Published

2020-05-01

Detection of mycotoxins produced by Fusarium species in Colombia

Detección de micotoxinas producidas por especies de Fusarium en Colombia

DOI:

https://doi.org/10.15446/agron.colomb.v38n2.77176

Keywords:

fumonisins, trichothecenes, zearalenone, ELISA (en)
fumonisinas, tricotecenos, zearalenona, ELISA (es)

Downloads

Authors

  • Claudia Salazar-González Universidad de Nariño https://orcid.org/0000-0002-5461-2761
  • David Velásquez-Ortiz Universidad Nacional de Colombia - Palmira
  • Eyder Gómez-López Universidad Nacional de Colombia - Palmira

The genus Fusarium produces mycotoxins that are metabolites of low molecular weight that affect the quality of crops, and even more importantly, they affect the health of humans and animals. Among those that cause damage to health are trichothecenes, fumonisins, and zearalenones. The objective of this study was to quantify the mycotoxins produced by species of the genus Fusarium from a population of isolates obtained from different crops and locations in Colombia. From 206 isolates, only 14 amplified to regions associated with mycotoxins deoxynivalenol (DON) belonging to the group of trichothecenes, fumonisin (FUM) and zearalenone (ZEA) using PCR. Each isolate with the presence of mycotoxins was conserved in potato dextrose agar (PDA) medium. Eight days after seeding in corn kernel medium, the samples were processed to perform the quantitative analysis of DON, ZEA and FUM using an ELISA kit based on enzyme-linked immunosorbent assays. The results show that mycotoxins were present in the evaluated isolates and their levels were above the standards regulated by Mercosur and the European Union. The use of immunosorbent assays using the ELISA technique becomes a useful tool to detect and quantify mycotoxins of species of the genus Fusarium that affect different crops in Colombia.

El género Fusarium produce micotoxinas que son metabolitos de bajo peso molecular que afectan la calidad de los cultivos y especialmente la salud de humanos y animales. Entre las que causan daños a la salud se encuentran los tricotecenos, las fumonisinas y las zearalenonas. El objetivo de este estudio fue cuantificar las micotoxinas producidas por especies del género Fusarium de una población de aislamientos obtenida de diferentes cultivos y localidades de Colombia. De 206 aislamientos, sólo 14 amplificaron regiones asociadas a las micotoxinas deoxinivalenol (DON), que pertenece al grupo de los tricotecenos, fumonisina (FUM) y zearalenona (ZEA) usando PCR. Cada uno de los aislamientos con presencia de micotoxinas se conservaron en medio papa dextrosa agar (PDA). Ocho días después de la siembra en medio de granos de maíz, las muestras se procesaron para realizar el análisis cuantitativo de DON, ZEA y FUM utilizando un kit de ELISA basado en ensayos de inmunoabsorción ligados a una enzima. Los resultados revelan la presencia de micotoxinas en los aislamientos evaluados cuyos niveles se encuentran por encima de los estándares regulados por Mercosur y la Unión Europea. El uso de ensayos de inmunoabsorción por medio de la técnica de ELISA se convierte en una herramienta útil para detectar y cuantificar micotoxinas de especies del género Fusarium que afectan diferentes cultivos en Colombia.

References

Bennett, J.W. and M. Klich. 2003. Mycotoxins. Clin. Microbiol. Rev. 16(3), 497-516 Doi: 10.1128/CMR.16.3.497-516.2003

Bertero, A., A. Moretti, L.J. Spicer, and F. Caloni. 2018. Fusarium molds and mycotoxins: potential species-specific effects. Toxins 10(6). Doi: 10.3390/toxins10060244

Berthiller, F., C. Crews, C. Dall’Asta, S.D. Saeger, G. Haesaert, P. Karlovsky, I.P. Oswald, W. Seefelder, G. Speijers, and J. Stroka. 2013. Masked mycotoxins: a review. Mol. Nutr. Food Res. 57(1), 165-186. Doi: 10.1002/mnfr.201100764

Bluhm, B.H., J.E. Flaherty, M.A. Cousin, and C.P. Woloshuk. 2004. Multiplex polymerase chain reaction assay for the differential detection of trichothecene- and fumonisin-producing species of Fusarium in cornmeal. J. Food Prot. 65(12), 1955-1961. Doi: 10.4315/0362-028x-65.12.1955

Braun, M.S. and M. Wink. 2018. Exposure, occurrence, and chemistry of fumonisins and their cryptic derivatives. Compr. Rev. Food Sci. Food Saf. 17(3), 769-791. Doi: 10.1111/1541-4337.12334

Cao, A., R. Santiago, A.J. Ramos, S. Marín, L.M. Reid, and A. Butrón. 2013. Environmental factors related to fungal infection and fumonisin accumulation during the development and drying of white maize kernels. Int. J. Food Microbiol. 164(1), 15-22. Doi: 10.1016/j.ijfoodmicro.2013.03.012

Chakrabarti, A. 2013. Fusarium oxysporum: a “moving” view of pathogenicity. pp. 157-189. In: Horwitz, B.A., P.K. Mukherjee, M. Mukherjee, and C.P. Kubicek (eds.). Genomics of soil- and plant-associated fungi. Springer-Verlag, Berlin, Heidelberg. Doi: 10.1007/978-3-642-39339-6_7

Desjardins, A. 2006. Fusarium micotoxyns: chemistry, genetics and biology. American Phytopathology Society Press, St. Paul, USA.

Desjardins, A. and T. Hohn. 1997. Mycotoxins in plant pathogenesis. Mol. Plant Microbe Interact. 10(2), 147-152. Doi: 10.1094/MPMI.1997.10.2.147

Desjardins A. and R. Proctor. 2007. Molecular biology of Fusarium mycotoxins. Int. J. Food Microbiol. 119(1-2), 47-50. Doi: 10.1016/j.ijfoodmicro.2007.07.024

Díaz, G. 2005. Micotoxinas y micotoxicosis de importancia en salud humana en Colombia. VII Congreso Latinoamericano de Microbiología e higiene de alimentos COLMIC. 2005, May 18-25, Bogota.

Diaz, G. and A. Céspedes. 1997. Natural occurrence of zearalenone in feeds and feedstuffs used in poultry and pig nutrition in Colombia. Mycotoxin Res. 13, 81-87. Doi: 10.1007/BF02945070

Duarte, S. and L. Villamil. 2006. Micotoxinas en la salud pública. Rev. Salud Pública 8(1),129-135.

EFSA. 2011. Panel on contaminants in the food chain (CONTAM). Scientific opinion on the evaluation of contaminants in the food. URL: www.efsa.europa.eu/sites /default/files/scientific.../2482.pdf (accessed 4 January 2016).

Escobar, A. and I. Fragas. 2004. Determinación de deoxinivalenol (vomitoxina) en muestras de trigo por cromatografía líquida de alta resolución (HPLC). Rev. Salud Anim. 26(2), 116-120.

Furlong, E.B., L.M.V. Soares, C.C. Lasca, and E.Y. Kohara. 1995. Mycotoxins and fungi in wheat harvested during 1990 in test plots in the state of São Paulo, Brazil. Mycopathologia 131, 185-190. Doi: 10.1007/BF01102899

Gallardo-Reyes, E.D., G.M. Ibarra-Moreno, R.I. Sánchez-Mariñez, G. Cuamea-Cruz, D. Molina-Gil, N.V. Parra-Vergara, E.C. Rosas-Burgos, and M.O. Cortez-Rocha. 2006. Micobiota de maíz (Zea mays L.) recién cosechado y producción de fumonisina B1 por cepas de Fusarium verticillioides (Sacc.) Nirenb. Rev. Mex. Fitopatol. 24(1), 27-34.

Guéant-Rodriguez, R.M., J.L. Guéant, R. Debard, S. Thirion, L.X. Hong, J.P. Bronowicki, F. Namour, N.W. Chabi, A. Sanni, G. Anello, P. Bosco, C. Romano, E. Amouzou, H.R. Arrieta, B.E. Sánchez, A. Romano, B. Herbeth, J.C. Guilland, and O.M. Mutchinick. 2006. Prevalence of methylenetetrahydrofolate reductase 677T and 1298C alleles and folate status: a comparative study in Mexican, West African, and European populations. Am. J. Clin. Nutr. 83(3), 701-707. Doi: 10.1093/ajcn.83.3.701

IARC. 2016. Agents classified by the IARC Monographs, Volumes 1-116. URL: http://monographs.iarc.fr/ENG/Classification/ (accessed 26 October 2018).

Jurado, M., P. Marín, N. Magan, and M.T. González-Jaén. 2008. Relationship between solute and matric potential stress, temperature, growth, and FUM1 gene expression in two Fusarium verticillioides strains from Spain. Appl. Environ. Microbiol. 74(7), 2032-2036. Doi: 10.1128/AEM.02337-07

Lacey, J. and N. Magan. 1991. Fungi in cereal grains: their occurrence and water and temperature relations. pp. 77-118. In: J. Chelkowski (ed.). Cereal grain: mycotoxins, fungi and quality in drying and storage. Elsevier Science Publishers B.V., Amsterdam.

Li, H.P., A.B. Wu, C.S. Zhao, O. Scholten, H. Löffler, and Y.C. Liao. 2005. Development of a generic PCR detection of deoxynivalenol-and nivalenol-chemotypes of Fusarium graminearum. FEMS Microbiol. Lett. 243(2), 505-511. Doi: 10.1016/j.femsle.2005.01.015

Li, R., X. Wang, T. Zhou, D. Yang, Q. Wang, and Y. Zhou. 2014. Occurrence of four mycotoxins in cereal and oil products in Yangtze Delta region of China and their food safety risks. Food Control 35(1), 117-122. Doi: 10.1016/j.foodcont.2013.06.042

Marassas, W.F., T.S. Kellerman, W.C. Gelderblom, J.A. Coetzer, P.G. Thiel, and J.J. Van der Lugt. 1988. Leukoencephalomalacia in a horse induced by fumonisin B1 isolated from Fusarium moniliforme. Onderstepoort J. Vet. Res. 55(4), 197-203.

Martínez, M., R. Moschini, D. Barreto, J. Bodega, R. Comerio, H. Forjan, F. Piatti, D. Presello, and O. Valentinuz. 2010. Factores ambientales que afectan el contenido de fumonisina en granos de maíz. Trop. Plant Pathol. 35(5), 277-284. URL: https://www.engormix.com/micotoxinas/articulos/modelospredictivoscomplejos-fungicos-t41308.htm (accessed 7 December 2017).

Meneely, J.P., F. Ricci, H.P. van Egmond, and C.T. Elliott. 2011. Current methods of analysis for the determination of trichothecene mycotoxins in food. Trends Anal. Chem. 30(2), 192-203. Doi: 10.1016/j.trac.2010.06.012

Ministry of Health and Social Protection. 2013. Resolution 4506. Colombia. URL: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/DE/DIJ/resolucion-4506-de-2013.pdf (accessed 1 April 2018).

Munkvold, G.P. 2003. Epidemiology of Fusarium diseases and their mycotoxins in maize ears. Eur. J. Plant Pathol. 109, 705-713. Doi: 10.1023/A:1026078324268

Mutchinick, O.M., M.A. López, L. Luna, J. Waxman, and V.E. Babinsky. 1999. High prevalence of the thermolabile methylenetetrahydrofolate reductase variant in Mexico: a country with a very high prevalence of neural tube defects. Mol. Genet. Metab. 68, 461-467. Doi: 10.1006/mgme.1999.2939

Muthomi, J.W., K.K. Ndung’u, J.K. Gathumbi, E.W. Mutitu, and J.M. Wagacha. 2008. The occurrence of Fusarium species and mycotoxins in Kenyan wheat. Crop Prot. 27(8), 1215-1219. Doi: 10.1016/j.cropro.2008.03.001

Nelson, P.E., A.E. Desjardins, and R.D. Plattner. 1993. Fumonisins, mycotoxins produced by Fusarium species: biology, chemistry, and significance. Annu. Rev. Phytopathol. 31(1), 233-252. Doi: 10.1146/annurev.py.31.090193.001313

Ono, E., Y. Sugiura, M. Homechin, M. Kamogae, E. Vizzoni, Y. Ueno, and E. Hirooka. 1999. Effect of climatic conditions on natural mycoflora and fumonisins in freshly harvested corn of the State of Paraná, Brazil. Mycopathologia 147, 139-148. Doi: 10.1023/A:1007171701245

Pacin, A.M., S.L. Resnik, M.S. Neira, G. Moltó, and E. Martínez. 1997. Natural occurrence of deoxynivalenol in wheat, wheat flour and bakery products in Argentina. Food Addit. Contam. 14(4), 327-331. Doi: 10.1080/02652039709374534

Pitt, J. and D. Miller. 2017. A Concise history of mycotoxin research. J. Agric. Food Chem. 65(33), 7021-7033. Doi: 10.1021/acs.jafc.6b04494

Pietsch, C., C. Schulz, P. Rovira, W. Kloas, and P. Burkhardt-Holm. 2014. Organ damage and hepatic lipid accumulation in carp (Cyprinus carpio L.) after feed-borne exposure to the mycotoxin, deoxynivalenol (DON). Toxins 6(2), 756-778. Doi: 10.3390/toxins6020756

Pleadin, J., M. Sokolović, N. Perši, M. Zadravec, V. Jaki, and A. Vulić. 2012. Contamination of maize with deoxynivalenol and zearalenone in Croatia. Food Control 28(1), 94-98. Doi: 10.1016/j.foodcont.2012.04.047

Pohland, A. 1993. Mycotoxins in review. Food Addit. Contam. 10(1), 17-28. Doi: 10.1080/02652039309374126

Proctor, R.H., M. Busman, J.A. Seo, W.L. Yin, and R.D. Plattner. 2008. A fumonisin biosynthetic gene cluster in Fusarium oxysporum strain O-1890 and the genetic basis for B versus C fumonisin production. Fungal Genet. Biol. 45(6),1016-1026 Doi: 10.1016/j.fgb.2008.02.004

Reverberi, M., A. Ricelli. S. Zjalić, A. Fabbri, and C. Fanelli. 2010. Natural functions of mycotoxins and control of their biosynthesis in fungi. Appl. Microbiol. Biotechnol. 87(3), 899-911. Doi: 10.1007/s00253-010-2657-5

Rojas, C., F. Wilches, and C. Darghan. 2015. Co-occurrence of microorganisms and toxic metabolites in food for children. Revista UDCA Actualidad y Divulgación Científica 18(1), 3-12.

Rojas, L. and A.M. Wilches. 2011. Coexistencia de aflatoxinas, zearalenona y deoxinivalenol en alimentos de consumo infantil. @Limentech Ciencia y Tecnología Alimentaria 10(1), 73-79.

Stępień, Ł., G. Koczyk, and A. Waśkiewicz. 2011 Genetic and phenotypic variation of Fusarium proliferatum isolates from different host species. J. Appl. Genet. 52, 487-496. Doi: 10.1007/s13353-011-0059-8

Sudakin, D.L. 2003. Trichothecenes in the environment: relevance to human health. Toxicol. Lett. 143(2), 97-107. Doi: 10.1016/S0378-4274(03)00116-4

Velluti, A., S. Marín, L. Bettucci, A.J. Ramos, and V. Sanchis. 2000. The effect of fungal competition on colonization of Maíze grain by Fusarium moniliforme, F. proliferatum and F. graminearum and on fumonisin B1 and zearalenone formation. Int. J. Food Microbiol. 59(1-2), 59-66. Doi: 10.1016/S0168-1605(00)00289-0

Waalwijk, C., T. van der Lee, I. de Vries, T. Hesselink, J. Arts, and G.H.J. Kema. 2004. Synteny in toxigenic Fusarium species: the fumonisin gene cluster and the mating type region as examples. Eur. J. Plant Pathol. 110, 533-544. Doi: 10.1023/B:EJPP.0000032393.72921.5b

Winter, C.K., D.G. Gilchrist, M.B. Dickman, and C. Jones. 1996. Chemistry and biological activity of AAL toxins. pp. 307-316. In: Jackson L.S., J.W. DeVries, and L.B. Bullerman (eds.). Fumonisins in food. Advances in experimental medicine and biology. Springer, Boston, USA. Doi: 10.1007/978-1-4899-1379-1_26

WHO/FAO. 2003. Diet, nutrition, and the prevention of chronic disease. WHO, Geneva..URL: http://www.who.int/dietphysicalactivity/publications/trs916/en/ (accessed 12 April 2018).

WHO/FAO. 2019. Safety evaluation of certain food additives and contaminants: Prepared by the seventy fourth meeting of the Joint FAO/WHO expert committee on food additives (JECFA). URL: https://apps.who.int/iris/bitstream/handle/10665/171781/9789240693982_eng.pdf;jsessionid=79EFFBD803B75293027EDA351F998A18?sequence=3 (accessed 7 June 2019).

Yang, W., M. Yu, J. Fu, W. Bao, D. Wang, L. Hao, P. Yao, A.K. Nüssler, H. Yan, and L. Liu. 2014. Deoxynivalenol induced oxidative stress and genotoxicity in human peripheral blood lymphocytes. Food Chem. Toxicol. 64, 383-396. Doi: 10.1016/j.fct.2013.12.012

Yoshizawa, T., H. Kohno, K. Ikeda, T. Shinoda, H. Yokohama, K. Morita, O. Kusada, and Y. Kobayashi. 2004. A practical method for measuring deoxynivalenol, nivalenol, and T-2 + HT-2 toxin in foods by an enzyme-linked immunosorbent assay using monoclonal antibodies. Biosci. Biotechnol. Biochem. 68(10), 2076-2085. Doi: 10.1271/bbb.68.2076

Zhang, J., J.H. Wang, A.D. Gong, F.F. Chen, B. Song, X. Li, H.P. Li, C.H. Peng, and Y.C. Liao. 2013. Natural occurrence of Fusarium head bligt, micotoxins and micotoxin-producing isolate of Fusarium in commercial fields of wheat in Hubei. Plant Pathol. 62(1), 92-102. Doi: 10.1111/j.1365-3059.2012.02639.x

How to Cite

APA

Salazar-González, C., Velásquez-Ortiz, D. and Gómez-López, E. (2020). Detection of mycotoxins produced by Fusarium species in Colombia. Agronomía Colombiana, 38(2), 197–204. https://doi.org/10.15446/agron.colomb.v38n2.77176

ACM

[1]
Salazar-González, C., Velásquez-Ortiz, D. and Gómez-López, E. 2020. Detection of mycotoxins produced by Fusarium species in Colombia. Agronomía Colombiana. 38, 2 (May 2020), 197–204. DOI:https://doi.org/10.15446/agron.colomb.v38n2.77176.

ACS

(1)
Salazar-González, C.; Velásquez-Ortiz, D.; Gómez-López, E. Detection of mycotoxins produced by Fusarium species in Colombia. Agron. Colomb. 2020, 38, 197-204.

ABNT

SALAZAR-GONZÁLEZ, C.; VELÁSQUEZ-ORTIZ, D.; GÓMEZ-LÓPEZ, E. Detection of mycotoxins produced by Fusarium species in Colombia. Agronomía Colombiana, [S. l.], v. 38, n. 2, p. 197–204, 2020. DOI: 10.15446/agron.colomb.v38n2.77176. Disponível em: https://revistas.unal.edu.co/index.php/agrocol/article/view/77176. Acesso em: 8 aug. 2024.

Chicago

Salazar-González, Claudia, David Velásquez-Ortiz, and Eyder Gómez-López. 2020. “Detection of mycotoxins produced by Fusarium species in Colombia”. Agronomía Colombiana 38 (2):197-204. https://doi.org/10.15446/agron.colomb.v38n2.77176.

Harvard

Salazar-González, C., Velásquez-Ortiz, D. and Gómez-López, E. (2020) “Detection of mycotoxins produced by Fusarium species in Colombia”, Agronomía Colombiana, 38(2), pp. 197–204. doi: 10.15446/agron.colomb.v38n2.77176.

IEEE

[1]
C. Salazar-González, D. Velásquez-Ortiz, and E. Gómez-López, “Detection of mycotoxins produced by Fusarium species in Colombia”, Agron. Colomb., vol. 38, no. 2, pp. 197–204, May 2020.

MLA

Salazar-González, C., D. Velásquez-Ortiz, and E. Gómez-López. “Detection of mycotoxins produced by Fusarium species in Colombia”. Agronomía Colombiana, vol. 38, no. 2, May 2020, pp. 197-04, doi:10.15446/agron.colomb.v38n2.77176.

Turabian

Salazar-González, Claudia, David Velásquez-Ortiz, and Eyder Gómez-López. “Detection of mycotoxins produced by Fusarium species in Colombia”. Agronomía Colombiana 38, no. 2 (May 1, 2020): 197–204. Accessed August 8, 2024. https://revistas.unal.edu.co/index.php/agrocol/article/view/77176.

Vancouver

1.
Salazar-González C, Velásquez-Ortiz D, Gómez-López E. Detection of mycotoxins produced by Fusarium species in Colombia. Agron. Colomb. [Internet]. 2020 May 1 [cited 2024 Aug. 8];38(2):197-204. Available from: https://revistas.unal.edu.co/index.php/agrocol/article/view/77176

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

723

Downloads

Download data is not yet available.