Published

2020-01-01

Selection of sowing date and biofertilization as alternatives to improve the yield and profitability of the F68 rice variety

Selección de fecha de siembra y biofertilización como alternativas para mejorar el rendimiento y rentabilidad de la variedad de arroz F68

DOI:

https://doi.org/10.15446/agron.colomb.v38n1.79803

Keywords:

Azotobacter chroococcum, plant growth promoters, respiration, biological nitrogen fixation, photosynthetically active radiation, night temperature (en)
Azotobacter chroococcum, promotores del crecimiento vegetal, respiración, fijación biológica del nitrógeno, radiación fotosintéticamente activa, temperatura nocturna (es)

Downloads

Authors

Multiple factors influence rice yield. Developing management practices that increase crop yield and an efficient use of resources are challenging to modern agriculture. Consequently, the aim of this study was to evaluate biological nitrogen fixation and bacterial phosphorous solubilization (biofertilization) practices with the selection of the sowing date. Three sowing dates (May, July and August) were evaluated when interacting with two mineral nutrition treatments using a randomized complete block design in a split-plot arrangement. Leaf carbon balance, leaf area index, interception and radiation use efficiency, harvest index, dry matter accumulation, nutritional status, and yield were quantified. Results showed that the maximum yield was obtained in the sowing date of August. Additionally, yield increased by 18.92% with the biofertilization treatment, reaching 35.18% of profitability compared to the local production practice. High yields were related to a higher carbon balance during flowering, which was 11.56% and 54.04% higher in August than in July and May, respectively, due to a lower night temperature. In addition, a high efficient use of radiation, which in August was 17.56% and 41.23% higher than in July and May, respectively, contributed to obtain higher yields and this behavior is related to the selection of the sowing date. Likewise, a rapid development of the leaf area index and an optimum foliar nitrogen concentration (>3%) were observed. This allowed for greater efficient use of radiation and is attributed to the activity of nitrogen-fixing and phosphate solubilizing bacteria that also act as plant growth promoters.

El rendimiento del arroz está influenciado por múltiples factores. Desarrollar prácticas de manejo que aumenten el rendimiento y sean más eficientes en el uso de los recursos es un reto de la agricultura. En consecuencia, el objetivo de este estudio fue evaluar las prácticas fijación biológica de nitrógeno y solubilización de fosforo por bacterias (biofertilización) con la selección de fecha de siembra. Se evaluaron tres fechas de siembra (mayo, julio y agosto) en interacción con dos tratamientos de nutrición mineral empleando un diseño en bloques completos al azar en arreglo de franjas divididas. Se cuantificó el balance de carbono, índice de área foliar, intercepción y uso eficiente de radiación, índice de cosecha, acumulación de
masa seca, estado nutricional y rendimiento. Los resultados mostraron que el máximo rendimiento se obtuvo en la fecha de siembra de agosto; adicionalmente, con la biofertilización el rendimiento se incrementó en 18.92%, alcanzando una rentabilidad del 35.18% en comparación con la práctica local de producción. El alto rendimiento se relacionó con un mayor balance de carbono durante la floración, que fue un 11.56 y 54.04% mayor en agosto, comparado con julio y mayo respectivamente, debido a una menor temperatura nocturna. Asimismo, un alto uso eficiente de la radiación que en agosto fue un 17.56 and 41.23% mayor que julio y mayo respectivamente, contribuyó a mayores rendimientos y este comportamiento se relacionó con la selección de la fecha de siembra. Además, se observó un rápido desarrollo del índice de área foliar y de la concentración optima del nitrógeno foliar (>3%). Esto permitió alcanzar un
mayor uso eficiente de la radiación y se atribuye a la actividad de las bacterias fijadoras de nitrógeno y solubilizadoras de fosforo que también son promotoras del crecimiento.

References

Akbar, N., A. Iqbal, H.Z. Khan, M.K. Hanif, and U. Bashir. 2010. Effect of different sowing dates on the yield and yield components of direct seeded fine rice (Oryza sativa L.). J. Plant Breed. Crop Sci. 2(10), 312-315.

Alvarado, O., G. Garces, and H. Restrepo. 2017. The effects of nighttime temperatures on physiological and biochemical traits in rice. Not. Bot. Horti. Agrobot. Cluj-Napoca 45(1), 157-163. Doi: 10.15835/nbha45110627

Bashir, M.U., N. Akbar, A. Iqbal, and H. Zaman. 2010. Effect of different sowing dates on yield and yield components of direct seeded coarse rice (Oryza sativa L). Pak. J. Agri. Sci. 47(4), 361-365.

Castanheira, N., A. Dourado, P. Alves, A. Cortés, A. Delgado, Â. Prazeres, B. Nuno, C. Sánchez, M. Barreto, and P. Freleira. 2014. Annual ryegrass-associated bacteria with potential forplant growth promotion. Microbiol. Res. 169(9-10), 768-779. Doi: 10.1016/j.micres.2013.12.010

Ceotto, E., M. Di, F. Castelli, F. Badeck, F. Rizza, C. Soave, A. Volta, G. Villani, and V. Marletto. 2013. Comparing solar radiation interception and use efficiency for the energy crops giant reed (Arundo donax L.) and sweet sorghum (Sorghum bicolor L. Moench). Field Crops Res. 149, 159-166. Doi: 10.1016/j.fcr.2013.05.002

Da Silva, J.R., A.E. Patterson, W.P. Rodrigues, E. Campostrini, and K.L. Griffin. 2017. Photosynthetic acclimation to elevated CO2 combined with partial rootzone drying results in improved water use efficiency, drought tolerance and leaf carbon balance of grapevines (Vitis labrusca). Environ. Exp. Bot. 134, 82-95. Doi: 10.1016/j.envexpbot.2016.11.007

Delerce, S., H. Dorado, A. Grillon, M.C. Rebolledo, S.D. Prager, V.H. Patiño, G. Garcés, and D. Jiménez. 2016. Assessing weatheryield relationships in rice at local scale using data mining approaches. PLOS ONE 11(8), 1-25. Doi: 10.1371/journal.pone.0161620

Fang, H., W. Li, S. Wei, and C. Jiang. 2014. Seasonal variation of leaf area index (LAI) over paddy rice fields in NE China: Intercomparison of destructive sampling, LAI-2200, digital hemispherical photography (DHP), and AccuPAR methods. Agr. Forest. Meteorol. 198-199, 126-141. Doi: 10.1016/j.agrformet.2014.08.005

Garcés, G. and H. Restrepo. 2015. Growth and yield of rice cultivars sowed on different dates under tropical conditions. Cienc. Investig. Agrar. 42(2), 217-226. Doi: 10.4067/S0718-16202015000200008

García de Salamone, I.E., J.M. Funes, L.P. Di Salvo, J.S. Escobar- Ortega, F. D’Auria, L. Ferrando, and A. Fernandez-Scavino. 2012. Inoculation of paddy rice with Azospirillum brasilense and Pseudomonas fluorescens: Impact of plant genotypes on rhizosphere microbial communities and field crop production. Appl. Soil Ecol. 61, 196-204. Doi: 10.1016/j.apsoil.2011.12.012

Hallmann, J., A. Quadt, W.F. Mahaffee, and J. Kloepper. 1997. Bacterial endophytes in agricultural crops. Can. J. Microbiol. 43(10), 895-914. Doi: 10.1139/m97-131

Han, H., C. Building, S. Campus, and S. Bonington. 2018. Appraisal of biofertilizers in rice: To supplement inorganic chemical fertilizer. Rice Sci. 25(6), 357-362. Doi: 10.1016/j.rsci.2018.10.006

Hidayati, N., T. Triadiati, and I. Anas. 2016. Photosynthesis and transpiration rates of rice cultivated under the system of sice intensification and the effects on growth and yield. HAYATI J. Biosci. 23(2), 67-72. Doi: 10.1016/j.hjb.2016.06.002

Iizumi, T., J. Luo, A. Challinor, G. Sakurai, M. Yokozawa, H. Sakuma, M. Brown, and T. Yamagata. 2014. Impacts of El Niño Southern Oscillation on the global yields of major crops. Nat. Commun. 5(3712), 1-7. Doi: 10.1038/ncomms4712

Imai, K., Y. Suzuki, T. Mae, and A. Makino. 2008. Changes in the synthesis of Rubisco in rice leaves in relation to senescence and N influx. Ann. Bot. 101(1), 135-144. Doi: 10.1093/aob/mcm270

IPCC - Intergovernmental Panel on Climate Change. 2014. Cambio Climático 2014: Informe de síntesis. IPCC, Geneva, Switzerland.

Ju, C., R. Buresh, Z. Wang, H. Zhang, L. Liu, J. Yang, and J. Zhang. 2015. Root and shoot traits for rice varieties with higher grain yield and higher nitrogen use efficiency at lower nitrogen rates application. Field Crops Res. 175, 47-55. Doi: 10.1016/j.fcr.2015.02.007

Khalifa, A., W. Elkhoby, and E. Okasha. 2014. Effect of sowing dates and seed rates on some rice cultivars. Afr. J. Agric. Res. 9(2), 196-201. Doi: 10.5897/ajar08.233

Krüger, O. and C. Adam. 2017. Phosphorus in recycling fertilizers - analytical challenges. Environ. Res. 155, 353-358. Doi: 10.1016/j.envres.2017.02.034

Lavakush, J., J. Yadav, J. Verma, D. Jaiswal, and A. Kumar. 2014. Evaluation of PGPR and different concentration of phosphorus level on plant growth, yield and nutrient content of rice (Oryza sativa L). Ecol. Eng. 62, 123-128. Doi: 10.1016/j.ecoleng.2013.10.013

Lee, Y., C. Yang, K. Chang, and Y. Shen. 2011. Effects of nitrogen status on leaf anatomy, chlorophyll content and canopy reflectance of paddy rice. Bot. Stud. 52, 295-303.

Li, L., D. Kang, Z. Chen, and L. Qu. 2007. Hormonal regulation of leaf morphogenesis in arabidopsis. J. Integr. Plant Biol. 49(1), 75-80. Doi: 10.1111/j.1744-7909.2006.00410.x

Mae, T., A. Inaba, Y. Kaneta, S. Masaki, M. Sasaki, M. Aizawa, S. Okawa, S. Gasegawa, and A. Makino. 2006. A large-grain rice cultivar, Akita 63, exhibits high yields with high physiological N-use efficiency. Field Crops Res. 97(2-3), 227-237. Doi: 10.1016/j.fcr.2005.10.003

Mohammadi, K. and Y. Sohrabi. 2012. Bacterial biofertilizers for sustainable crop production: a review. ARPN J. Agric. Biol. Sci. 7(5), 307-316.

Osman, K., A. Mustafa, Y. Elsheikh, E. Idris, and P. Box. 2015. Influence of different sowing dates on growth and yield of direct seeded rice (Oryza sativa L.) in semi-arid zone (Sudan). Int. J. Agron. Agric. Res. 6(6), 38-48.

Pal, R., G. Mahajan, V. Sardana, and B. Chauhan. 2017. Impact of sowing date on yield, dry matter and nitrogen accumulation, and nitrogen translocation in dry-seeded rice in North- West India. Field Crops Res. 206, 138-148. Doi: 10.1016/j.fcr.2017.01.025

Parry, M., M. Reynolds, M. Salvucci, C. Raines, P. Andralojc, X. Zhu, D. Price, A. Condon, and R.T. Furbank. 2011. Raising yield potential of wheat. II. Increasing photosynthetic capacity and efficiency. J. Exp. Bot. 62(2), 453-467. Doi: 10.1093/jxb/erq304

Patel, D., A. Das, G. Munda, P. Ghosh, J. Sandhya, and M. Kumar. 2010. Evaluation of yield and physiological attributes of high-yielding rice varieties under aerobic and flood-irrigated management practices in mid-hills ecosystem. Agric. Water Manage. 97(9), 1269-1276. Doi: 10.1016/j.agwat.2010.02.018

Peraudeau, S., T. Lafarge, S. Roques, C.O. Quiñones, A. Clement, P. Ouwerkerk, J. Van Rie, D. Fabre, K. Jagadish, and M. Dingkuhn. 2015. Effect of carbohydrates and night temperature on night respiration in rice. J. Exp. Bot. 66(13), 3931-3944. Doi: 10.1093/jxb/erv193

Quevedo, Y., J. Beltrán, and E. Barragán. 2019. Identification of climatic and physiological variables associated with rice (Oryza sativa L.) yield under tropical conditions. Rev. Fac. Nac. Agron. Medellín 72(1), 8699-8706. Doi: 10.15446/rfnam.v72n1.72076

Ray, C. 2013. Reference sufficiency ranges for plant analysis in the southern region of the united states. URL: www.ncagr.gov/agronomi/saaesd/scsb394.pdf (accessed January 2019).

Reinhold, B. and T. Hurek. 2011. Living inside plants: bacterial endophytes. Curr. Opin. Plant Biol. 14(4), 435-443. Doi: 10.1016/j.pbi.2011.04.004

Roberts, T. and A. Johnston. 2015. Phosphorus use efficiency and management in agriculture. Resour. Conserv. Recycl. 105, 275-281. Doi: 10.1016/j.resconrec.2015.09.013

Roger, P. and J. Ladha. 1992. Biological N2 fixation in wetland rice fields: estimation and contribution to nitrogen balance. Plant Soil 141(1-2), 41-55. Doi: 10.1007/bf00011309

Romero, F., J. Abril, M. Camelo, A. Moreno-Galván, I. Pastrana, D. Rojas-Tapias, and R. Bonilla. 2017. Azotobacter chroococcum as a potentially useful bacterial biofertilizer for cotton (Gossypium hirsutum): Effect in reducing N fertilization. Rev. Argent. Microbiol. 49(4), 377-383. Doi: 10.1016/j.ram.2017.04.006

Shabanamol, S., K. Divya, T. George, K. Rishad, T. Sreekumar, and M. Jisha. 2018. Characterization and in planta nitrogen fixation of plant growth promoting endophytic diazotrophic Lysinibacillus sphaericus isolated from rice (Oryza sativa). Physiol. Mol. Plant Pathol. 102, 46-54. Doi: 10.1016/j.pmpp.2017.11.003

Tilman, D. 2001. Diversity and productivity in a long-term grassland experiment. Science 294(5543), 843-845. Doi: 10.1126/science.1060391

Van Ittersum, M.K., F. Ewert, T. Heckelei, J. Wery, J. Alkan Olsson, E. Andersen, I. Bezlepkina, F. Brouwer, M. Donatelli, G. Flichman, L. Olsson, A. Rizzoli, T. Van der Wal, E. Wien, and J. Wolf. 2008. Integrated assessment of agricultural systems - a component-based framework for the European Union (SEAMLESS). Agr. Syst. 96(1-3), 150-165. Doi: 10.1016/j.agsy.2007.07.009

Velázquez, M., M. Cabello, L. Elíades, M. Russo, N. Allegrucci, and S. Schalamuk. 2017. Combinación de hongos movilizadores y solubilizadores de fósforo con rocas fosfóricas y materiales volcánicos para la promoción del crecimiento de plantas de lechuga (Lactuca sativa L.). Rev. Argent. Microbiol. 49(4), 347-355. Doi: 10.1016/j.ram.2016.07.005

Wang, Y., J. Lu, T. Ren, S. Hussain, C. Guo, S. Wang, R. Cong, and X. Li. 2017. Effects of nitrogen and tiller type on grain yield and physiological responses in rice. AoB Plants 9(2), 1-14. Doi: 10.1093/aobpla/plx012

Xue, D.W., H. Jiang, J. Hu, X.Q. Zhang, L.B. Guo, D.L. Zeng, G.J. Dong, G.C. Sung, and Q. Qian. 2012. Characterization of physiological response and identification of associated genes under heat stress in rice seedlings. Plant Physiol. Biochem. 61, 46-53. Doi: 10.1016/j.plaphy.2012.08.011

Yosef Tabar, S. 2013. Role of biological nitrogen fixation in rice. Int. J. Geol. Agric. Environ. Sci. 1(1), 9-12.

Zhang, Y., Q. Tang, S. Peng, Y. Zou, S. Chen, W. Shi, J. Quin, and M.R.C. Laza. 2013. Effects of high night temperature on yield and agronomic traits of irrigated rice under field chamber system condition. Aust. J. Crop Sci. 7(1), 7-13.

Zhao, S., J. Xiang, and H. Xue. 2013. Studies on the rice leaf inclination1 (LC1), an IAA-amido synthetase, reveal the effects of auxin in leaf inclination control. Mol. Plant 6(1), 174-187. Doi: 10.1093/mp/sss064

Zhu, L., F. Shah, L. Nie, K. Cui, T. Shah, W. Wu, Y. Chen, C. Chen, K. Wang, Q. Wang, Y. Lian, and J. Huang. 2013. Efficacy of sowing date adjustment as a management strategy to cope with rice (Oryza sativa L.) seed quality deterioration due to elevated temperature. Aust. J. Crop Sci. 7(5), 543-549.

How to Cite

APA

Quevedo-Amaya, Y. M., Beltrán-Medina, J. I., Hoyos-Cartagena, J. Álvaro, Calderón-Carvajal, J. E. and Barragán-Quijano, E. (2020). Selection of sowing date and biofertilization as alternatives to improve the yield and profitability of the F68 rice variety. Agronomía Colombiana, 38(1), 61–72. https://doi.org/10.15446/agron.colomb.v38n1.79803

ACM

[1]
Quevedo-Amaya, Y.M., Beltrán-Medina, J.I., Hoyos-Cartagena, J. Álvaro, Calderón-Carvajal, J.E. and Barragán-Quijano, E. 2020. Selection of sowing date and biofertilization as alternatives to improve the yield and profitability of the F68 rice variety. Agronomía Colombiana. 38, 1 (Jan. 2020), 61–72. DOI:https://doi.org/10.15446/agron.colomb.v38n1.79803.

ACS

(1)
Quevedo-Amaya, Y. M.; Beltrán-Medina, J. I.; Hoyos-Cartagena, J. Álvaro; Calderón-Carvajal, J. E.; Barragán-Quijano, E. Selection of sowing date and biofertilization as alternatives to improve the yield and profitability of the F68 rice variety. Agron. Colomb. 2020, 38, 61-72.

ABNT

QUEVEDO-AMAYA, Y. M.; BELTRÁN-MEDINA, J. I.; HOYOS-CARTAGENA, J. Álvaro; CALDERÓN-CARVAJAL, J. E.; BARRAGÁN-QUIJANO, E. Selection of sowing date and biofertilization as alternatives to improve the yield and profitability of the F68 rice variety. Agronomía Colombiana, [S. l.], v. 38, n. 1, p. 61–72, 2020. DOI: 10.15446/agron.colomb.v38n1.79803. Disponível em: https://revistas.unal.edu.co/index.php/agrocol/article/view/79803. Acesso em: 13 aug. 2024.

Chicago

Quevedo-Amaya, Yeison Mauricio, José Isidro Beltrán-Medina, José Álvaro Hoyos-Cartagena, John Edinson Calderón-Carvajal, and Eduardo Barragán-Quijano. 2020. “Selection of sowing date and biofertilization as alternatives to improve the yield and profitability of the F68 rice variety”. Agronomía Colombiana 38 (1):61-72. https://doi.org/10.15446/agron.colomb.v38n1.79803.

Harvard

Quevedo-Amaya, Y. M., Beltrán-Medina, J. I., Hoyos-Cartagena, J. Álvaro, Calderón-Carvajal, J. E. and Barragán-Quijano, E. (2020) “Selection of sowing date and biofertilization as alternatives to improve the yield and profitability of the F68 rice variety”, Agronomía Colombiana, 38(1), pp. 61–72. doi: 10.15446/agron.colomb.v38n1.79803.

IEEE

[1]
Y. M. Quevedo-Amaya, J. I. Beltrán-Medina, J. Álvaro Hoyos-Cartagena, J. E. Calderón-Carvajal, and E. Barragán-Quijano, “Selection of sowing date and biofertilization as alternatives to improve the yield and profitability of the F68 rice variety”, Agron. Colomb., vol. 38, no. 1, pp. 61–72, Jan. 2020.

MLA

Quevedo-Amaya, Y. M., J. I. Beltrán-Medina, J. Álvaro Hoyos-Cartagena, J. E. Calderón-Carvajal, and E. Barragán-Quijano. “Selection of sowing date and biofertilization as alternatives to improve the yield and profitability of the F68 rice variety”. Agronomía Colombiana, vol. 38, no. 1, Jan. 2020, pp. 61-72, doi:10.15446/agron.colomb.v38n1.79803.

Turabian

Quevedo-Amaya, Yeison Mauricio, José Isidro Beltrán-Medina, José Álvaro Hoyos-Cartagena, John Edinson Calderón-Carvajal, and Eduardo Barragán-Quijano. “Selection of sowing date and biofertilization as alternatives to improve the yield and profitability of the F68 rice variety”. Agronomía Colombiana 38, no. 1 (January 1, 2020): 61–72. Accessed August 13, 2024. https://revistas.unal.edu.co/index.php/agrocol/article/view/79803.

Vancouver

1.
Quevedo-Amaya YM, Beltrán-Medina JI, Hoyos-Cartagena J Álvaro, Calderón-Carvajal JE, Barragán-Quijano E. Selection of sowing date and biofertilization as alternatives to improve the yield and profitability of the F68 rice variety. Agron. Colomb. [Internet]. 2020 Jan. 1 [cited 2024 Aug. 13];38(1):61-72. Available from: https://revistas.unal.edu.co/index.php/agrocol/article/view/79803

Download Citation

CrossRef Cited-by

CrossRef citations3

1. Narendra Sharma, Vimlendu Bhushan Sinha, N. Arun Prem Kumar, Desiraju Subrahmanyam, C. N. Neeraja, Surekha Kuchi, Ashwani Jha, Rajender Parsad, Vetury Sitaramam, Nandula Raghuram. (2021). Nitrogen Use Efficiency Phenotype and Associated Genes: Roles of Germination, Flowering, Root/Shoot Length and Biomass. Frontiers in Plant Science, 11 https://doi.org/10.3389/fpls.2020.587464.

2. Gayatri, Puja Mandal, Karnam Venkatesh, Pranab Kumar Mandal. (2024). Unravelling the interplay of different traits and parameters related to nitrogen use efficiency in wheat for climate‐resilient agriculture. Journal of Agronomy and Crop Science, 210(2) https://doi.org/10.1111/jac.12696.

3. Eduardo Martins da Silva Kaue, Crestani Mota Marcelo, Bonadeu Francismeire, Galvao de Souza Karina, Monteze Alves Sergio, Gregolin Moreira Andressa, Marico Utumi Marley. (2022). Effect of selective micronutrients on productivity of upland rice varieties. African Journal of Agricultural Research, 18(5), p.346. https://doi.org/10.5897/AJAR2022.15994.

Dimensions

PlumX

Article abstract page views

684

Downloads

Download data is not yet available.