Published

2019-09-01

Evaluation of β-glucan content, viscosity, soluble dietary fiber and processing effect in grains of Ecuadorian barley genotypes

Evaluación del contenido del β-glucano, viscosidad, fibra dietética soluble y efecto del procesamiento en granos de genotipos de cebada ecuatoriana

DOI:

https://doi.org/10.15446/agron.colomb.v37n3.77101

Keywords:

cooking, scarification, germination, malting, roasting (en)
cocción, escarificación, germinación, malteo, tostado (es)

Downloads

Authors

  • Elena Villacrés INIAP - Mejia - Ecuador - Departamento de Nutrición y Calidad - Estación Experimental Santa Catalina
  • Diego Campaña INIAP - Mejia - Ecuador - Departamento de Nutrición y Calidad - Estación Experimental Santa Catalina
  • Javier Garófalo INIAP - Mejia - Ecuador - Departamento de Nutrición y Calidad - Estación Experimental Santa Catalina
  • Esteban Falconi INIAP - Mejia - Ecuador - Departamento de Nutrición y Calidad - Estación Experimental Santa Catalina
  • Maria Quelal INIAP- Estación Experimental Santa Catalina
  • Janet Matanguihan Washington State University - Pullman - WA
  • Kevin Murphy Washington State University - Pullman - WA

We analyzed seventy barley accessions from Ecuador to determine the content of mixed-linkage β-glucan in seeds. Twelve of these materials showed a higher content than the population average 2.10% (w/w), and they were chosen to determine the relationship among β-glucan, viscosity and dietary fiber as well as the effect of scarification, cooking, roasting and malting on its content. In the 12 accessions, the content of β-glucan showed a high degree of correlation (r=0.86) with soluble dietary fiber but a low correlation with viscosity (r=-0.17). In most accessions, β-glucan increased in roasted or scarified grains. The roasting process increased the content by 35.51% (w/w) and scarification by 26.53% (w/w). Cooking decreased content by 39.92% and malting by 77.90%. The megazyme kit was used to determine the content of (1→3) (1→4)-β-D-glucan (Mixed-linkage). Results of this study show that Ecuadorian barley genotypes with a β-glucan content greater than 2.1% are suitable for human consumption and those with a lower value than 2.1% are suitable for the beer industry.

Setenta accesiones de cebada provenientes de Ecuador se analizaron para determinar el contenido de β-glucano en semillas. Doce de estos materiales presentaron un contenido superior a la media poblacional 2.10% (w/w) y fueron seleccionados para determinar la relación del β-glucano con la viscosidad y la fibra dietética, así como el efecto de la escarificación, cocción, tostado y malteo en su contenido. En las 12 accesiones el contenido de β-glucano presentó un alto grado de correlación (r=0.86) con la fibra dietética soluble pero baja correlación con la viscosidad (r=-0.17). En la mayoría de accesiones el β-glucano aumentó en los granos tostados o escarificados. El proceso de tostado incrementó el contenido en 35.51% (w/w) y la escarificación en 26.53% (w/w). La cocción disminuyó el contenido en 39.92% y el malteo en 77.90%. Se utilizó el kit megazyme para determinar el contenido de (1→3) (1→4)-β-Dglucano (Mixed-linkage). Resultados de este estudio muestran que los genotipos de cebada ecuatoriana con un contenido de β-glucano mayor a 2.10% son adecuados para la alimentación humana y aquellos con menor valor al indicado son adecuados para la industria cervecera.

References

Alminger, M. and C. Eklund-Jonsson, 2008. Whole-grain cereal products based on a high-fibre barley or oat genotype lower post-prandial glucose and insulin responses in healthy humans. Eur. J. Nutr. 47, 294. Doi: 10.1007/s00394-008-0724-9

Alvarado, J. de D. and J.M. Aguilera, 2001. Métodos para medir propiedades físicas en industrias de alimentos. Editorial Acribia, Zaragoza, Spain.

AOAC. 1995. Official methods of analysis of the association of official analytical chemists international. Method 991.43. Arlington, Virginia, USA.

Baik, B.K. and S.E. Ullrich. 2008. Barley for food: characteristics, improvement, and renewed interest. J. Cereal Sci. 48, 233-242. Doi: 10.1016/j.jcs.2008.02.002

Bunzel, M., J. Ralph, J.M. Marita, R.D. Hatfield, and H. Steinhart. 2001. Diferulates as structural components in soluble and insoluble cereal dietary fibre. J. Sci. Food Agric. 81, 653-660. Doi: 10.1002/jsfa.861

Di Rienzo, J., F. Casanoves, M.G. Balzarini, L. González, A. Julio, M. Tablada, and C.W. Robledo. 2015. InfoStat. InfoStat Group, Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba, Argentina.

Doehlert, D.C., D. Zhang, M.S. McMullen, and W.R. Moore. 1997. Estimation of mixed linkage beta-glucan concentration in oat and barley from viscosity of whole grain flour slurry. Crop Sci. 37, 235-238.

FAO. 2010. Codex Alimentarius. Guidelines on nutrition labelling CA/GL 2-1985 as last amended 2010. Rome.

Griffey, C., W. Brooks, M. Kurantz, W. Thomason, F. Taylor, D. Obert, R. Moreau, R. Flores, M. Sohn, and K. Hicks. 2010. Grain composition of Virginia winter barley and implications for use in feed, food, and biofuels production. J. Cereal Sci. 51, 41-49. Doi: 10.1016/j.jcs.2009.09.004

Havrlentová, M., Z. Petruláková, A. Burgárová, F. Gago, A. Hlinková, and E. Šturdík. 2011. Cereal β-glucans and their significance for the preparation of functional foods: a review. Czech J. Food Sci. 29, 1-4.

Izydorczyk, M.S., T.L. Chornick, F.G. Paulley, N.M. Edwards, and J.E. Dexter. 2008. Physicochemical properties of hull-less barley fibre-rich fractions varying in particle size and their potential as functional ingredients in two-layer flat bread. Food Chem. 108, 561-570. Doi: 10.1016/j.foodchem.2007.11.012

Jacob, J.P. and A.J. Pescatore. 2014. Barley β-glucan in poultry diets. Ann. Transl. Med. Doi: 10.3978/j.issn.2305-5839.2014.01.02

Jadhav, S.J., S.E. Lutz, V.M. Ghorpade, and D.K. Salunkhe. 1998. Barley: Chemistry and value-added processing. Crit. Rev. Food Sci. 38, 123-171. Doi: 10.1080/10408699891274183

Knutsen, S.H. and A.K. Holtekjølen. 2007. Preparation and analysis of dietary fibre constituents in whole grain from hulled and hull-less barley. Food Chem. 102, 707-715. Doi: 10.1016/j.foodchem.2006.06.006

Lazaridou, A. and C.G. Biliaderis. 2007. Molecular aspects of cereal β-glucan functionality: physical properties, technological applications and physiological effects. J. Cereal Sci. 46, 101-118. Doi: 10.1016/j.jcs.2007.05.003

López, E.C., J.J. Ordaz, T.H. Madrigal, J.A. Morga, and R.B. Hernández. 2008. Composición química de cebadas cultivadas bajo diferentes condiciones de labranza en tres localidades del estado de Hidalgo, México. Bioagro 20, 201-208.

Marconi, E., M. Graziano, and R. Cubadda. 2000. Composition and utilization of barley pearling by-products for making functional pastas rich in dietary fiber and β-glucans. Cereal Chem. 77, 133-139. Doi: 10.1094/CCHEM.2000.77.2.133

Mcclear, B.V. and M. Glennie‐Holmes. 1985. Enzymic quantification of (1→3) (1→4)‐β‐D‐glucan in barley and malt. J.I. Brewing 91, 285-295. Doi: 10.1002/j.2050-0416.1985.tb04345.x

Mudgil, D. and S. Barak. 2013. Composition, properties and health benefits of indigestible carbohydrate polymers as dietary fiber: a review. Int. J. Biol. Macromol. 61, 1-6. Doi: 10.1016/j.ijbiomac.2013.06.044

Patiño, V.M. 1963. Plantas cultivadas y animales domésticos en América equinoccial I: frutales. Imprenta departamental, Cali, Colombia

Pizarro, S., A.M. Ronco, and M. Gotteland. 2014. β-glucanos: ¿qué tipos existen y cuáles son sus beneficios en la salud? Rev. Chil. Nutr. 41, 439-446. Doi: 10.4067/S0717-75182014000400014

Prentice, N. 2000. Brewers’ spent grain in high fiber muffins. Baker’s Digest 52(5), 22-23.

Regand, A., Z. Chowdhury, S.M. Tosh, T.M. Wolever, and P. Wood. 2011. The molecular weight, solubility and viscosity of oat beta-glucan affect human glycemic response by modifying starch digestibility. Food Chem. 129, 297-304. Doi: 10.1016/j.foodchem.2011.04.053

Sarwar, M.H., M.F. Sarwar, M. Sarwar, N.A. Qadri, and S. Moghal. 2013. The importance of cereals (Poaceae: Gramineae) nutrition in human health: a review. J. Cereals Oilseeds 4, 32-35. Doi: 10.5897/JCO12.023

Skendi, A. and C.G. Biliaderis. 2016. Gelation of wheat arabinoxylans in the presence of Cu+2 and in aqueous mixtures with cereal β-glucans. Food Chem. 203, 267-275. Doi: 10.1016/j.foodchem.2016.02.063

Speers, R.A., Y.L. Jin, A.T. Paulson, and R.J. Stewart. 2005. Los Beta-Glucanos de cebada y su degradación durante el malteado y la fabricación de cerveza. Cerveza y Malta 168, 23-35.

Villacrés, E. 2008. La cebada: un cereal nutritivo (50 recetas para preparar). Editorial Grafistas, Quito.

Villacrés, E. and M. Rivadeneira. 2005. Barley in Ecuador: Production, grain quality for consumption, and perspectives for improvement. pp:127-137. In: Grando, S. and H. Gómez (eds). Food barley importance, uses local knowledge. ICARDA, Aleppo, Siria.

Wood, P.J. 2007. Cereal β-glucans in diet and health. J. Cereal Sci. 46, 230-238. Doi: 10.1016/j.jcs.2007.06.012

Yoon, S.H., P.T. Berglund, and C.E. Fastnaught. 1995. Evaluation of selected barley cultivars and their fractions for β-glucan enrichment and viscosity. Cereal Chem. 72, 187-190.

Zhang, G., W. Junmei, and C. Jinxin. 2002. Analysis of β-glucan content in barley cultivars from different locations of China. Food Chem. 79, 251-254. Doi: 10.1016/S0308-8146(02)00127-9

How to Cite

APA

Villacrés, E., Campaña, D., Garófalo, J., Falconi, E., Quelal, M., Matanguihan, J. and Murphy, K. (2019). Evaluation of β-glucan content, viscosity, soluble dietary fiber and processing effect in grains of Ecuadorian barley genotypes. Agronomía Colombiana, 37(3), 323–330. https://doi.org/10.15446/agron.colomb.v37n3.77101

ACM

[1]
Villacrés, E., Campaña, D., Garófalo, J., Falconi, E., Quelal, M., Matanguihan, J. and Murphy, K. 2019. Evaluation of β-glucan content, viscosity, soluble dietary fiber and processing effect in grains of Ecuadorian barley genotypes. Agronomía Colombiana. 37, 3 (Sep. 2019), 323–330. DOI:https://doi.org/10.15446/agron.colomb.v37n3.77101.

ACS

(1)
Villacrés, E.; Campaña, D.; Garófalo, J.; Falconi, E.; Quelal, M.; Matanguihan, J.; Murphy, K. Evaluation of β-glucan content, viscosity, soluble dietary fiber and processing effect in grains of Ecuadorian barley genotypes. Agron. Colomb. 2019, 37, 323-330.

ABNT

VILLACRÉS, E.; CAMPAÑA, D.; GARÓFALO, J.; FALCONI, E.; QUELAL, M.; MATANGUIHAN, J.; MURPHY, K. Evaluation of β-glucan content, viscosity, soluble dietary fiber and processing effect in grains of Ecuadorian barley genotypes. Agronomía Colombiana, [S. l.], v. 37, n. 3, p. 323–330, 2019. DOI: 10.15446/agron.colomb.v37n3.77101. Disponível em: https://revistas.unal.edu.co/index.php/agrocol/article/view/77101. Acesso em: 16 jul. 2024.

Chicago

Villacrés, Elena, Diego Campaña, Javier Garófalo, Esteban Falconi, Maria Quelal, Janet Matanguihan, and Kevin Murphy. 2019. “Evaluation of β-glucan content, viscosity, soluble dietary fiber and processing effect in grains of Ecuadorian barley genotypes”. Agronomía Colombiana 37 (3):323-30. https://doi.org/10.15446/agron.colomb.v37n3.77101.

Harvard

Villacrés, E., Campaña, D., Garófalo, J., Falconi, E., Quelal, M., Matanguihan, J. and Murphy, K. (2019) “Evaluation of β-glucan content, viscosity, soluble dietary fiber and processing effect in grains of Ecuadorian barley genotypes”, Agronomía Colombiana, 37(3), pp. 323–330. doi: 10.15446/agron.colomb.v37n3.77101.

IEEE

[1]
E. Villacrés, “Evaluation of β-glucan content, viscosity, soluble dietary fiber and processing effect in grains of Ecuadorian barley genotypes”, Agron. Colomb., vol. 37, no. 3, pp. 323–330, Sep. 2019.

MLA

Villacrés, E., D. Campaña, J. Garófalo, E. Falconi, M. Quelal, J. Matanguihan, and K. Murphy. “Evaluation of β-glucan content, viscosity, soluble dietary fiber and processing effect in grains of Ecuadorian barley genotypes”. Agronomía Colombiana, vol. 37, no. 3, Sept. 2019, pp. 323-30, doi:10.15446/agron.colomb.v37n3.77101.

Turabian

Villacrés, Elena, Diego Campaña, Javier Garófalo, Esteban Falconi, Maria Quelal, Janet Matanguihan, and Kevin Murphy. “Evaluation of β-glucan content, viscosity, soluble dietary fiber and processing effect in grains of Ecuadorian barley genotypes”. Agronomía Colombiana 37, no. 3 (September 1, 2019): 323–330. Accessed July 16, 2024. https://revistas.unal.edu.co/index.php/agrocol/article/view/77101.

Vancouver

1.
Villacrés E, Campaña D, Garófalo J, Falconi E, Quelal M, Matanguihan J, Murphy K. Evaluation of β-glucan content, viscosity, soluble dietary fiber and processing effect in grains of Ecuadorian barley genotypes. Agron. Colomb. [Internet]. 2019 Sep. 1 [cited 2024 Jul. 16];37(3):323-30. Available from: https://revistas.unal.edu.co/index.php/agrocol/article/view/77101

Download Citation

CrossRef Cited-by

CrossRef citations2

1. Halle Choi, Aaron Esser, Kevin M. Murphy. (2020). Genotype × environment interaction and stability of β‐glucan content in barley in the Palouse region of eastern Washington. Crop Science, 60(5), p.2500. https://doi.org/10.1002/csc2.20181.

2. La Geng, Xinyi He, Lingzhen Ye, Guoping Zhang. (2022). Identification of the genes associated with β-glucan synthesis and accumulation during grain development in barley. Food Chemistry: Molecular Sciences, 5, p.100136. https://doi.org/10.1016/j.fochms.2022.100136.

Dimensions

PlumX

Article abstract page views

1161

Downloads

Download data is not yet available.