Published

2020-05-01

Freedom to operate analysis, design and evaluation of expression cassettes that confer tolerance to glyphosate

Análisis de libertad de operación, diseño y evaluación de casetes de expresión que confieren tolerancia a glifosato

DOI:

https://doi.org/10.15446/agron.colomb.v38n2.79150

Keywords:

herbicide tolerance, codon usage, gene design (en)
tolerancia a herbicidas, uso codónico, diseño de genes (es)

Downloads

Authors

  • Jenny Jiménez-Barreto Universidad Nacional de Colombia - Bogotá
  • Julián Mora-Oberlaender Universidad Nacional de Colombia - Bogotá
  • Alejandro Chaparro-Giraldo Universidad Nacional de Colombia https://orcid.org/0000-0003-4999-8804

Tolerance to the herbicide glyphosate is the most extended feature in commercial transgenic events released worldwide and it is an example of the successful use of genetic modification to improve weed control in crops. Glyphosate-tolerant genotypes have been developed by multinational corporations using patent- protected technologies. For some of these events, all associated patents have expired and, therefore, have become a good target for the development of herbicide-tolerant agbiogenerics by national research institutions, using local crop varieties. As a first step in this process, we present the design (in silico) of three expression cassettes with the purpose of using them in the transformation of Colombian soybean (Glycine max) varieties to confer them tolerance to glyphosate. We transformed Nicotiana benthamiana as a model to validate the functionality of the expression cassettes and detected the expression of the transgene by RT-PCR. Additionally, a Freedom to Operate analysis of the sequences used in the expression cassettes suggests that their commercial use in Colombia does not infringe third party rights. This analysis must be updated and validated by intellectual property experts prior to commercialization.

La tolerancia al herbicida glifosato es la característica predominante en los eventos transgénicos liberados comercialmente en el mundo, siendo un ejemplo del uso exitoso que ha tenido la transgénesis para mejorar el control de malezas en diferentes cultivos. Los genotipos tolerantes al glifosato han sido desarrollados por compañías multinacionales usando tecnologías protegidas por patentes. Para algunos de estos eventos todas las patentes asociadas finalizaron recientemente, y por lo tanto se han convertido en candidatos para desarrollar agrobiogenéricos resistentes a herbicidas derivados de genotipos locales a partir de investigaciones nacionales. Como primer paso del proceso, presentamos el diseño in silico de tres casetes de expresión con el fin de utilizarlos en la transformación genética de variedades colombianas de soya (Glycine max) para conferirles tolerancia al glifosato. Se transformó genéticamente la planta modelo Nicotiana benthamiana para validar la funcionalidad de los casetes y se detectó la expresión del transgén mediante RT-PCR. Adicionalmente un estudio de libertad de operación de las secuencias utilizadas en los casetes sugiere que su uso comercial en Colombia no viola derechos de terceros. Este análisis debe ser actualizado y validado por expertos en propiedad intelectual antes de la comercialización.

References

Akbarzadeh, A., F. Kordbacheh, M. Jafari, and A.H. Salmanian. 2010. A binary vector for Agrobacterium mediated plant transformation with new glyphosate tolerant gene as a selectable marker. Biharean Biol. 4(1), 19-29.

Barry, G.F., G.M. Kishore, S.R. Padgette, and W.C. Stallings. 1997. Glyphosate-tolerant 5-enolpyruvylshikimate-3-phosphate synthases. US 5633435. Monsanto Company, St. Louis, Missouri, USA.

Bennett, A.B., C. Chi-Ham, G. Graff, and S. Boettiger. 2008. Intellectual property in agricultural biotechnology: strategies for open access. pp. 347-363. In: Steward, C. (ed.). Plant biotechnology and genetics: principles, techniques and applications. John Wiley & Sons, Inc., Hoboken, New Jersey, USA. Doi: 10.1002/9780470282014.ch14

Cao, G., Y. Liu, S. Zhang, X. Yang, R. Chen, Y. Zhang, W. Lu, Y. Liu, J. Wang, M. Lin, and G. Wang. 2012. A novel 5-enolpyruvylshikimate-3-phosphate synthase shows high glyphosate tolerance in Escherichia coli and tobacco plants. PLOS One 7(6), e38718. Doi: 10.1371/journal.pone.0038718

Chiera, J., R. Bouchard, S. Dorsey, E. Park, M. Buenrostro-Nava, P. Ling, and J. Finer. 2007. Isolation of two highly active soybean (Glycine max (L.) Merr.) promoters and their characterization using a new automated image collection and analysis system. Plant Cell Rep. 26(9), 1501-1509. Doi: 10.1007/s00299-007-0359-y

Chou, T.C. and R.L. Moyle. 2014. Synthetic versions of firefly luciferase and Renilla luciferase reporter genes that resist transgene silencing in sugarcane. BMC Plant Biol. 14(92). Doi: 10.1186/1471-2229-14-92

Clément, Y., M.A. Fustier, B. Nabholz, and S. Glémin. 2014. The bimodal distribution of genic GC content is ancestral to monocot species. Genome Biol. Evol. 7(1), 336-348. Doi: 10.1093/gbe/evu278

Della-Cioppa, G., C. Bauer, B.K. Klein, D.M. Shah, R.T. Fraley, and G.M. Kishore. 1986. Translocation of the precursor of 5-enolpyruvylshikimate-3-phosphate synthase into chloroplasts of higher plants in vitro. Proc. Natl. Acad. Sci. U.S.A. 83(18), 6873-6877. Doi: 10.1073/pnas.83.18.6873

Duke, S. 2018. The history and current status of glyphosate. Pest Manag. Sci. 74(5), 1027-1034. Doi: 10.1002/ps.4652

Fathi-Roudsari, M., A. Salmanian, A. Mousavi, H. Hashemi-Sohi, and M. Jafari. 2009. Regeneration of glyphosate-tolerant Nicotiana tabacum after plastid transformation with a mutated variant of bacterial aroA gene. Iran. J. Biotechnol. 7(4), 247-253.

Funke, T., H. Han, M.L. Healy-Fried, M. Fischer, and E. Schönbrunn. 2006. Molecular basis for the herbicide resistance of Roundup Ready crops. Proc. Natl. Acad. Sci. U.S.A. 103(35), 13010-13015. Doi: 10.1073/pnas.0603638103

Jeong, Y.S., H.K. Ku, J.K. Kim, M.K. You, S.H. Lim, J.K. Kim, and S.H. Ha. 2017. Effect of codon optimization on the enhancement of the β-carotene contents in rice endosperm. Plant Biotechnol. Rep. 11(3), 171-179. Doi: 10.1007/s11816-017-0440-0

Jiménez, J.P. and A. Chaparro-Giraldo. 2016. Diseño in silico y evaluación funcional de genes semisintéticos que cofieran tolerancia a fosfinotricina. Rev. Colomb. Biotecnol. 18(2), 90-96. Doi: 10.15446/rev.colomb.biote.v18n2.52206

Jung, S.K. and K. McDonald. 2011. Visual gene developer: a fully programmable bioinformatics software for synthetic gene optimization. BMC Bioinform. 12(1), 1-13. Doi: 10.1186/1471-2105-12-340

Kay, R., A. Chan, M. Daly, and J. McPherson. 1987. Duplication of CaMV 35S promoter sequences creates a strong enhancer for plant genes. Science 236(4806), 1299-1302. Doi: 10.1126/science.236.4806.1299

Khuong, T., P. Crété, C. Robaglia, and S. Caffarri. 2013. Optimization of tomato Micro-tom regeneration and selection on glufosinate/Basta and dependency of gene silencing on transgene copy number. Plant Cell Rep. 32(9), 1441-1454. Doi: 10.1007/s00299-013-1456-8

Kohli, A., P.G. Melendi, R. Abranches, T. Capell, E. Stoger, and P. Christou. 2006. The quest to understand the basis and mechanisms that control expression of introduced transgenes in crop plants. Plant Signal. Behav. 1(4), 185-195. Doi: 10.4161/psb.1.4.3195

Kucho, K.I., K. Kakoi, M. Yamaura, M. Iwashita, M. Abe, and T. Uchiumi. 2013. Codon-optimized antibiotic resistance gene improves efficiency of transient transformation in Frankia. J. Biosci. 38(4), 713-717. Doi: 10.1007/s12038-013-9361-4

Laguía-Becher, M., V. Martín, M. Kraemer, M. Corigliano, M. Yacono, A. Goldman, and M. Clemente. 2010. Effect of codon optimization and subcellular targeting on Toxoplasma gondii antigen SAG1 expression in tobacco leaves to use in subcutaneous and oral immunization in mice. BMC Biotechnol. 10(52). Doi: 10.1186/1472-6750-10-52

Latif, A., A.Q. Rao, M. Khan, N. Shahid, K. Bajwa, M. Ashraf, M. Abbas, M. Azam, A. Shahid, I. Nasir, and T. Husnain. 2015. Herbicide-resistant cotton (Gossypium hirsutum) plants: an alternative way of manual weed removal. BMC Res. Notes 8(453). Doi: 10.1186/s13104-015-1397-0

Li, X., S. Li, Z. Lang, J. Zhang, L. Zhu, and D. Huang. 2013. Chloroplast-targeted expression of the codon-optimized truncated cry1Ah gene in transgenic tobacco confers a high level of protection against insects. Plant Cell Rep. 32(8), 1299-1308. Doi: 10.1007/s00299-013-1444-z

Maeda, H. and N. Dudareva. 2012. The Shikimate pathway and aromatic amino acid biosynthesis in plants. Annu. Rev. Plant Biol. 63(1), 73-105. Doi: 10.1146/annurev-arplant-042811-105439

Mao, C., H. Xie, S. Chen, B.E. Valverde, and S. Qiang. 2016. Multiple mechanism confers natural tolerance of three lilyturf species to glyphosate. Planta 243(2), 321-335. Doi: 10.1007/s00425-015-2408-z

Mora-Oberlaender, J., A. Castaño, S. López-Pazos, and A. Chaparro-Giraldo. 2018. Genetic engineering of crop plants: Colombia as a case study. pp. 169-206. In: Kuntz, M. (ed). Advances in Botanical Research. Elsevier, Amsterdam. Doi: 10.1016/bs.abr.2017.11.005

Murray, E., J. Lotzer, and M. Eberle. 1989. Codon usage in plant genes. Nucleic Acids Res. 17(2), 477-498. Doi: 10.1093/nar/17.2.477

Odell, J.T., F. Nagy, and N.H. Chua. 1985. Identification of DNA sequences required for activity of the caulif lower mosaic virus 35S promoter. Nature 313(6005), 810-812. Doi: 10.1038/313810a0

Okumura, A., A. Shimada, S. Yamasaki, T. Horino, Y. Iwata, N. Koizumi, M. Nishihara, and K.I. Mishiba. 2016. CaMV-35S promoter sequence-specific DNA methylation in lettuce. Plant Cell Rep. 35(1), 43-51. Doi: 10.1007/s00299-015-1865-y

Padgette, S.R., K.H. Kolacz, X. Delannay, D.B. Re, B.J. LaVallee, C.N. Tinius, W.K. Rhodes, Y.I. Otero, G.F. Barry, D.A. Eichholtz, V.M. Peschke, D.L. Nida, N.B. Taylor, and G.M. Kishore. 1995. Development, identification, and characterization of a glyphosate-tolerant soybean line. Crop Sci. 35(5), 1451-146. Doi: 10.2135/cropsci1995.0011183X003500050032x

Peng, R.H., Y.S. Tian, A.S. Xiong, W. Zhao, X.Y. Fu, H.J. Han, C. Chen, X.F. Jin, and Q.H. Yao. 2012. A novel 5-enolpyruvylshikimate-3-phosphate synthase from Rahnella aquatilis with significantly reduced glyphosate sensitivity. PLOS One 7(8), e39579. Doi: 10.1371/journal.pone.0039579

Rajeevkumar, S., P. Anunanthini, and R. Sathishkumar. 2015. Epigenetic silencing in transgenic plants. Front. Plant Sci. 6, 693. Doi: 10.3389/fpls.2015.00693

Ren, Z.J., G.Y. Cao, Y.W. Zhang, Y. Liu, and Y.J. Liu. 2015. Overexpression of a modified AM79 aroA gene in transgenic maize confers high tolerance to glyphosate. J. Integr. Agr. 14(3), 414-422. Doi: 10.1016/S2095-3119(14)60920-5

Sharp, P.M. and W.H. Li. 1987. The Codon adaptation index-a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res. 15(3), 1281-1295. Doi: 10.1093/nar/15.3.1281

Shimada, A., A. Okumura, S. Yamasaki, Y. Iwata, N. Koizumi, M. Nishihara, and K.I. Mishiba. 2017. A 64-bp sequence containing the GAAGA motif is essential for CaMV-35S promoter methylation in gentian. Biochim. Biophys. Acta Gene Regul. Mech. 1860(8), 861-869. Doi: 10.1016/j.bbagrm.2017.06.001

Singh, R., R. Ming, and Q. Yu. 2016. Comparative analysis of GC content variations in plant genomes. Tropical Plant Biol. 9(3), 136-149. Doi: 10.1007/s12042-016-9165-4

Sivamani, E., S. Nalapalli, A. Prairie, D. Bradley, L. Richbourg, T. Strebe, T. Liebler, D. Wang, and Q. Que. 2019. A study on optimization of pat gene expression cassette for maize transformation. Mol. Biol. Rep. 46(3), 3009-3017. Doi: 10.1007/s11033-019-04737-3

Soto, N., C. Delgado, Y. Hernández, Y. Rosabal, A. Ferreira, M. Pujol, F. Aragão, and G. Enríquez. 2017. Efficient particle bombardment-mediated transformation of Cuban soybean (INCASoy-36) using glyphosate as a selective agent. Plant Cell Tiss. Organ Cult. 128, 187-196. Doi: 10.1007/s11240-016-1099-x

Tzin, V. and G. Galili. 2010. New insights into the Shikimate and aromatic amino acids biosynthesis pathways in plants. Mol. Plant 3(6), 956-972. Doi: 10.1093/mp/ssq048

Velten, J., C. Cakir, E. Youn, J. Chen, and C.I. Cazzonelli. 2012. Transgene silencing and transgene-derived siRNA production in tobacco plants homozygous for an introduced AtMYB90 construct. PLOS One 7(2), e30141. Doi: 10.1371/journal.pone.0030141

Villalobos, A., J. Ness, C. Gustafsson, J. Minshull, and S. Govindarajan. 2006. Gene Designer: a synthetic biology tool for constructing artificial DNA segments. BMC Bioinform.7(1), 285. Doi: 10.1186/1471-2105-7-285

Wang, H.Y., Y.F. Li, L.X. Xie, and P. Xu. 2003. Expression of a bacterial aroA mutant, aroA-M1, encoding 5-enolpyruvylshikimate-3-phosphate synthase for the production of glyphosate-resistant tobacco plants. J. Plant Res. 116(6), 455-460. Doi: 10.1007/s10265-003-0120-8

Wang, K., H. Liu, L. Du, and X. Ye. 2017. Generation of marker-free transgenic hexaploid wheat via an Agrobacterium-mediated cotransformation strategy in commercial Chinese wheat varieties. Plant Biotechnol. J. 15(5), 614-623. Doi: 10.1111/pbi.12660

Wright, F. 1990. The ‘effective number of codons’ used in a gene. Gene 87(1), 23-29. Doi: 10.1016/0378-1119(90)90491-9

Yan, H.Q., S.H. Chang, Z.X. Tian, L. Zhang, Y.C. Sun, Y. Li, J. Wang, and Y.P. Wang. 2011. Novel AroA from Pseudomonas putida confers tobacco plant with high tolerance to glyphosate. PLOS One 6(5), e19732. Doi: 10.1371/journal.pone.0019732

How to Cite

APA

Jiménez-Barreto, J., Mora-Oberlaender, J. and Chaparro-Giraldo, A. (2020). Freedom to operate analysis, design and evaluation of expression cassettes that confer tolerance to glyphosate. Agronomía Colombiana, 38(2), 161–170. https://doi.org/10.15446/agron.colomb.v38n2.79150

ACM

[1]
Jiménez-Barreto, J., Mora-Oberlaender, J. and Chaparro-Giraldo, A. 2020. Freedom to operate analysis, design and evaluation of expression cassettes that confer tolerance to glyphosate. Agronomía Colombiana. 38, 2 (May 2020), 161–170. DOI:https://doi.org/10.15446/agron.colomb.v38n2.79150.

ACS

(1)
Jiménez-Barreto, J.; Mora-Oberlaender, J.; Chaparro-Giraldo, A. Freedom to operate analysis, design and evaluation of expression cassettes that confer tolerance to glyphosate. Agron. Colomb. 2020, 38, 161-170.

ABNT

JIMÉNEZ-BARRETO, J.; MORA-OBERLAENDER, J.; CHAPARRO-GIRALDO, A. Freedom to operate analysis, design and evaluation of expression cassettes that confer tolerance to glyphosate. Agronomía Colombiana, [S. l.], v. 38, n. 2, p. 161–170, 2020. DOI: 10.15446/agron.colomb.v38n2.79150. Disponível em: https://revistas.unal.edu.co/index.php/agrocol/article/view/79150. Acesso em: 12 sep. 2024.

Chicago

Jiménez-Barreto, Jenny, Julián Mora-Oberlaender, and Alejandro Chaparro-Giraldo. 2020. “Freedom to operate analysis, design and evaluation of expression cassettes that confer tolerance to glyphosate”. Agronomía Colombiana 38 (2):161-70. https://doi.org/10.15446/agron.colomb.v38n2.79150.

Harvard

Jiménez-Barreto, J., Mora-Oberlaender, J. and Chaparro-Giraldo, A. (2020) “Freedom to operate analysis, design and evaluation of expression cassettes that confer tolerance to glyphosate”, Agronomía Colombiana, 38(2), pp. 161–170. doi: 10.15446/agron.colomb.v38n2.79150.

IEEE

[1]
J. Jiménez-Barreto, J. Mora-Oberlaender, and A. Chaparro-Giraldo, “Freedom to operate analysis, design and evaluation of expression cassettes that confer tolerance to glyphosate”, Agron. Colomb., vol. 38, no. 2, pp. 161–170, May 2020.

MLA

Jiménez-Barreto, J., J. Mora-Oberlaender, and A. Chaparro-Giraldo. “Freedom to operate analysis, design and evaluation of expression cassettes that confer tolerance to glyphosate”. Agronomía Colombiana, vol. 38, no. 2, May 2020, pp. 161-70, doi:10.15446/agron.colomb.v38n2.79150.

Turabian

Jiménez-Barreto, Jenny, Julián Mora-Oberlaender, and Alejandro Chaparro-Giraldo. “Freedom to operate analysis, design and evaluation of expression cassettes that confer tolerance to glyphosate”. Agronomía Colombiana 38, no. 2 (May 1, 2020): 161–170. Accessed September 12, 2024. https://revistas.unal.edu.co/index.php/agrocol/article/view/79150.

Vancouver

1.
Jiménez-Barreto J, Mora-Oberlaender J, Chaparro-Giraldo A. Freedom to operate analysis, design and evaluation of expression cassettes that confer tolerance to glyphosate. Agron. Colomb. [Internet]. 2020 May 1 [cited 2024 Sep. 12];38(2):161-70. Available from: https://revistas.unal.edu.co/index.php/agrocol/article/view/79150

Download Citation

CrossRef Cited-by

CrossRef citations2

1. Julian Mora-Oberlaender, Jenny Jiménez-Barreto, Yadira Rodríguez-Abril, Meike Estrada-Arteaga, Alejandro Chaparro-Giraldo. (2022). Cisgenic Crops: Potential and Prospects. Concepts and Strategies in Plant Sciences. , p.89. https://doi.org/10.1007/978-3-031-06628-3_6.

2. Julian Mora-Oberlaender, Yadira Rodriguez-Abril, Meike Estrada-Arteaga, Luisa Galindo-Sotomonte, Juan David Romero-Betancourt, Jenny Paola Jiménez-Barreto, Camilo López-Carrascal, Alejandro Chaparro-Giraldo. (2024). Agbiogeneric soybean with glyphosate tolerance: Genetic transformation of new Colombian varieties. Crop Breeding and Applied Biotechnology, 24(1) https://doi.org/10.1590/1984-70332024v24n1a13.

Dimensions

PlumX

Article abstract page views

471

Downloads

Download data is not yet available.