL00009757

Moebius-Clune, D.J., Z.U. Anderson, and T. Pawlowska. 2013. Arbuscular mycorrhizal fungi associated with a single agronomic plant host across the landscape: the structure of an assemblage. Soil Biol. Biochem. 64, 181-190. Doi: 10.1016/j.soilbio.2012.10.043

Moreira, M., D. Baretta, S.M. Tsai, and E.J. Cardoso. 2009. Arbuscular mycorrhizal fungal communities in native and in replanted Araucaria forest. Sci. Agric. 66. 677-684. Doi: 10.1590/S0103-90162009000500013

Morton, J. 1987. Cape Gooseberry. pp. 430-443. In: J. Morton (ed). Fruits of warm climates. Florida Flair Books, Miami, USA.

Morton, J. and G. Benny. 1990. Revised classification of arbuscular mycorrhizal fungi (Zygomycetes): a new order Glomales, two new suborders Glomineae and Gigasporineae and two new families Acaulosporaceae and Gigasporaceae with an emendation of Glomaceae. Mycotaxon 37, 471-491.

Morton, J. and D. Redecker. 2001. Two new families of Glomales, Archaeosporaceae and Paraglomaceae, with two new genera Archaeospora and Paraglomus, based on concordant molecular and morphological characters. Mycologia 93, 181-195. Doi: 10.2307/3761615

Munyanziza, E., H.K. Kehri, and D.J. Bagyaraj. 1997. Agricultural intensification, soil biodiversity and agro-ecosystem function in the tropics: the role of mycorrhiza in crops and trees. Appl. Soil Ecol. 6, 77-85. Doi: 10.1016/S0929-1393(96)00152-7

Oehl, F., E. Sieverding, P. Ineichen, P. Mäder, T. Boller, and A. Wiemken. 2003. Impact of land use intensity on the species diversity of arbuscular mycorrhizal fungi in agroecosystems of Central Europe. Appl. Environ. Microb. 69, 2816-2824. Doi: 10.1128/AEM.69.5.2816-2824.2003

Oehl, F. and E. Sieverding. 2004. Pacispora, a new vesicular arbuscular mycorrhizal fungal genus in the Glomeromycetes. J. Appl. Bot. Food Qual. 78, 72-82.

Oehl, F., Z. Sýkorová, D. Redecker, A. Wiemken, and E. Sieverding. 2006. Acaulospora alpina, a new arbuscular mycorrhizal fungal species characteristic for high mountainous and alpine regions of the Swiss Alps. Mycologia 98, 286-294. Doi: 10.1080/15572536.2006.11832701

Oehl, F., F. de Souza, and E. Sieverding. 2008. Revision of Scutellospora and description of five new genera and three new families in the arbuscular mycorrhiza-forming Glomeromycetes. Mycotaxon 106, 311-360.

Oehl, F., E. Lackzo, A. Bogenrieder, K. Stahr, R. Bösch, M.G.A. van der Heijden, and E. Sieverding. 2010. Soil type and land use intensity determine the composition of arbuscular mycorrhizal fungal communities. Soil Biol. Biochem. 42, 724-738. Doi: 10.1016/j.soilbio.2010.01.006

Oehl, F., J. Jansa, F. de Souza, and G. Silva. 2011a. Cetraspora helvetica, a new ornamented species in the Glomeromycetes from Swiss agricultural fields. Mycotaxon 114, 71-84. Doi:10.5248/114.71

Oehl, F., D.K. Silva, L. Maia, N. Souza, H. Vieira, and G. Silva. 2011b. Orbispora ge. nov., ancestral in the Scutellosporaceae (Glomeromycetes). Mycotaxon 116, 161-169.

Oehl, F., Z. Sýkorová, J. Blaszkowski, I. Sànchez-Castro, D. Coyne, A. Tchabi, L. Lawouin, F. Hountondji, and G. Silva. 2011c. Acaulospora sieverdingii, an ecological diverse new fungus in the Glomeromycota, described from lowland temperate Europe and tropical West Africa. J. Appl. Bot. Food Qual. 87, 47-53.

Oehl, F., G. Silva, B. Goto, and E. Sieverding. 2011d. Glomeromycota: Three new genera and glomoid species reorganized. Mycotaxon 116, 78-120. Doi: 10.5248/116.75

Öpik, M., M. Moora, J. Liira, and M. Zobel. 2006. Composition of root-colonizing arbuscular mycorrhizal fungal communities in different ecosystems around the globe. J. Ecol. 94, 778-790. Doi: 10.1111/j.1365-2745.2006.01136.x

Öpik, M., M. Zobel, J.J. Cantero, J. Davison, J.M. Facelli, I. Hiiesalu, T. Jairus, J.S. Kalwij, K. Koorem, M.E. Leal, J. Liira, M. Metsis, V. Neshataeva, J. Paal, C. Phosri, S. Põlme, Ü. Reier, Ü. Saks, H. Schimann, O. Thiéry, M. Vasar, and M. Moora. 2013. Global sampling of plant roots expands the described molecular diversity of arbuscular mycorrhizal fungi. Mycorrhiza 23, 411-430. Doi: 10.1007/s00572-013-0482-2

Pagano, M.C., R.B. Zandavalli, and F.S. Araújo. 2013. Biodiversity of arbuscular mycorrhizas in three vegetational types from the semiarid of Ceará State, Brazil. Appl. Soil Ecol. 67, 37-46. Doi: 10.1016/j.apsoil.2013.02.007

Palenzuela, J., N. Ferrol, T. Boller, C. Azcón-Aguilar, and F. Oehl. 2008. Otospora bareai, a new fungal species in the Glomeromycetes from a dolomitic shrub land in Sierra de Baza National Park (Granada, Spain). Mycologia 100, 296-305. Doi: 10.1080/15572536.2008.11832484

Panwar, J. and J.C. Tarafdar. 2006. Distribution of three endangered medicinal plant species and their colonization with arbuscular mycorrhizal fungi. J. Arid Environ. 65, 337-350. Doi: 10.1016/j.jaridenv.2005.07.008

Peña-Venegas, C.P., G.L. Caronda, J.H. Arguelles, and A.L. Arcos. 2007. Micorrizas arbusculares del sur de la Amazonía Colombiana y su relación con algunos factores fisicoquímicos y biológicos del suelo. Acta Amaz. 37, 327-336. Doi: 10.1590/S0044-59672007000300003

Pérez, E. 1996. Plantas útiles de Colombia. Edición de Centenario, Cargraphics. Santander de Quilichao, Colombia.

Phillips, J.M. and D.S. Hayman. 1970. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc. 55, 158-161. Doi: 10.1016/S0007-1536(70)80110-3

Rabatin, S.C. 1979. Seasonal and edaphic variation in vesiculararbuscular mycorrhizal infection of grasses by Glomus tenius. New Phytol. 83, 95-102. Doi: 10.1111/j.1469-8137.1979.tb00730.x

Rabelo, P.C., D.K. Silva, A.C. Ferreira, B. Goto, and L. Maia. 2014. Diversity of arbuscular mycorrhizal fungi in Atlantic forest areas under different land uses. Agr. Ecosyst. Environ. 185, 245-252. Doi: 10.1016/j.agee.2014.01.005

Read, D.J. 1998. Plants on the web. Nature 396, 22-23. Doi: 10.1038/23822

Redecker, D., A. Schüler, H. Stockinger, S. Stümer, J. Morton, and C. Walker. 2013. An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). Mycorrhiza 23, 515-531. Doi: 10.1007/s00572-013-0486-y

Rodríguez, N., C. Rivera-Calvo, and I. Paneque-Torres. 2005. Efecto de las tecnologías de extracción forestal sobre la diversidad de especies leñosas en ecosistemas de pinares naturales. Revista Chapingo 11, 125-131

Roveda, G., A. Peñaranda, M. Ramírez, I. Baquero, and R. Galindo. 2012. Diagnóstico de la fertilidad química de los suelos de los municipios de Granada y Silvania para la producción de uchuva en Cundinamarca. Cienc. Tecnol. Agropec. 13, 179-188. Doi: 10.21930/rcta.vol13_num2_art:253

Schenck, N. and Y. Perez. 1988. Manual for the identification of VA mycorrhizal fungi. University of Florida, Gainesville, USA.

Schüßler, A., D. Scharzott, and C. Walker. 2001. A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol. Res. 105, 1413-1421. Doi: 10.1017/S0953756201005196

Schnoor, T., I. Lekberg, S. Rosendahl, and P. Olsson. 2011. Mechanical soil disturbance as a determinant of arbuscular mycorrhizal fungal communities in semi-natural grassland. Mycorrhiza 21, 211-220. Doi:10.1007/s00572-010-0325-3

Selvam, A. and A. Mahadevan. 2002. Distribution of mycorrhizas in an abandoned fly ash pond and mined sites of Neyveli Lignite Corporation, Tamil Nadu, India. Basic Appl. Ecol. 3, 277-284. Doi: 10.1078/1439-1791-00107

Sénes-Guerrero, C., G. Torres, S. Pfeiffer, M. Rojas, and A. Schüßler. 2014. Potato-associated arbuscular mycorrhizal fungal communities in the Peruvian Andes. Mycorrhiza 24, 405-417. Doi: 10.1007/s00572-013-0549-0

Sieverding, E. 1991. Vesicular-arbuscular mycorrhiza management in tropical agrosystems. Deutsche Gesellschaft fur Technische Zusammenarbeit. Eschborn, Germany.

Sieverding, E. and F. Oehl. 2006. Revision of Entrophospora and description of Kuklospora and Intraspora, two new genera in them arbuscular mycorrhizal Glomeromycetes. J. Appl. Bot. Food Qual. 80, 69-81.

Souza, R.G., L. Maia, M.F. Sales, and S.F.B. Trufem. 2003. Diversidade e potencial de infectividade de fungos micorrízicos arbusculares em área de caatinga, na Região de Xingó, Estado de Alagoas, Brasil. Rev. Bras. Bot. 26, 49-60. Doi: 10.1590/S0100-84042003000100006

Smith, S.D. and D.J. Read. 2008. Mycorrhizal Symbiosis. Academic Press, Amsterdam.

Smith, S.E. and F.A. Smith. 2011. Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annu. Rev. Plant Biol. 62, 227-250. Doi:10.1146/annurev-arplant-042110-103846

Stover, H.J., R.G. Thorn, J.M. Bowle, M.A. Bernards, and C.R. Jacobs. 2012. Arbuscular mycorrhizal fungi and vascular plant species abundance and community structure in tallgrass prairies with varying agricultural disturbance histories. Appl. Soil Ecol. 60, 61-70. Doi: 10.1016/j.apsoil.2012.02.016

Stürmer, S.L. and J.O. Siqueira. 2008. Diversidade de fungos micorrízicos arbusculares em ecossistemas Brasileiros. In: Moreira, F.M.S., J.O. Siqueira, and L. Brussaard (eds.), Biodiversidade do solo em ecossistemas Brasileiros. UFLA, Lavras, Brasilia.

Stürmer, S.L., R. Stürmer, and D. Pasqualini. 2013. Taxonomic diversity and community structure of arbuscular mycorrhizal fungi (Phylum Glomeromycota) in three maritime sand dunes in Santa Catarina state, south Brazil. Fungal Ecol. 6, 27-36. Doi: 10.1016/j.funeco.2012.10.001

Su, Y.Y. and L.D. Guo. 2007. Arbuscular mycorrhizal fungi in non-grazed, restored and over-grazed grassland in the Inner Mongolia steppe. Mycorrhiza 17, 689-693. Doi: 10.1007/s00572-007-0151-4

Tanja, R., K. Scheublin, P. Ridgway, J.P.W. Young, and M. van der Heijden. 2004. Nonlegumes, legumes, and root nodules harbor different arbuscular mycorrhizal fungal communities. Appl. Environ. Microbiol. 70, 6240-6246. Doi: 10.1128/AEM.70.10.6240-6246.2004

Trillos, O., J.M. Cotes, C.L. Medina, M. Lobo, and A. Navas. 2008. Caracterización morfológica de cuarenta y seis accesiones de uchuva (Physalis peruviana L.) en Antioquia (Colombia). Rev. Bras. Frutic. Jaboticabal. 30, 708-715. Doi: 10.1590/S0100-29452008000300025

Turrini, A., M. Agnolucci, M. Palla, E. Tomé, M. Tagliavini, F. Scandellari, and M. Giovannetti. 2017. Species diversity and community composition of native arbuscular mycorrhizal fungi in apple roots are affected by site and orchard management. Appl. Soil Ecol. 116, 42-54. Doi: 10.1016/j.apsoil.2017.03.016

Uhlmann, E., C. Görke, A. Petersen, and F. Oberwinkler. 2004. Arbuscular mycorrhizae from semiarid regions of Namibia. Can. J. Bot. 82, 645-653. Doi: 10.1139/b04-039

Vandenkoornhuyse, P., R. Husband, T. Daniell, I. Watson, J. Duck, A. Fitter, and J. Young. 2002. Arbuscular mycorrhizal community composition associated with two plant species in a grassland ecosystem. Mol. Ecol. 11, 1555-1564. Doi: 10.1046/j.1365-294X.2002.01538.x

van der Heijden, M.G.A., T. Boller, A. Wiemken, and I.R. Sanders. 1998a. Different arbuscular mycorrhizal fungal species are potential determinants of plant community structure. Ecology 79, 2082-2091. Doi: 10.1890/0012-9658(1998)079[2082:DAMFSA]2.0.CO;2

van der Heijden, M.G.A., J. Klironomos, M. Ursic, P. Moutoglis, R. Streitwolf-Engel, T. Boller, A. Wiemken, and I.R. Sanders. 1998b. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396, 69-72. Doi: 10.1038/23932

van der Heijden, M.G.A. and I.R. Sanders. 2002. Mycorrhizal Ecology. Springer, Berlin, Heidelberg.

Violi, H.A., A. Barrientos-Priego, S.F. Wright, E. Escamilla-Prado, J.B. Morton, J.A. Menge, and C.J. Lovatt. 2008. Disturbance changes arbuscular mycorrhizal fungal phenology and soil glomalin concentrations but not fungal spore composition in montane rainforests in Veracruz and Chiapas, Mexico. For. Ecol. Manag. 254, 276-290. Doi: 10.1016/j.foreco.2007.08.016

Walker, C. and A. Schüßler. 2004. Nomenclatural clarifications and new taxa in the Glomeromycota Pacispora. Mycol. Res. 108, 979-982. Doi: 10.1017/S0953756204231173

Wang, Y.Y., M. Vestberg, C. Walker, T. Hurme, X. Zhang, and K. Lindstrom. 2008. Diversity and infectivity of arbuscular mycorrhizal fungi in agricultural soils of the Sichuan Province of mainland China. Mycorrhiza 18, 59-68. Doi: 10.1007/s00572-008-0161-x

Wilson, J., K. Ingleby, P.A. Mason, K. Ibrahim, and G.J. Lawson. 1992. Long-term changes in vesicular-arbuscular mycorrhizal spore populations in Terminalia plantations in Cote d’Ivoire. pp. 268-275. In: Read, D.J., D.H. Lewis, H.J. Fitter, and I.J. Alexander (eds). Mycorrhizas in ecosystems. CAB International, London.

Zandavalli, R.B., S.L. Stürmer, and L.R. Dillenburg. 2008. Species richness of arbuscular mycorrhizal fungi in forests with Araucaria in Southern Brazil. Hoehnea 35, 63-68. Doi: 10.1590/S2236-89062008000100003

Zangaro, W. and M. Moreira. 2010. Micorrizas arbusculares nos biomas Floresta Atlântica e Floresta de Araucária. pp. 279-310. In: Siqueira, J.O., F.A. de Souza, E.J.B.N. Cardoso, and S.M. Tsai (eds). Micorrizas 30 anos de pesquisa no Brasil. UFLA, Lavras, Brazil.

Zarei, M., S. Hempel, T. Wubet, T. Schäfer, G. Savaghebi, G.S. Jouzani, M.K. Nekouei, and F. Buscot. 2010. Molecular diversity of arbuscular mycorrhizal fungi in relation to soil chemical properties and heavy metal contamination. Environ. Pollut. 158, 2757-2765. Doi: 10.1016/j.envpol.2010.04.017

Zhang, Y., L.D. Guo, and R.J. Liu. 2004. Survey of arbuscular mycorrhizal fungi in deforested and natural forest land in the subtropical region of Dujiangyan, southwest China. Plant Soil 261, 257-263. Doi: 10.1023/B:PLSO.0000035572.15098.f6

Zhao, D. and Z. Zhao. 2007. Biodiversity of arbuscular mycorrhizal fungi in the hot-dry valley of the Jinsha River, southwest China. Appl. Soil Ecol. 37(2), 118-128. Doi: 10.1016/j.apsoil.2007.06.003

How to Cite

APA

Ramírez-Gómez, M., Pérez-Moncada, U., Serralde-Ordoñez, D., Peñaranda-Rolón, A., Roveda-Hoyos, G. and Rodriguez, A. (2019). Diversity of arbuscular mycorrhizal fungi communities associated with cape gooseberry (Physalis peruviana L.) crops. Agronomía Colombiana, 37(3), 239–254. https://doi.org/10.15446/agron.colomb.v37n3.74008

ACM

[1]
Ramírez-Gómez, M., Pérez-Moncada, U., Serralde-Ordoñez, D., Peñaranda-Rolón, A., Roveda-Hoyos, G. and Rodriguez, A. 2019. Diversity of arbuscular mycorrhizal fungi communities associated with cape gooseberry (Physalis peruviana L.) crops. Agronomía Colombiana. 37, 3 (Sep. 2019), 239–254. DOI:https://doi.org/10.15446/agron.colomb.v37n3.74008.

ACS

(1)
Ramírez-Gómez, M.; Pérez-Moncada, U.; Serralde-Ordoñez, D.; Peñaranda-Rolón, A.; Roveda-Hoyos, G.; Rodriguez, A. Diversity of arbuscular mycorrhizal fungi communities associated with cape gooseberry (Physalis peruviana L.) crops. Agron. Colomb. 2019, 37, 239-254.

ABNT

RAMÍREZ-GÓMEZ, M.; PÉREZ-MONCADA, U.; SERRALDE-ORDOÑEZ, D.; PEÑARANDA-ROLÓN, A.; ROVEDA-HOYOS, G.; RODRIGUEZ, A. Diversity of arbuscular mycorrhizal fungi communities associated with cape gooseberry (Physalis peruviana L.) crops. Agronomía Colombiana, [S. l.], v. 37, n. 3, p. 239–254, 2019. DOI: 10.15446/agron.colomb.v37n3.74008. Disponível em: https://revistas.unal.edu.co/index.php/agrocol/article/view/74008. Acesso em: 16 jul. 2024.

Chicago

Ramírez-Gómez, Margarita, Urley Pérez-Moncada, Diana Serralde-Ordoñez, Andrea Peñaranda-Rolón, Gabriel Roveda-Hoyos, and Alia Rodriguez. 2019. “Diversity of arbuscular mycorrhizal fungi communities associated with cape gooseberry (Physalis peruviana L.) crops”. Agronomía Colombiana 37 (3):239-54. https://doi.org/10.15446/agron.colomb.v37n3.74008.

Harvard

Ramírez-Gómez, M., Pérez-Moncada, U., Serralde-Ordoñez, D., Peñaranda-Rolón, A., Roveda-Hoyos, G. and Rodriguez, A. (2019) “Diversity of arbuscular mycorrhizal fungi communities associated with cape gooseberry (Physalis peruviana L.) crops”, Agronomía Colombiana, 37(3), pp. 239–254. doi: 10.15446/agron.colomb.v37n3.74008.

IEEE

[1]
M. Ramírez-Gómez, U. Pérez-Moncada, D. Serralde-Ordoñez, A. Peñaranda-Rolón, G. Roveda-Hoyos, and A. Rodriguez, “Diversity of arbuscular mycorrhizal fungi communities associated with cape gooseberry (Physalis peruviana L.) crops”, Agron. Colomb., vol. 37, no. 3, pp. 239–254, Sep. 2019.

MLA

Ramírez-Gómez, M., U. Pérez-Moncada, D. Serralde-Ordoñez, A. Peñaranda-Rolón, G. Roveda-Hoyos, and A. Rodriguez. “Diversity of arbuscular mycorrhizal fungi communities associated with cape gooseberry (Physalis peruviana L.) crops”. Agronomía Colombiana, vol. 37, no. 3, Sept. 2019, pp. 239-54, doi:10.15446/agron.colomb.v37n3.74008.

Turabian

Ramírez-Gómez, Margarita, Urley Pérez-Moncada, Diana Serralde-Ordoñez, Andrea Peñaranda-Rolón, Gabriel Roveda-Hoyos, and Alia Rodriguez. “Diversity of arbuscular mycorrhizal fungi communities associated with cape gooseberry (Physalis peruviana L.) crops”. Agronomía Colombiana 37, no. 3 (September 1, 2019): 239–254. Accessed July 16, 2024. https://revistas.unal.edu.co/index.php/agrocol/article/view/74008.

Vancouver

1.
Ramírez-Gómez M, Pérez-Moncada U, Serralde-Ordoñez D, Peñaranda-Rolón A, Roveda-Hoyos G, Rodriguez A. Diversity of arbuscular mycorrhizal fungi communities associated with cape gooseberry (Physalis peruviana L.) crops. Agron. Colomb. [Internet]. 2019 Sep. 1 [cited 2024 Jul. 16];37(3):239-54. Available from: https://revistas.unal.edu.co/index.php/agrocol/article/view/74008

Download Citation

CrossRef Cited-by

CrossRef citations2

1. Dipanti Chourasiya, Manju M. Gupta, Sumit Sahni, Fritz Oehl, Richa Agnihotri, Reena Buade, Hemant S Maheshwari, Anil Prakash, Mahaveer P Sharma. (2021). Unraveling the AM fungal community for understanding its ecosystem resilience to changed climate in agroecosystems. Symbiosis, 84(3), p.295. https://doi.org/10.1007/s13199-021-00761-9.

2. Andrea María Peñaranda Rolón, Diana Paola Serralde Ordóñez, María Margarita Ramírez Gómez. (2022). ¿Por qué usar hongos formadores de micorrizas arbusculares en caña de azúcar para panela en Nariño?. https://doi.org/10.21930/agrosavia.manual.7406214.

Dimensions

PlumX

Article abstract page views

1403

Downloads

Download data is not yet available.