Global warming is reducing the tillering capacity and grain yield of wheat in Yaqui Valley, Mexico
El calentamiento está reduciendo la capacidad de macollamiento y el rendimiento de grano en trigo en el Valle del Yaqui, México
DOI:
https://doi.org/10.15446/agron.colomb.v37n1.75736Keywords:
climate change, gibberellic acid, abscisic acid (en)cambio climático, ácido giberélico, ácido abscisico (es)
Downloads
The effect of temperature variations recorded in eight meteorological stations in Yaqui Valley, Sonora, Mexico, on the tillering capacity and grain yield of wheat variety CIRNO C2008 in the growing cycles December 2016-May 2017 and December 2017-May 2018 was studied. In one of the sites, the crop canopy temperature was increased by +2°C with a T-FACE system (warming) based on the temperature recorded in the nearest meteorological station. With the two experimental variants, the abscisic (ABA) and gibberellic (GA) acid hormones were determined during tillering (initial tillering: 30 d after emergence and final tillering: 45 d after emergence) to explain their contribution to the tillering capacity response. A temperature variability of 1°C was observed in the cycle December 2017- May 2018, as compared to the previous cycle and between the evaluated sites. As a result of the temperature increase effect, the tiller number was significantly reduced. The experimental warming caused a highly significant decrease in the ABA content and an increase in the GA. The temperature variation found in Yaqui Valley had a negative and significant correlation with the grain yield in both experiment crop cycles, which demonstrated that global warming is reducing the tillering capacity and grain yield of wheat in Yaqui Valley.
References
Argentel-Martinez, L., J. Garatuza-Payan, M. Armendariz-Ontiveros, E.A. Yepez-Gonzalez, M. Garibaldi-Chavez, E.J. Ortiz-Enriquez, and J. Gonzalez-Aguilera. 2018. Physiological and agronomic traits of hard wheat CIRNO variety C2008 confirm its genetic stability. Agrociencia 52(3), 419-435.
Argentel-Martinez, L., J. Garatuza-Payan, M. Armendariz-Ontiveros, E.A. Yepez-Gonzalez, M. Garibaldi-Chavez, E.J. Ortiz-Enriquez, and J. Gonzalez-Aguilera. 2017. Estrés térmico en cultivo del trigo. Implicaciones fisiológicas, bioquímicas y agronómicas. Cultivos Tropicales 38(1), 57-67.
Asseng, S., D. Cammarano, B. Basso, U. Chung, P.D. Alderman, K. Sonder, and D.B. Lobell. 2017. Hot spots of wheat yield decline with rising temperatures. Global Change Biol. 23(6), 2464-2472. Doi: 10.1111/gcb.13530
Bockheim, J.G., A.N. Gennadiyev, A.E. Hartemink, and E.C. Brevik. 2014. Soil-forming factors and Soil Taxonomy. Geoderma 226, 231-237. Doi: 10.1016/j.geoderma.2014.02.016
Chandra, K., R. Prasad, P. Thakur, K. Madhukar, and L.C. Prasad. 2017. Heat tolerance in wheat - A key strategy to combat climate change through molecular markers. Int. J. Curr. Microbiol. App. Sci, 6(3), 662-675. Doi: 10.20546/ijcmas.2017.603.077
Confalone, A.E. and D.M. Navarro. 1999. Comparación de modelos de tiempo térmico para maíz. Revista Brasileira de Agrometeorología, Santa María 7(2), 207-211.
Espinosa-Espinosa, J.L., E. Palacios-Vélez, L.C.A. Tijerina-Chávez, A. Ortiz-Solorio, A. Exebio-García, and C. Landeros-Sánchez. 2018. Factores que afectan la producción agrícola bajo riego: cómo medirlos y estudiar su efecto. Tecnología y Ciencias del Agua 9(2), 175-191. Doi: 10.24850/j-tyca-2018-02-07
Fisher, R.A. 1937. The design of experiments. Oliver and Boyd, Edinburgh, London.
Ganem, D.G., M.A. Equiza, M. Lorenzo, and J. Tognetti. 2014. Cambios en la anatomía epidérmica foliar de cereales de clima templado en respuesta al frío. Revista de la Facultad de Agronomía 113(2), 157-164.
Garatuza-Payan J., L. Argentel-Martinez, E.A. Yepez, and T. Arredondo. 2018. Initial response of phenology and yield components of wheat (Triticum durum L., CIRNO C2008) under experimental warming field conditions in the Yaqui Valley. PeerJ 6:e5064. Doi: 10.7717/peerj.5064
Gosset, E. 1917. Another differences calculus based on standard deviation and confidence interval. Statistical References 26: 66-72.
Kaur, A. and P. Kaur. 2017. Effect of elevated temperature regimes on phenological development of wheat (Triticum aestivum L.). Agricultural Research Journal 54(1), 132-135. Doi: 10.5958/2395-146X.2017.00026.6
Kimball, B.A. 2015. Using canopy resistance for infrared heater control when warming open-field plots. Agron. J. 107(3), 1105-1112. Doi: 10.2134/agronj14.0418
Lares-Orozco, M.F., A. Robles-Morúa, E.A. Yepez, and R.M. Handler. 2016. Global warming potential of intensive wheat production in the Yaqui Valley, Mexico: a resource for the design of localized mitigation strategies. J. Clean. Prod. 127, 522-532. Doi: 10.1016/j.jclepro.2016.03.128
Lazzaro, M., A. Costanzo, D.H. Farag, and P. Bàrberi. 2017. Grain yield and competitive ability against weeds in modern and heritage common wheat cultivars are differently influenced by sowing density. Ital. J. Agron. 12(4). Doi: 10.4081/ija.2017.901
Mahalingam, R. 2015. Consideration of combined stress: a crucial paradigm for improving multiple stress tolerance in plants. pp. 1-25. In: Mahalingam, R. (ed). Combined stresses in plants, physiological, molecular, and biochemical aspects. Springer International Publishing, Switzerland. Doi: 10.1007/978-3-319-07899-1
Ortiz, L.Y., A. López, C.G. de Encizo, and V.J. Flórez. 2001. Determinación del ácido abscísico en papa (Solanum sp.) como respuesta a bajas temperaturas. Agron. Colomb. 18(1-3), 31-38.
Pinto, R.S., G. Molero, and M.P. Reynolds. 2017. Identification of heat tolerant wheat lines showing genetic variation in leaf respiration and other physiological traits. Euphytica 213(3), phenology and accumulative heat unit under different sowing times. J. Environ. Agric. Sci. 2(8), 1-8.
Sattar, A., M.M. Iqbal, A. Areeb, Z. Ahmed, M. Irfan, R.N. Shabbir,
and S. Hussain. 2015. Genotypic variations in wheat for phenology and accumulative heat unit under different sowingtimes. J. Environ. Agric. Sci. 2(8), 1-8.
Shirdelmoghanloo, H., D. Cozzolino, I. Lohraseb, and N. Collins. 2016. Truncation of grain filling in wheat (Triticum aestivum) triggered by a brief heat stress during early grain filling: association with senescence responses and reductions in stem reserves. Funct. Plant Biol. Doi: 10.1071/FP15384
Siebers, M.H., R.A. Slattery, C.R. Yendrek, A.M. Locke, D. Drag, E.A. Ainsworth, and D.R. Ort. 2017. Simulated heat waves during maize reproductive stages alter reproductive growth but have no lasting effect when applied during vegetative stages. Agric. Ecosyst. Environ. 240, 162-170. Doi: 10.1016/j.agee.2016.11.008
StatSoft. 2008. STATISTICA (data analysis software system), version 8.0. URL: www.statsoft.com (accessed 30 May 2018).
Tukey, J.W. 1960. A survey of sampling from contaminated distributions. p. 448-485. In: Olkin I. (ed). Contribution to probability and statistics: Essays in honor to Harold Hotelling. Stanford University Press. USA.
Valluru, R., M.P. Reynolds, W.J. Davies, and S. Sukumaran. 2017. Phenotypic and genome‐wide association analysis of spike ethylene in diverse wheat genotypes under heat stress. New Phytol. 214(1), 271-283. Doi: 10.1111/nph.14367
Wang, L.L., X.Y. Chen, Y. Yang, Z. Wang, and F. Xiong. 2016. Effects of exogenous gibberellic acid and abscisic acid on germination, amylases, and endosperm structure of germinating wheat seeds. Seed Sci. Technol. 44(1), 64-76. Doi: 10.15258/sst.2016.44.1.09
Xie, Q., S. Mayes, and D.L. Sparkes. 2016. Optimizing tiller production and survival for grain yield improvement in a bread wheat × spelt mapping population. Ann. Bot. 117(1), 51-66. Doi: 10.1093/aob/mcv147
Xu, T., N. Bian, M. Wen, J. Xiao, C. Yuan, A. Cao and H. Wang. 2016. Characterization of a common wheat (Triticum aestivum L.) high-tillering dwarf mutant. Theor. Appl. Genet. 1-12. Doi: 10.1007/s00122-016-2828-6
Zou, J., K. Semagn, M. Iqbal, A. N’Diaye, H. Chen, M. Asif and H. Randhawa. 2017. Mapping QTLs controlling agronomic traits in the ‘Attila’ × ‘CDC Go’ spring wheat population under organic management using 90K SNP array. Crop Sci. 57(1), 365-377. Doi: 10.2135/cropsci2016.06.0459
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Leandris Argentel‐Martínez, Ofelda Peñuelas‐Rubio, Lorenzo Pérez‐López, Jorge González Aguilera, Fábio Steiner, Alan Mario Zuffo, Rafael Felippe Ratke. (2024). Assessing Salinity, Drought and High Temperature Stress in Maize (Zea mays L.) and Wheat (Triticum aestivum L.) Varieties: Theoretical Combination as Multifactorial Stress. Journal of Agronomy and Crop Science, 210(6) https://doi.org/10.1111/jac.70001.
2. Marco Fiorentini, Roberto Orsini, Stefano Zenobi, Matteo Francioni, Chiara Rivosecchi, Marco Bianchini, Biagio di Tella, Paride D'Ottavio, Luigi Ledda, Rodolfo Santilocchi, Paola Deligios. (2024). Soil tillage reduction as a climate change mitigation strategy in Mediterranean cereal‐based cropping systems. Soil Use and Management, 40(2) https://doi.org/10.1111/sum.13050.
3. Haoran Tang, Jiangshan Bai, Fangyuan Chen, Ying Liu, Yanjing Lou. (2021). Effects of salinity and temperature on tuber sprouting and growth of Schoenoplectus nipponicus. Ecosphere, 12(3) https://doi.org/10.1002/ecs2.3448.
4. Andrea Romero-Reyes, Sergio G. Hernandez-Leon, Lilia Leyva-Carrillo, Gloria Yepiz-Plascencia, Matthew P. Reynolds, Matthew J. Paul, Sigrid Heuer, Elisa M. Valenzuela-Soto. (2023). An efficient triose phosphate synthesis and distribution in wheat provides tolerance to higher field temperatures. Biochemical Journal, 480(16), p.1365. https://doi.org/10.1042/BCJ20230117.
5. Leandris Argentel Martínez, Ofelda Peñuelas Rubio, Aurelio Leyva Ponce, Eliseo Ortiz Enrique, Mirza Hasanuzzaman. (2022). A decade of temperature variation and agronomic traits of durum wheat (Triticum durum L.). Arabian Journal of Geosciences, 15(8) https://doi.org/10.1007/s12517-022-10035-3.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2019 Agronomía Colombiana
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
© Centro Editorial de la Facultad de Ciencias Agrarias, Universidad Nacional de Colombia
Reproduction and quotation of material appearing in the journal is authorized provided the following are explicitly indicated: journal name, author(s) name, year, volume, issue and pages of the source. The ideas and observations recorded by the authors are their own and do not necessarily represent the views and policies of the Universidad Nacional de Colombia. Mention of products or commercial firms in the journal does not constitute a recommendation or endorsement on the part of the Universidad Nacional de Colombia; furthermore, the use of such products should comply with the product label recommendations.
The Creative Commons license used by Agronomia Colombiana journal is: Attribution - NonCommercial - ShareAlike (by-nc-sa)
Agronomia Colombiana by Centro Editorial of Facultad de Ciencias Agrarias, Universidad Nacional de Colombia is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional License.
Creado a partir de la obra en http://revistas.unal.edu.co/index.php/agrocol/.