Published

2020-01-01

Chlorophyll a fluorescence and development of zucchini plants under nitrogen and silicon fertilization

Fluorescencia de la clorofila a y desarrollo de plantas de calabacín bajo fertilización con nitrógeno y silicio

DOI:

https://doi.org/10.15446/agron.colomb.v38n1.79172

Keywords:

Cucurbita pepo L., fertilizers, photosynthetic efficiency (en)
Cucurbita pepo L., fertilizantes, eficiencia fotosintética (es)

Downloads

Authors

  • Jackson de Mesquita Alves State University of Paraiba, Catolé do Rocha, PB, Brazil
  • Alex Serafim de Lima State University of Paraiba, Catolé do Rocha, PB, Brazil
  • Francisco Romário Andrade Figueiredo Federal Rural University of the Semi-Arid, Mossoró, RN, Brazil
  • Toshik Iarley da Silva Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
  • Lourival Ferreira Cavalcante Federal University of Paraiba, Areia, PB, Brazil
  • Francisco de Oliveira Mesquita Federal University of Cariri, Crato, CE, Brazil
  • Evandro Franklin de Mesquita Federal University of Campina Grande, Pombal, PB, Brazil
  • Cesenildo de Figueiredo Suassuna Federal University of Campina Grande, Pombal, PB

Zucchini (Cucurbita pepo L.) has a great economic and productive potential in the semi-arid region of Brazil, due to the wide acceptance by consumers and quick financial return. The nitrate (NO3-) assimilation process in C3 plants such as zucchini is related to photorespiration, and Si accumulated near the stomata reduces the transpiration rate, making the photosynthesis cycle more efficient. The objective of this study was to evaluate the interaction between nitrogen and silicon fertilization on
growth, chlorophyll index, and chlorophyll a fluorescence of zucchini plants. The treatments were distributed in a split-plot scheme in a randomized block design with three replicates. The plot was arranged by silicon levels (0 and 6 g/plant) and the subplots constituted by five nitrogen levels (30, 60, 90, 120 and 150 kg ha-1). Leaf, stem and total dry masses, chlorophyll
a, chlorophyll b, total chlorophyll, chlorophyll a/b ratio and chlorophyll a fluorescence were evaluated. The highest dry matter productions in zucchini were obtained in treatments without Si. Si and N application together positively influences the chlorophyll a/b ratio of zucchini plants. The interaction between Si and N positively influences the maximum fluorescence, variable fluorescence and quantum yield of photosystem
II of zucchini plants.

El calabacín (Cucurbita pepo L.) presenta un gran potencial económico y productivo en la región semiárida de Brasil, debido a su amplia aceptación por los consumidores y su rápido rendimiento financiero., El proceso de asimilación de nitrato (NO3-) en plantas C3 como el calabacín estaría relacionado en parte con la fotorrespiración, y el Si acumulado cerca de los
estomas reduce la tasa de transpiración, haciendo que el ciclo de fotosíntesis sea más eficiente. Por lo tanto, el objetivo de este estudio fue evaluar la interacción entre el nitrógeno y la fertilización con silicio en el crecimiento, el índice de clorofila y la fluorescencia de la clorofila a en plantas de calabacín. Los tratamientos se distribuyeron en un esquema de parcelas divididas en un diseño de bloques al azar con tres repeticiones.
La parcela se formó por niveles de silicio (0 y 6 g/planta) y las subparcelas constituidas por cinco niveles de nitrógeno (30, 60, 90, 120 y 150 kg ha-1), totalizando 30 parcelas experimentales. Se evaluaron masas de hojas, tallos y secas totales, clorofila a, clorofila b, clorofila total, clorofila a/b y fluorescencia de la clorofila a. Las mayores producciones de materia seca de calabacín se obtuvieron en tratamientos sin Si. La aplicación de Si y N juntos influye positivamente en la proporción de clorofila a/b de las plantas de calabacín. La interacción entre Si y N influye positivamente en la fluorescencia máxima, la fluorescencia variable y el rendimiento cuántico del fotosistema II de plantas de calabacín.

References

Akram, M., M.Y. Ashraf, M. Jamil, R.M. Iqbal, M. Nafees, and M.A. Khan. 2011. Nitrogen application improves gas exchange characteristics and chlorophyll fluorescence in maize hybrids under salinity conditions. Russ. J. Plant Physiol. 58(3), 394-401. Doi: 10.1134/S1021443711030022

Alsaeedi, A., H. El-Ramady, T. Alshaal, M. El-Garawany, N. Elhawat, and A. Al-Otaibi. 2019. Silica nanoparticles boost growth and productivity of cucumber under water deficit and salinity stresses by balancing nutrients uptake. Plant Physiol. Biochem. 139, 1-10. Doi: 10.1016/j.plaphy.2019.03.008

Artigiani, A.C.C.A., C.A.C. Crusciol, A.S. Nascente, O. Arf,and R.C.F. Alvarez. 2014. Adubação silicatada no sulco e nitrogenada em cobertura no arroz de sequeiro e irrigado por aspersão. Biosci. J. 30(1), 240-251

Ávila, F.W., D.P. Baliza, V. Faquin, J.L. Araújo. and S.J. Ramos. 2010. Interação entre silício e nitrogênio em arroz cultivado sob solução nutritiva. Rev. Cienc. Agron. 41(2), 184-190. Doi: 10.1590/S1806-66902010000200003

Ayers, R.S. and D.W.A. Westcot. 1999. A qualidade da água na agricultura. 2nd ed. UEPB, Campina Grande, Brazil.

Azambuja, L.O., C.G.S. Benett, K.S.S. Benett, and E. Costa. 2015. Produtividade da abobrinha ‘Caserta’ em função do nitrogênio e gel hidrorretentor. Científica 43(4), 353-358. Doi: 10.15361/1984-5529.2015v43n4p353-358

Bloom, A.J. 2015. Photorespiration and nitrate assimilation: a major intersection between plant carbon and nitrogen. Photosynth. Res. 123(2), 117-28. Doi: 10.1007/s11120-014-0056-y

Cendrero-Mateo, M.P., M.S. Moran, S.A. Papuga, K.R. Thorp, L. Alonso, J. Moreno, G. Ponce-Campos, U. Rascher, and G. Wang. 2016. Plant chlorophyll fluorescence: active and passive measurements at canopy and leaf scales with different nitrogen treatments. J. Exp. Botany 67(1), 275-286. Doi: 10.1093/jxb/erv456

Domingos, C.S., L.H.S. Lima, and A.L. Braccini. 2015. Nutrição mineral e ferramentas para o manejo da adubação na cultura da soja. Sci. Agrar. Paran. 14(3), 132-140.

EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária. 2013. Manual de métodos e análise do solo. Centro Nacional de Pesquisa de Solos, Brazil.

Ferraz, R.N.S., N.E.M. Beltrão, A.S. Melo, I.D. Magalhães, P.D. Fernandes, and M.S. Rocha. 2014. Trocas gasosas e eficiência fotoquímica de cultivares de algodoeiro herbáceo sob aplicação de silício foliar. Semina: Ciênc. Agrár. 35(2), 735-748. Doi: 10.5433/1679-0359.2014v35n2p735

Filgueira, F.A.R. 2012. Novo manual de olericultura: agrotecnologia moderna na produção e comercialização de hortaliças. UFV, Viçosa, Brazil.

Nakada-Freitas, P.G., M.A. Sandri, A.I.I. Cardoso, and E. Eberhardt Neto. 2014. Controle alternativo de oídio em abobrinha de moita com solução de vinagre. Nucleus 11(2), 325-332. Doi: 10.3738/1982.2278.1040

Neves, J.M.G., L.A. Aquino, P.G. Berger, J.C.L. Neves, G.C. Rocha, and E.A. Barbosa. 2019. Silicon and boron mitigate the effects of water deficit on sunflower. Rev. Bras. Eng. Agríc. Ambient. 23(3), 175-182. Doi: 10.1590/1807-1929/agriambi.v23n3p175-182

Oliosi, G., J. De O. Rodrigues, A.R. Falqueto, F.R. Pires, J.A. Monte, and F.L. Partelli. 2017. Fluorescência transiente da clorofila a e crescimento vegetativo em cafeeiro conilon sob diferentes fontes nitrogenadas. Coffee Sci. 12(2), 248-259.

Oliveira, F.A., J.F. Medeiros, R.C. Alves, P.S.F. Linhares, A.M.A. Medeiros, and M.K.T. Oliveira. 2014. Interação entre a salinidade da água de irrigação e adubação nitrogenada na cultura da berinjela. Rev. Bras. Eng. Agríc. Ambient. 18(5), 480-486. Doi: 10.1590/S1415-43662014000500003

Oliveira, L.A. and N.M. Castro. 2002. Ocorrência de silica nas folhas de Curatella Americana L. e de Davilla elliptica St. Hil. R. Horiz. Ci. 4(1), 1-16.

Porto, M.L.A., M. Puiatti, P.C.R. Fontes, P.R. Cecon, J.C. Alves, and J.A. Arruda. 2012. Produtividade e acúmulo de nitrato nos frutos de abobrinha em função da adubação nitrogenada. Bragantia 71(2), 190-195. Doi: 10.1590/S0006-87052012005000020

R Core Team. 2018. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

Rodrigues, C.R., T.M. Rodrigues, J.M.Q. Luz, V.B.F. Sousa, J.B. Sousa, A.C.P. Nunes, and P.R. Trindade. 2016. Clorofila a e b de tomateiro tratado com silicato de potássio e fungicida. Global Sci. Technol. 9(2), 54-64. Doi: 10.14688/1984-3801/gst.v9n2p54-64

Rodrigues, D.S., M.S. Camargo, E.S. Nomura, V.A. Garcia, J.N. Correa, and T.C.M. Vidal. 2014. Influência da adubação com nitrogênio e fósforo na produção de Jambu, Acmella oleracea (L) R. K. Jansen. Rev. Bras. Plantas Med. 16(1), 71-76. Doi: 10.1590/S1516-05722014000100010

Rubio-Asensio, J.S., S. Rachmilevitch, and A.J. Bloom. 2015. Plant responses to rising CO2 depend on nitrogen source and nighttime CO2 levels. Plant Physiol. 168(1), 156-63.

Sá, F.V.S., M.E.B. Brito, L.A. Silva, R.C.L. Moreira, P.D. Fernandes, and L.C. Figueiredo. 2015. Fisiologia da percepção do estresse salino em híbridos de tangerineira “Sunki Comum” sob solução hidropônica salinizada. Comunica Scientiae 6 (4), 463-470. Doi: 10.14295/CS.v6i4.1121

Sá, F.V.S., H.R. Gheyi, G.S. Lima, E.P. Paiva, R.C.L. Moreira, and L.A. Silva. 2018. Water salinity, nitrogen and phosphorus on photochemical efficiency and growth of west indian cherry. Rev. Bras. Eng. Agríc. Ambient. 22(3), 158-163. Doi: 10.1590/1807-1929/agriambi.v22n3p158-163

Silva, L.A., M.E.B. Brito, F.V.S. Sá, R.C.L.M. Moreira, W.S. Soares Filho, and P.D. Fernandes. 2014. Mecanismos fisiológicos em híbridos de citros sob estresse salino em cultivo hidropônico. Rev. Bras. Eng. Agríc. Ambient. 18, S1-S7. Doi: 10.1590/1807-1929/agriambi.v18nsupps1-s7

Viciedo, D.O., R.M. Prado, R.L. Toledo, L.C.N. Santos, and K.P. Calzada. 2017. Response of radish seedlings (Raphanus sativus L.) to different concentrations of ammoniacal nitrogen in absence and presence of silicon. Agron. Colomb. 35(2), 198-204. Doi: 10.15446/agron.colomb.v35n2.62772

Wang, Y., D. Wang, P. Shi, and K. Omasa. 2014. Estimating rice chlorophyll content and leaf nitrogen concentration with a digital still color camera under natural light. Plant Meth. 36(10), 1-11. Doi: 10.1186/1746-4811-10-36

Watanabe, S., T. Fujiwara, T. Yoneyama, H. Hayashi, 2001. Effects of silicone nutrition on metabolism and translocations of nutrients in rice plants. Plant Nutrit. 92, 174-175. Doi: 10.1007/0-306-47624-X_84

Xu, G., X. Fan, and A.J. Miller. 2012. Plant nitrogen assimilation and use efficiency. 2012. Ann. Rev. Plant Biol. 63, 153-182. Doi: 10.1146/annurev-arplant-042811-105532

Yasari, M.A.E., E. Azadgoleh, S. Mozafari, and M.R. Alashti. 2009. Enhancement of growth and nutrient uptake of rapeseed (Brassica napus L.) by applying mineral nutrients and biofertilizers. Pak. J. Biol. Sci. 12, 127-133. Doi: 10.3923/pjbs.2009.127.133

How to Cite

APA

de Mesquita Alves, J., de Lima, A. S., Andrade Figueiredo, F. R., da Silva, T. I., Ferreira Cavalcante, L., de Oliveira Mesquita, F., de Mesquita, E. F. and de Figueiredo Suassuna, C. (2020). Chlorophyll a fluorescence and development of zucchini plants under nitrogen and silicon fertilization. Agronomía Colombiana, 38(1), 45–52. https://doi.org/10.15446/agron.colomb.v38n1.79172

ACM

[1]
de Mesquita Alves, J., de Lima, A.S., Andrade Figueiredo, F.R., da Silva, T.I., Ferreira Cavalcante, L., de Oliveira Mesquita, F., de Mesquita, E.F. and de Figueiredo Suassuna, C. 2020. Chlorophyll a fluorescence and development of zucchini plants under nitrogen and silicon fertilization. Agronomía Colombiana. 38, 1 (Jan. 2020), 45–52. DOI:https://doi.org/10.15446/agron.colomb.v38n1.79172.

ACS

(1)
de Mesquita Alves, J.; de Lima, A. S.; Andrade Figueiredo, F. R.; da Silva, T. I.; Ferreira Cavalcante, L.; de Oliveira Mesquita, F.; de Mesquita, E. F.; de Figueiredo Suassuna, C. Chlorophyll a fluorescence and development of zucchini plants under nitrogen and silicon fertilization. Agron. Colomb. 2020, 38, 45-52.

ABNT

DE MESQUITA ALVES, J.; DE LIMA, A. S.; ANDRADE FIGUEIREDO, F. R.; DA SILVA, T. I.; FERREIRA CAVALCANTE, L.; DE OLIVEIRA MESQUITA, F.; DE MESQUITA, E. F.; DE FIGUEIREDO SUASSUNA, C. Chlorophyll a fluorescence and development of zucchini plants under nitrogen and silicon fertilization. Agronomía Colombiana, [S. l.], v. 38, n. 1, p. 45–52, 2020. DOI: 10.15446/agron.colomb.v38n1.79172. Disponível em: https://revistas.unal.edu.co/index.php/agrocol/article/view/79172. Acesso em: 13 aug. 2024.

Chicago

de Mesquita Alves, Jackson, Alex Serafim de Lima, Francisco Romário Andrade Figueiredo, Toshik Iarley da Silva, Lourival Ferreira Cavalcante, Francisco de Oliveira Mesquita, Evandro Franklin de Mesquita, and Cesenildo de Figueiredo Suassuna. 2020. “Chlorophyll a fluorescence and development of zucchini plants under nitrogen and silicon fertilization”. Agronomía Colombiana 38 (1):45-52. https://doi.org/10.15446/agron.colomb.v38n1.79172.

Harvard

de Mesquita Alves, J., de Lima, A. S., Andrade Figueiredo, F. R., da Silva, T. I., Ferreira Cavalcante, L., de Oliveira Mesquita, F., de Mesquita, E. F. and de Figueiredo Suassuna, C. (2020) “Chlorophyll a fluorescence and development of zucchini plants under nitrogen and silicon fertilization”, Agronomía Colombiana, 38(1), pp. 45–52. doi: 10.15446/agron.colomb.v38n1.79172.

IEEE

[1]
J. de Mesquita Alves, “Chlorophyll a fluorescence and development of zucchini plants under nitrogen and silicon fertilization”, Agron. Colomb., vol. 38, no. 1, pp. 45–52, Jan. 2020.

MLA

de Mesquita Alves, J., A. S. de Lima, F. R. Andrade Figueiredo, T. I. da Silva, L. Ferreira Cavalcante, F. de Oliveira Mesquita, E. F. de Mesquita, and C. de Figueiredo Suassuna. “Chlorophyll a fluorescence and development of zucchini plants under nitrogen and silicon fertilization”. Agronomía Colombiana, vol. 38, no. 1, Jan. 2020, pp. 45-52, doi:10.15446/agron.colomb.v38n1.79172.

Turabian

de Mesquita Alves, Jackson, Alex Serafim de Lima, Francisco Romário Andrade Figueiredo, Toshik Iarley da Silva, Lourival Ferreira Cavalcante, Francisco de Oliveira Mesquita, Evandro Franklin de Mesquita, and Cesenildo de Figueiredo Suassuna. “Chlorophyll a fluorescence and development of zucchini plants under nitrogen and silicon fertilization”. Agronomía Colombiana 38, no. 1 (January 1, 2020): 45–52. Accessed August 13, 2024. https://revistas.unal.edu.co/index.php/agrocol/article/view/79172.

Vancouver

1.
de Mesquita Alves J, de Lima AS, Andrade Figueiredo FR, da Silva TI, Ferreira Cavalcante L, de Oliveira Mesquita F, de Mesquita EF, de Figueiredo Suassuna C. Chlorophyll a fluorescence and development of zucchini plants under nitrogen and silicon fertilization. Agron. Colomb. [Internet]. 2020 Jan. 1 [cited 2024 Aug. 13];38(1):45-52. Available from: https://revistas.unal.edu.co/index.php/agrocol/article/view/79172

Download Citation

CrossRef Cited-by

CrossRef citations3

1. Renan J. Parecido, Rogério P. Soratto, Marcos J. Perdoná, Harun I. Gitari. (2022). Foliar-applied silicon may enhance fruit ripening and increase yield and nitrogen use efficiency of Arabica coffee. European Journal of Agronomy, 140, p.126602. https://doi.org/10.1016/j.eja.2022.126602.

2. Rilner Alves Flores, Frederico Simões Raimundo de Lima, Maxuel Fellipe Nunes Xavier, Amanda Magalhães Bueno, Aline Franciel de Andrade, Jonas Pereira de Souza Júnior, Cid Naudi Silva Campos, Luís Carlos Cunha Júnior, Klaus de Oliveira Abdala, Renato de Mello Prado. (2024). Soluble Silicon Source via Foliar Application Improve Plant Physiology and Fruit Quality of Solanum lycopersicum L.. Silicon, 16(5), p.1943. https://doi.org/10.1007/s12633-023-02806-8.

3. Renan J. Parecido, Rogério P. Soratto, Fernando V. C. Guidorizzi, Marcos J. Perdoná, Harun I. Gitari. (2022). Soil application of silicon enhances initial growth and nitrogen use efficiency of Arabica coffee plants. Journal of Plant Nutrition, 45(7), p.1061. https://doi.org/10.1080/01904167.2021.2006707.

Dimensions

PlumX

Article abstract page views

707

Downloads

Download data is not yet available.