Published

2019-05-01

Physiological performance of quinoa (Chenopodium quinoa Willd.) under agricultural climatic conditions in Boyaca, Colombia

Comportamiento fisiológico de la quinua (Chenopodium quinoa Willd.) bajo condiciones agroclimáticas de Boyacá, Colombia

DOI:

https://doi.org/10.15446/agron.colomb.v37n2.76219

Keywords:

chlorophyll, fertilizer, phenology, protein content (en)
clorofila, abono, fenología, contenido de proteína (es)

Downloads

Authors

  • Miguel Garcia-Parra Universidad del Cauca
  • José García-Molano Fundación Universitaria Juan de Castellanos - Facultad de Ciencias Agrarias y Ambientales - Grupo de Investigación Agricultura Organizaciones y Frutos (AOF)
  • Yuli Deaquiz-Oyola Fundación Universitaria Juan de Castellanos - Facultad de Ciencias Agrarias y Ambientales - Grupo de Investigación Agricultura Organizaciones y Frutos (AOF)

Quinoa (Chenopodium quinoa Willd.) is native to South America; it is characterized by its high nutrient contents and high adaptation capacity to diverse edapho-climatic conditions, which highlights it´s genetic variability expressed as multiple physiological and phenological responses. The objective of this research was to evaluate the physiological response and proximal composition of the grain to three types of fertilization under the environmental conditions of the municipality of Oicata (Boyaca, Colombia) located at 2,875 m a.s.l. The white Soracá variety was planted using a completely randomized design with four treatments and four replicates. It was observed that the fertilization sources have an effect on the physiological and phenological behavior, mainly on the number of leaves, length of stem and chlorophyll content. The reproductive stage and the proximal composition of seeds changed, which is attributed to the application of mineral organic fertilizer that improves the production of quinoa grains, while N-P-K contribution shows greater growth and vegetable development, but less yield.

La quinua (Chenopodium quinoa Willd.) es originaria de América del Sur, y está caracterizada por la alta composición nutricional y su fácil adaptabilidad a condiciones edafoclimáticas, lo que resalta su amplia variabilidad genética que se expresa en múltiples respuestas fisiologías y fenológicas. El objetivo de este estudio fue evaluar la respuesta fisiológica y la composición proximal del grano a tres tipos de fertilización bajo condiciones de clima y suelo propias del municipio de Oicatá (Boyacá, Colombia), localizado a 2.875 msnm. Se sembró quinua variedad blanca de Soracá, utilizando un diseño completamente al azar con cuatro tratamientos y cuatro repeticiones. Se observó que las fuentes de fertilización tienen efecto sobre el comportamiento fisiológico y fenológico, principalmente en el número de hojas, longitud de tallo y contenido de clorofila. Las etapas reproductivas y la composición proximal de las semillas también mostraron cambios, lo que se atribuye al aporte de abono orgánico-mineral que mejora la producción de granos de quinua, mientras que el aporte de N-P-K muestra mayor crecimiento y desarrollo vegetativo, pero menor rendimiento.

References

Al-Naggar, A., R. El-Salam, A. Badram, and M. El-Moghazi. 2017. Genotype and drought effects on morphological, physiological and yield traits of quinoa (Chenopodium quinoa Willd.). Asian J. Advanc. Agric. Res. 3(1), 1-15. Doi: 10.9734/AJAAR/2017/36655

Atencio, L., J. Tapia, S. Mejía, and J. Cadena. 2014. Comportamiento

fisiológico de gramíneas forrajeras bajo tres niveles de humedad en condiciones de casa malla. Temas Agrarios 19(2), 245-259.

Basra, S.M., S. Iqbal, and I. Afzal. 2014. Evaluating the response of nitrogen application on growth development and yield of quinoa genotypes. Int. J. Agric. Biol. 16, 886-892.

Bazile, D., D. Bertero, and C. Nieto. 2014. Estado del arte de la quinua en el mundo 2013. Ed. FAO (Santiago de Chile) and CIRAD (Montpellier).

Delgado, A., J. Palacios, and C. Betancourt. 2009. Evaluación de 16 genotipos de quinua dulce (Chenopodium quinoa Willd.) en el municipio de Iles, Nariño (Colombia). Agron. Colomb. 27(2), 159-167.

Elsohaimy, S., T. Refaay, and M. Zaytoun. 2015. Physicochemical and

functional properties of quinoa protein isolate. Ann. Agric. Sci. 60(2), 297-305. Doi: 10.1016/j.aoas.2015.10.007

Escuredo, O., M.I.G. Martín, G.W. Moncada, S. Fischer, and J.M.H. Hierro. 2014. Amino acid profile of the quinoa (Chenopodium quinoa Willd.) using near infrared spectroscopy and chemometric techniques. J. Cereal Sci. 60(1), 67-74. Doi: 10.1016/j.jcs.2014.01.016

Fghire, R., F. Anaya, O. Ali, O. Benlhabib, R. Ragab, and S. Wahbi. 2015. Physiological and photosynthetic response of quinoa to drought stress. Chil. J. Agr. Res. 72(2), 174-183. Doi: 10.4067/S0718-58392015000200006

García, M. 2006. Principios generales de la agricultura orgánica. Fundación Universitaria Juan de Castellanos, Tunja, Colombia.

García-Parra, M., J. García-Molano, D. Melo-Ortiz, and Y. Deaquiz-Oyola. 2017. Respuesta agronómica de la quinua (Chenopodium quinoa Willd.) variedad dulce de Soracá a la fertilización en Ventaquemada - Boyacá. Cultura Científica 15, 66-77.

García-Parra, M., J. García-Molano, and D. Carvajal-Rodríguez. 2018. Evaluación del efecto de la fertilización química y orgánica en la composición bromatológica de semillas de quinua (Chenopodium quinoa Willd.) en Boyacá-Colombia. Revista Invest. Agrar. Ambient. 9(2), 99-107. Doi: 10.22490/21456453.2282

Geren, H. 2017. Effects of different nitrogen levels on the grain yield and some yield components of quinoa (Chenopodium quinoa Willd.) under mediterranean climatic conditions. Tur. J. Field Crops 20(1), 59-64. Doi: 10.17557/.39586

Gómez, L. and F. Aguilar. 2016. Guía del cultivo de la quinua. Universidad Nacional Agraria la Molina. Lima, Peru.

IGAC and UPTC. 2005. Estudio general de suelos y zonificación de tierras del departamento de Boyacá. 1st ed. IGAC - UPTC, Bogota.

Jaconsen, S. 2003. The worldwide potential for quinoa (Chenopodium quinoa Willd.). Food Rev. Int. 19, 167-177. Doi: 10.1081/FRI-120018883

Jarvis, D., Y. Ho, D. Lightfoot, S. Schmöckel, B. Li, T. Borm, H. Ohyanagi, K. Mineta, C. Michell, N. Saber, N. Kharbatia, R. Rupper, A. Sharp, N. Dally, B. Boughton, Y. Woo, G. Gao, E. Schijlen, X. Guo, A. Momin, S. Negrao, S. Al-Bili, C. Gehring, U. Roessner, C. Jung, K, Murphy, S. Arold, T. Gojobori, C. Linden, E. Loo, E. Jellen, P. Maughan, and M. Tester. 2017. The genome of Chenopodium quinoa. Nature 542(7641), 307-312. Doi: 10.1038/nature21370

Jayme-Oliveira, A., W. Ribeiro, M. Gerosa, A. Camargo, and A. Jakelaitis. 2017. Amaranth, quinoa, and millet growth and development under different water regimes in the Brazilian Cerrado. Pesqui. Agropecu. Bras. 52(8), 561-571. Doi: 10.1590/S0100-204X2017000800001

Kakabouki, I., D. Hela, I. Roussis, P. Papastylianou, A. Sestras, and D. Bilalis. 2018. Influence of fertilization and soil tillage on nitrogen uptake and utilization efficiency of quinoa crop (Chenopodium quinoa Willd.). J. Soil. Sci. P. Nut. 18(1), 220-235. Doi: 10.4067/S0718-95162018005000901

Liu, Z., H. Hu, H. Yu, X. Yang, H. Yang, C. Ruan, Y. Wang, and J. Tang. 2015. Relationship between leaf physiologic traits and canopy color indices during the leaf expansion period in an oak forest. Ecosphere 6(12), 259. Doi: 10.1890/ES14-00452.1

Magolbo, L., E. Carmo, E. Garcia, A. Fernandes, and M. Leonel. 2015. Dry matter accumulation and mineral nutrition of arracacha in response to nitrogen fertilization. Pesq. Agropec. Bras. 50(8), 670-680. Doi: 10.1590/S0100-204X2015000800005

Marschner, P. 2012. Mineral nutrition of higher plants. 3rd ed. Elseiver, USA.

Marmouzi, I., N. Madani, Z. Charrouf, Y. Cherrah, and M. Abbes. 2015. Proximate Analysis, fatty acid and mineral composition of processed Moroccan, Chenopodium quinoa Willd. and antioxidant properties according to the polarity. Phytotherapie 13, 110-117. Doi: 10.1007/s10298-015-0931-5

Maliro, M., V. Guwela, J. Nyaika, and K. Murphy. 2017. Preliminary studies of the performance of quinoa (Chenopodium quinoa Willd.) genotypes under irrigated and rainfed conditions of central Malawi. Front. Plant Sci. 8, 227. Doi: 10.3389/fpls.2017.00227

Morales, A., A. Silva, J. Maldonado, and H. Silva. 2017. Transcriptional

responses of Chilean Quinoa (Chenopodium quinoa Willd.) under water deficit conditions uncovers ABA-Independent expression patterns. Front. Plant. Sci. 8, 216. Doi:10.3389/fpls.2017.00216

Parra-Cota, F., J. Peña-Cabriales, S. Santos-Villalobos, N. Martínez-Gallardo, and J. Délano-Frier. 2014. Burkholderia ambifaria and B. carobensis promote growth and increase yield in grain Amaranth (Amanranthus cruentus and A. hypocondriacus) by improving plant nitrogen uptake. PLoS ONE 9(2), e88094. Doi: 10.1371/journal.pone.0088094

Peiretti, P.G., F. Gai, and S. Tassone. 2013. Fatty acid profile and nutritive value of quinoa (Chenopodium quinoa Willd.) seeds and plants at different growth stages. Anim. Feed. Sci. Tech. 183, 56-61. Doi: 10.1016/j.anifeedsci.2013.04.012

Raines, C. 2011. Increasing photosynthetic carbon assimilation in C3 plants to improve crop yield: current and future strategies. Plant Physiol. 155, 36-42. Doi: 10.1104/pp.110.168559

Ramzani, P., L. Shan, S. Anjum, W. Khan, H. Ronggui, M. Iqbal, Z. Virk, and S. Kausar. 2017. Improved quinoa growth, physiological response, and seed nutritional quality in three soils having different stresses by the application of acidified biochar and compost. Plant Physiol. Biochem. 116, 137-138. Doi: 10.1016/j.plaphy.2017.05.003

Reguera, M., C. Conesa, A. Gil-Gómez, C. Haros, M. Pérez-Casas, V. Briones-Labarca, L. Bolaños, I. Bonilla, R. Álvarez, K. Pinto, A. Mujica, and L. Bascuña-Godoy. 2018. The impact of different agroecological conditions on the nutritional composition of quinoa seeds. Peer J. 6(e4442). Doi: 10.7717/peerj.4442

Simranpreet, K., N. Kaur, and J. Gill. 2017. Effect of processing on the nutritional composition of quinoa (Chenopodium quinoa Willd.). Agric. Res. J. 54(1), 90-93. Doi: 10.5958/2395-146X.2017.00015.1

Tabaglio, V., D. Melo, C. Ganimede, R. Boselli, and A. Vercesi. 2015. Prime esperienze di coltivazione della quinoa (Chenopodium quinoa Willd.). In: Pianura Padana. Convegno Nacionale Societa Italiana Di Agronomia. Piacenza, Italy. Doi: 10.13140/RG.2.1.3544.4728

Taiz, L. and E. Zeiger. 2007. Fisiología vegetal. Universitat Jaume, Castello, Spain.

Torres, J., H. Vargas, G. Corredor, and L. Reyes. 2000. Caracterización

morfoagronómica de diecinueve cultivares de quinua (Chenopodium quinoa Willd.) en la sabana de Bogota. Agron. Colomb. 17(3), 61-68.

Valcárcel-Yamany, B. and S. Silva. 2012. Applications of quinoa (Chenopodium quinoa Willd.) and amaranth (Amaranthus spp.) and their influence in the nutritional value of cereal based foods. Food Public Health 2(6), 265-275. Doi: 10.5923/j.fph.20120206.12

Vargas, D., M. Boada, L. Araca, W. Vargas, and R. Vargas. 2015. Agrobiodiversidad y economía de la quinua (Chenopodium quinoa Willd.) en comunidades aymaras de la cuenca del Titicaca. Idesia 33(4), 81-87. Doi: 10.4067/S0718-34292015000400011

Veloza, C., G. Romero, and J. Gómez. 2016. Respuesta morfoagronómica y calidad en proteína de tres accesiones de quinua (Chenopodium quinoa Willd.) en la sabana norte de Bogota. Rev. U.D.C.A Act. Div. Cient. 19(2), 325-332.

Winkel, T., P. Bommel, M. Chevarría-Lazo, G. Cortés, C. Del castillo, P. Gasselin, F. Lèger, J. Nina-Laura, S. Rambal, M. Tichit, J. Tourrand, J. Vacher, A. Vasssas-Toral, M. Vieira-Pak, and R. Joffre. 2016. Panarchy of an indigenous agroecosystem in the globalized market: the quinoa production in the Bolivian Altiplano. Glob. Environ. Change 39, 195-204. Doi: 10.1016/j.gloenvcha.2016.05.007

How to Cite

APA

Garcia-Parra, M., García-Molano, J. and Deaquiz-Oyola, Y. (2019). Physiological performance of quinoa (Chenopodium quinoa Willd.) under agricultural climatic conditions in Boyaca, Colombia. Agronomía Colombiana, 37(2), 144–152. https://doi.org/10.15446/agron.colomb.v37n2.76219

ACM

[1]
Garcia-Parra, M., García-Molano, J. and Deaquiz-Oyola, Y. 2019. Physiological performance of quinoa (Chenopodium quinoa Willd.) under agricultural climatic conditions in Boyaca, Colombia. Agronomía Colombiana. 37, 2 (May 2019), 144–152. DOI:https://doi.org/10.15446/agron.colomb.v37n2.76219.

ACS

(1)
Garcia-Parra, M.; García-Molano, J.; Deaquiz-Oyola, Y. Physiological performance of quinoa (Chenopodium quinoa Willd.) under agricultural climatic conditions in Boyaca, Colombia. Agron. Colomb. 2019, 37, 144-152.

ABNT

GARCIA-PARRA, M.; GARCÍA-MOLANO, J.; DEAQUIZ-OYOLA, Y. Physiological performance of quinoa (Chenopodium quinoa Willd.) under agricultural climatic conditions in Boyaca, Colombia. Agronomía Colombiana, [S. l.], v. 37, n. 2, p. 144–152, 2019. DOI: 10.15446/agron.colomb.v37n2.76219. Disponível em: https://revistas.unal.edu.co/index.php/agrocol/article/view/76219. Acesso em: 9 jul. 2024.

Chicago

Garcia-Parra, Miguel, José García-Molano, and Yuli Deaquiz-Oyola. 2019. “Physiological performance of quinoa (Chenopodium quinoa Willd.) under agricultural climatic conditions in Boyaca, Colombia”. Agronomía Colombiana 37 (2):144-52. https://doi.org/10.15446/agron.colomb.v37n2.76219.

Harvard

Garcia-Parra, M., García-Molano, J. and Deaquiz-Oyola, Y. (2019) “Physiological performance of quinoa (Chenopodium quinoa Willd.) under agricultural climatic conditions in Boyaca, Colombia”, Agronomía Colombiana, 37(2), pp. 144–152. doi: 10.15446/agron.colomb.v37n2.76219.

IEEE

[1]
M. Garcia-Parra, J. García-Molano, and Y. Deaquiz-Oyola, “Physiological performance of quinoa (Chenopodium quinoa Willd.) under agricultural climatic conditions in Boyaca, Colombia”, Agron. Colomb., vol. 37, no. 2, pp. 144–152, May 2019.

MLA

Garcia-Parra, M., J. García-Molano, and Y. Deaquiz-Oyola. “Physiological performance of quinoa (Chenopodium quinoa Willd.) under agricultural climatic conditions in Boyaca, Colombia”. Agronomía Colombiana, vol. 37, no. 2, May 2019, pp. 144-52, doi:10.15446/agron.colomb.v37n2.76219.

Turabian

Garcia-Parra, Miguel, José García-Molano, and Yuli Deaquiz-Oyola. “Physiological performance of quinoa (Chenopodium quinoa Willd.) under agricultural climatic conditions in Boyaca, Colombia”. Agronomía Colombiana 37, no. 2 (May 1, 2019): 144–152. Accessed July 9, 2024. https://revistas.unal.edu.co/index.php/agrocol/article/view/76219.

Vancouver

1.
Garcia-Parra M, García-Molano J, Deaquiz-Oyola Y. Physiological performance of quinoa (Chenopodium quinoa Willd.) under agricultural climatic conditions in Boyaca, Colombia. Agron. Colomb. [Internet]. 2019 May 1 [cited 2024 Jul. 9];37(2):144-52. Available from: https://revistas.unal.edu.co/index.php/agrocol/article/view/76219

Download Citation

CrossRef Cited-by

CrossRef citations9

1. Miguel García-Parra, Diego Roa-Acosta, Jesús Eduardo Bravo-Gómez. (2022). Effect of the Altitude Gradient on the Physiological Performance of Quinoa in the Central Region of Colombia. Agronomy, 12(9), p.2112. https://doi.org/10.3390/agronomy12092112.

2. Anise Jorfi, Mojtaba Alavifazel, Abdolali Gilani, Mohammad Reza Ardakani, Shahram Lak. (2022). Yield and morpho-physiological performance of quinoa (Chenopodium quinoa) genotypes as affected by phosphorus and zinc. Journal of Plant Nutrition, 45(16), p.2432. https://doi.org/10.1080/01904167.2022.2035756.

3. Jyoti Jadipujari, S. R. Anand, Mahantesh B. Nagangoudar, G. E. Rao, K. Kalyana Murthy. (2023). Performance of Quinoa (Chenopodium quinoa Willd.) under varied sowing windows and planting patterns . Environment Conservation Journal, 24(2), p.208. https://doi.org/10.36953/ECJ.11172328.

4. Miguel Ángel Garcia-Parra, Diego Fernando Roa-Acosta, Jesús Eduardo Bravo-Gomez, Juan Carlos Hernández-Criado, Héctor Samuel Villada-Castillo. (2022). Effects of Altitudinal Gradient on Physicochemical and Rheological Potential of Quinoa Cultivars. Frontiers in Sustainable Food Systems, 6 https://doi.org/10.3389/fsufs.2022.862238.

5. Miguel García-Parra, Diego Roa-Acosta, Víctor García-Londoño, Brigitte Moreno-Medina, Jesús Bravo-Gomez. (2021). Structural Characterization and Antioxidant Capacity of Quinoa Cultivars Using Techniques of FT-MIR and UHPLC/ESI-Orbitrap MS Spectroscopy. Plants, 10(10), p.2159. https://doi.org/10.3390/plants10102159.

6. Jeimmi Liliana Amado-Rodríguez, Narda Paola Humeje-Pan, Jorge Orlando Blanco-Valvuena, Nidia Yaneth Torres-Merchán, Miguel Angel García-Parra. (2022). Effect of plant growth promoting bacteria on the phenology of the Amarilla maranganí quinoa cultivar. Revista Colombiana de Ciencias Hortícolas, 16(1) https://doi.org/10.17584/rcch.2022v16i1.13440.

7. Ana Cruz Morillo Coronado, Elsa Helena Manjarres Hernández, Yacenia Morillo Coronado. (2022). Phenotypic diversity of agromorphological characteristics of quinoa (Chenopodium quinoa Willd.) germplasm in Colombia. Scientia Agricola, 79(4) https://doi.org/10.1590/1678-992x-2021-0017.

8. Elsa Helena Manjarres Hernández, Ana Cruz Morillo Coronado, Agobardo Cárdenas Chaparro, Claudia Merchán López. (2022). Yield, phenology and triterpene saponins in Colombian quinoa. Frontiers in Sustainable Food Systems, 6 https://doi.org/10.3389/fsufs.2022.919885.

9. Elsa Helena Manjarres-Hernández, Ana Cruz Morillo-Coronado, Zaida Zarely Ojeda-Pérez, Agobardo Cárdenas-Chaparro, Diana Marcela Arias-Moreno. (2021). Characterization of the yield components and selection of materials for breeding programs of quinoa (Chenopodium quinoa Willd.). Euphytica, 217(6) https://doi.org/10.1007/s10681-021-02837-5.

Dimensions

PlumX

Article abstract page views

1337

Downloads

Download data is not yet available.