Edible coatings based on sodium alginate and ascorbic acid for application on fresh-cut pineapple (Ananas comosus (L.) Merr)
Recubrimientos comestibles a base de alginato de sodio y ácido ascórbico para aplicación sobre piña (Ananas comosus (L.) Merr) fresca cortada
DOI:
https://doi.org/10.15446/agron.colomb.v37n3.76173Keywords:
minimally processed foods, storage losses, food preservation, added value (en)alimentos mínimamente procesados, pérdidas por almacenamiento, preservación de alimentos, valor añadido (es)
Downloads
The demand for healthy and ready-to-eat products, such as
freshly-harvested fruits, has been growing steadily over the years. However, these products are very susceptible to spoilage and have a short shelf-life. In this research, edible coatings based on sodium alginate and its blends with ascorbic acid (a natural antioxidant and anti-browning agent) were applied on fresh-cut pineapple samples, and the changes in their physicochemical properties were monitored during 10 d of storage at 4ºC. Initially, the surface of the coated fruits was brighter and statistically significant differences were not found between uncoated and coated samples (P<0.05); similar values were obtained in the parameters of soluble solids (~11 ºBrix), pH (~3.74) and titratable acidity (~0.64%). During storage, coated samples were more protected against changes in appearance compared to uncoated fresh-cut pineapple samples. The current results will be beneficial for further research that focuses on the preservation of minimally processed fruits such as pineapple.
La demanda de productos saludables y listos para consumir, tales como las frutas frescas cortadas, ha venido creciendo sostenidamente en los últimos años. Sin embargo, estos productos son muy susceptibles al deterioro y tienen una corta vida útil. En el presente trabajo, se aplicaron recubrimientos
comestibles a base de alginato de sodio y sus mezclas con ácido ascórbico (un agente antioxidante y anti-pardeamiento natural) sobre muestras de piña fresca cortada y se monitorearon los cambios en sus características fisicoquímicas durante 10 d de almacenamiento a 4ºC. Inicialmente, la superficie de las frutas recubiertas fue más brillante y no se observaron diferencias estadísticamente significativas entre las muestras sin y con recubrimiento (P<0.05), obteniendo valores similares en los parámetros de contenido de solidos solubles (~11 ºBrix), pH (~3.74) y acidez titulable (~0.64%). Durante el almacenamiento, las muestras recubiertas estuvieron mejor protegidas frente a cambios en la apariencia en comparación con las muestras de piña fresca cortada sin recubrir. Estos resultados serán muy útiles para futuras investigaciones que se centren en la conservación de frutas mínimamente procesadas, tales como piña.
References
Ancos, B., C. Sánchez-Moreno, and G.A. González-Aguilar. 2016. Pineapple composition and nutrition. In Lobo, M.G. and R.E. Paull (eds.). Handbook of Pineapple Technology. Wiley-Blackwell, Chichester, UK. Doi: 10.1002/9781118967355.ch12
AOAC. 1998. Official methods of analysis (16th ed.). AOAC INTERNATIONAL, Rockville, USA.
Azarakhsh, N., A. Osman, H.M. Ghazali, C.P. Tan, and N. Mohd Adzahan. 2012. Optimization of alginate and gellan-based edible coating formulations for fresh-cut pineapples. Int. Food Res. J. 19 (1), 279-285.
Bierhals, V.S., M. Chiumarelli, and M.D. Hubinger. 2011. Effect of cassava starch coating on quality and shelf life of fresh‐cut pineapple (Ananas Comosus L. Merril Cv “Pérola”). J. Food Sci. 76(1), E62–E72. Doi: 10.1111/j.1750-3841.2010.01951.x
Bierwagen, G.P. 2016. Surface Coating. Encyclopædia Britannica. URL: https://www.britannica.co/technology/surface-coating (accesed 13 November 2017).
Cakmak, H., S. Kumcuoglu, and S. Tavman. 2017. Production of edible coatings with twin-nozzle electrospraying equipment and the effects on shelf-life stability of fresh-cut apple slices. J. Food Process Eng. e12627. Doi: 10.1111/jfpe.12627
Dussan-Sarria, S., P.M. Reyes-Calvache, and J.I. Hleap-Zapata. 2014. Efecto de un recubrimiento comestible y diferentes tipos de empaque en los atributos físico-químicos y sensoriales de piña manzana mínimamente procesada. Inf. Tecnol. 25, 41-46. Doi: 10.4067/S0718-07642014000500007
Gunaydin, S., H. Karaca, L. Palou, B. de la Fuente, and M.B. Pérez-Gago. 2017. Effect of hydroxypropyl methylcellulose-beeswax composite edible coatings formulated with or without antifungal agents on physicochemical properties of plums during cold storage. J. Food Qual. 2017, 1-9. Doi: 10.1155/2017/8573549
López Córdoba, A., L. Deladino, and M. Martino. 2013. Effect of starch filler on calcium-alginate hydrogels loaded with yerba mate antioxidants. Carbohydr. Polym. 95(1), 315-323. Doi:10.1016/j.carbpol.2013.03.019
Mannozzi, C., J.P. Cecchini, U. Tylewicz, L. Siroli, F. Patrignani, R. Lanciotti, P. Rocculi, M. Dalla Rosa, and S. Romani. 2017. Study on the efficacy of edible coatings on quality of blueberry fruits during shelf-life. LWT - Food Sci. Technol. 85, 440–444. Doi: 10.1016/j.lwt.2016.12.056
Mannozzi, C., U. Tylewicz, F. Chinnici, L. Siroli, P. Rocculi, M. Dalla Rosa, and S. Romani. 2018. Effects of chitosan based coatings enriched with procyanidin by-product on quality of fresh blueberries during storage. Food Chem. 251, 18-24. Doi: 10.1016/j.foodchem.2018.01.015
Mantilla, N.V. 2012. Development of an alginate-based antimicrobial edible coating to extent the shelf-life of fresh-cut pineapple. MSc Thesis, Texas A&M University, Texas, USA.
Montero-Calderón, M. and O. Martín-Belloso. 2016. Fresh-Cut Pineapple. In Lobo, M.G. and R.E. Paull (eds.). Handbook of Pineapple Technology. Wiley-Blackwell, Chichester, UK. Doi: 10.1002/9781118967355.ch9
Montero-Calderón, M., M.A. Rojas-Graü, and O. Martín-Belloso. 2008. Effect of packaging conditions on quality and shelf-life of fresh-cut pineapple (Ananas comosus). Postharvest Biol. Technol. 50(2), 182-189. Doi: 10.1016/j.postharvbio.2008.03.014
Pizato, S., R.C. Chevalier, M.F. Dos Santos, T.S. Da Costa, R. Arévalo Pinedo, and W.R. Cortez Vega. 2019. Evaluation of the shelf-life extension of fresh-cut pineapple (Smooth cayenne) by application of different edible coatings. Br. Food J. 121(7), 1592-1604. Doi: 10.1108/BFJ-11-2018-0780
Pizato, S., W.R. Cortez-Vega, J.T.A. de Souza, C. Prentice-Hernández, and C.D. Borges. 2013. Effects of different edible coatings in physical, chemical and microbiological characteristics of minimally processed peaches (Prunus persica L. Batsch). J. Food Saf. 33(1), 30-39. Doi: 10.1111/jfs.12020
Praseptiangga, D., R. Utami, L.U. Khasanah, I.P. Evirananda, and Kawiji. 2017. Effect of cassava starch-based edible coating incorporated with lemongrass essential oil on the quality of papaya MJ9. IOP Conf. Ser. Mater. Sci. Eng. 176, 012054. Doi: 10.1088/1757-899X/176/1/012054
Robles-Sánchez, R.M., M.A. Rojas-Graü, I. Odriozola-Serrano, G. González-Aguilar, and O. Martin-Belloso. 2013. Influence of alginate-based edible coating as carrier of antibrowning agents on bioactive compounds and antioxidant activity in fresh-cut Kent mangoes. LWT - Food Sci. Technol. 50 (1), 240-246. Doi: 10.1016/j.lwt.2012.05.021
Salvia-Trujillo, L., M.A. Rojas-Graü, R. Soliva-Fortuny, and O. Martín-Belloso. 2015. Use of antimicrobial nanoemulsions as edible coatings: impact on safety and quality attributes of fresh-cut Fuji apples. Postharvest Biol. Technol. 105, 8-16. Doi: 10.1016/j.postharvbio.2015.03.009
Tharanathan, R.N. 2003. Biodegradable films and composite coatings: Past, present and future. Trends Food Sci. Technol. 14 (3), 71-78. Doi: 10.1016/S0924-2244(02)00280-7
Valero, D., H.M. Díaz-Mula, P.J. Zapata, F. Guillén, D. Martínez-Romero, S. Castillo, and M. Serrano. 2013. Effects of alginate edible coating on preserving fruit quality in four plum cultivars during postharvest storage. Postharvest Biol. Technol. 77, 1-6. Doi: 10.1016/j.postharvbio.2012.10.011
Versino, F., O.V. Lopez, M.A. Garcia, and N.E. Zaritzky. 2016. Starchbased films and food coatings: an overview. Starch/Stärke 68, 1026-1037. Doi: 10.1002/star.201600095
Wüstenberg, T. 2015. General Overview of Food Hydrocolloids. In T. Wüstenberg (Ed.). Cellulose and cellulose derivatives in the food industry fundamentals and applications. Wiley-VCH, Weinheim, Germany. Doi: 10.1002/9783527682935.ch01
Yousuf, B., O.S. Qadri, and A.K. Srivastava. 2018. Recent developments in shelf-life extension of fresh-cut fruits and vegetables by application of different edible coatings: a review. LWT - Food Sci. Technol. 89, 198-209. Doi: 10.1016/j.lwt.2017.10.051
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Afiqah Samad, Shukri Makhbar, Hazimah Sharifulazar, Aida Maryam Basri, Syazana Abdullah Lim. (2022). The effects of Diplazium esculentum Retz. and Stenochlaena palustris incorporated with sodium alginate as edible coating on packaged figs ( Ficus carica L.): A preliminary study . Journal of Food Processing and Preservation, 46(7) https://doi.org/10.1111/jfpp.16611.
2. Saul David Buelvas-Caro, Liliana Polo Corrales, Elvis Judith Hernández-Ramos. (2022). Análisis de perfil de textura, parámetros colorimétricos y microbiológicos en piña mínimamente procesada con recubrimientos comestibles. Ingeniería, 28(1), p.e18337. https://doi.org/10.14483/23448393.18337.
3. Jan Aleksander Zdulski, Krzysztof P. Rutkowski, Dorota Konopacka. (2024). Strategies to Extend the Shelf Life of Fresh and Minimally Processed Fruit and Vegetables with Edible Coatings and Modified Atmosphere Packaging. Applied Sciences, 14(23), p.11074. https://doi.org/10.3390/app142311074.
4. Wen Xia Ling Felicia, Kobun Rovina, Md Nasir Nur’Aqilah, Joseph Merillyn Vonnie, Kana Husna Erna, Mailin Misson, Nur Fatihah Abdul Halid. (2022). Recent Advancements of Polysaccharides to Enhance Quality and Delay Ripening of Fresh Produce: A Review. Polymers, 14(7), p.1341. https://doi.org/10.3390/polym14071341.
5. Claudia Liliana Vargas Serna, Vanessa Gonzalez Torres, Claudia Isabel Ochoa Martinez, Carlos Velez Pasos. (2022). Conservación de piña mínimamente procesada: evaluación de parámetros fisicoquímicos. Ingeniería, 27(1), p.e17564. https://doi.org/10.14483/23448393.17564.
6. Nishant Kumar, Pratibha, Anka Trajkovska Petkoska, Mohit Singla. (2021). Gums, Resins and Latexes of Plant Origin. Reference Series in Phytochemistry. , p.1. https://doi.org/10.1007/978-3-030-76523-1_4-1.
7. Camelia Ungureanu, Grațiela Tihan, Roxana Zgârian, Georgica Pandelea (Voicu). (2023). Bio-Coatings for Preservation of Fresh Fruits and Vegetables. Coatings, 13(8), p.1420. https://doi.org/10.3390/coatings13081420.
8. Nishant Kumar, Pratibha, Anka Trajkovska Petkoska, Mohit Singla. (2022). Gums, Resins and Latexes of Plant Origin. Reference Series in Phytochemistry. , p.81. https://doi.org/10.1007/978-3-030-91378-6_4.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2019 Agronomía Colombiana
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
© Centro Editorial de la Facultad de Ciencias Agrarias, Universidad Nacional de Colombia
Reproduction and quotation of material appearing in the journal is authorized provided the following are explicitly indicated: journal name, author(s) name, year, volume, issue and pages of the source. The ideas and observations recorded by the authors are their own and do not necessarily represent the views and policies of the Universidad Nacional de Colombia. Mention of products or commercial firms in the journal does not constitute a recommendation or endorsement on the part of the Universidad Nacional de Colombia; furthermore, the use of such products should comply with the product label recommendations.
The Creative Commons license used by Agronomia Colombiana journal is: Attribution - NonCommercial - ShareAlike (by-nc-sa)
Agronomia Colombiana by Centro Editorial of Facultad de Ciencias Agrarias, Universidad Nacional de Colombia is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional License.
Creado a partir de la obra en http://revistas.unal.edu.co/index.php/agrocol/.