Published

2019-09-01

Water potential in cape gooseberry (Physalis peruviana L.) plants subjected to different irrigation treatments and doses of calcium

Potencial hídrico en plantas de uchuva (Physalis peruviana L.) sometidas a diferentes regímenes de riego y dosis de calcio

DOI:

https://doi.org/10.15446/agron.colomb.v37n3.79935

Keywords:

Solanaceae, fertilization, water level, WUEi, consumptive use (en)
solanácea, fertilización, lámina de riego, EUAr, uso consuntivo (es)

Downloads

Authors

  • Javier Álvarez-Herrera Universidad Pedagógica y Tecnológica de Colombia (UPTC) - Tunja - Faculty of Agricultural Sciences
  • Hernán González Marketing Field Specialist Bayer - Villavicencio
  • Gerhard Fischer Scientific consultant - Emeritus researcher of Colciencias - Bogota https://orcid.org/0000-0001-8101-0507
To determine whether the management of irrigation and
nutrition in cape gooseberry crops with calcium to reduce the
cracking of fruits affects the water potential of the plants, the
present study was carried out using a randomized block design
with 12 treatments in a 4×3 factorial arrangement. The blocks
were the irrigation frequencies (4, 9 and 14 days apart). The
first factor was the irrigation coefficient (0.7, 0.9, 1.1 and 1.3 of
the evaporation tank of class A), and the second factor was the
calcium dose (0, 50 and 100 kg ha-1), representing 36 experimental units. Seed propagated cape gooseberries were transplanted in 20 L pots using peat moss as substrate. The water potential in the leaves (ψleaf) and stems (ψstem) was measured as well as the water consumption and irrigation water-use efficiency (WUEi) of the plants. The ψleaf and ψstem of the cape gooseberry plants presented a sinusoidal trend throughout the day. The water frequency of 4 days with an irrigation coefficient of 1.1 showed the highest values of ψleaf and ψstem. The ψstem and ψleaf reached the highest values at predawn (4 am) as a result of the low vapor pressure deficit (VPD) levels that occurred at that time and reached their lowest point in the midday hours. The irrigation coefficient of 1.1 had the second largest WUEi and, thus, represented the water level most suitable for growing cape gooseberry since it generated the largest number of big fruits and the smallest percentage of cracked fruits.
Con el objetivo de establecer si el manejo del riego y de la
nutrición con calcio que se le da al cultivo de uchuva para disminuir el rajado de los frutos afecta el potencial hídrico de la
planta, se llevó a cabo el presente trabajo, en donde se empleó un diseño en bloques al azar con 12 tratamientos en arreglo factorial de 4×3. Los bloques fueron las frecuencias de riego (4, 9 y 14 días distanciadas). El primer factor fue la lámina de riego (0.7; 0.9; 1.1 y 1.3 de la evaporación del tanque clase A) y el segundo la dosis de calcio (0, 50 y 100 kg ha-1), lo que representó 36 unidades experimentales. Las uchuvas propagadas por semilla se trasplantaron en materas de 20 L usando turba rubia como sustrato. Se determinó el potencial hídrico en hojas (ψhoja) y tallos (ψtallo), así como el consumo de agua y la eficiencia en el uso del agua de riego (EUAr) por parte de las plantas de uchuva. El ψhoja y el ψtallo en las plantas presentó una tendencia sinusoidal a lo largo del día. La frecuencia de riego de 4 días con una lámina de riego de 1.1 mostró los valores más altos de ψhoja y ψtallo. Los ψhoja y ψtallo alcanzaron los valores más altos al alba (4 a.m.) producto de los bajos niveles en el déficit de presión de vapor (DPV) existentes a esa hora, y llegaron a su punto más bajo en las horas del mediodía. La lámina de riego de 1.1 presentó la segunda mayor EUAr, y es la lámina de riego más adecuada para el cultivo de uchuva pues generó la mayor cantidad de frutos de tamaño grande y menores porcentajes de rajado de frutos.

References

Agronet. 2019. Sistema de estadísticas agropecuarias. Producción nacional por producto. Uchuva. URL: www.agronet.gov.co (accessed March 2019.

Álvarez-Herrera, J., G. Fischer y J.E. Vélez-Sánchez. 2015. Producción de frutos de uchuva (Physalis peruviana L.) bajo diferentes láminas de riego, frecuencias de riego y dosis de calcio. Rev. Colomb. Cienc. Hortíc. 9(2), 222-233. Doi: 10.17584/rcch.2015v9i2.4177

Álvarez-Herrera, J., G. Fischer, L.P. Restrepo, and M. Quicazán. 2014. Contenidos de carotenoides totales y ácido ascórbico en frutos sanos y rajados de uchuva (Physalis peruviana L.). Acta Hortic. 1016, 77-82. Doi: 10.17660/ActaHortic.2014.1016.8

Álvarez-Herrera, J., H. Balaguera-López, and G. Fischer. 2012. Effect of irrigation and nutrition with calcium on fruit cracking of the cape gooseberry (Physalis peruviana L.) in the three strata of the plant. Acta Hortic. 928, 163-170. Doi: 10.17660/ActaHortic.2012.928.19

Aparecido, L.E.O., R.M. Batista, J.R.S.C. Moraes, C.T.S. Costa, and A.F. Moraes-Oliveira. 2019. Agricultural zoning of climate risk for Physalis peruviana cultivation in Southeastern Brazil. Pesq. Agropec. Bras. 54, e00057. Doi: 10.1590/S1678-3921.pab2019.v54.00057

Baeza, P., P. Sánchez-de-Miguel, A. Centeno, P. Junquera, R. Linares, and J.R. Lisarrague. 2007. Water relations between leaf water potential, photosynthesis and agronomic vine response as a tool for establishing thresholds in irrigation scheduling. Sci. Hortic. 114, 151-158. Doi: 10.1016/j.scienta.2007.06.012

Boyer, J. 1995. Measuring the water status of plants and soils. Academic Press, San Diego, USA.

Cole, J. and V. Pagay. 2015. Usefulness of early morning stem water potential as a sensitive indicator of water status of deficitirrigated grapevines (Vitis vinifera L.). Sci. Hortic. 191, 10-14. Doi: 10.1016/j.scienta.2015.04.034

De la Rosa, J.M., M.R. Conesa, R. Domingo, R. Torres, and A. Pérez-Pastor. 2013. Feasibility of using trunk diameter fluctuation and stem water potential reference lines for irrigation scheduling of early nectarine trees. Agr. Water Manage. 126, 133-141. Doi: 10.1016/j.agwat.2013.05.009

De Pauw, D.J.W., K. Steppe, and B. De Baets. 2008. Identifiability analysis and improvement of a tree water flow and storage model. Math. Biosci. 211, 314-332. Doi: 10.1016/j.mbs.2007.08.007

De Swaef, T., K. Steppe, and R. Lemeur. 2009. Determining reference values for stem water potential and maximum daily trunk shrinkage in young apple trees based on plant responses to water deficit. Agr. Water Manage. 96, 541-550. Doi: 10.1016/j.agwat.2008.09.013

Fischer, G. 2000. Crecimiento y desarrollo de la uchuva. pp. 9-26. In: Flórez, V., G. Fischer, and A. Soria (eds.). Producción, poscosecha y exportación de la uchuva. Unibiblos, Universidad Nacional de Colombia, Bogota.

Fischer, G. 2005. El problema del rajado del fruto de uchuva y su posible control. pp. 55-82. In: Fischer, G., D. Miranda, W. Piedrahita, and J. Romero (eds.). Avances en cultivo, poscosecha y exportación de la uchuva (Physalis peruviana L.) en Colombia. Unibiblos, Universidad Nacional de Colombia, Bogota.

Fischer, G. and P. Lüdders. 1999. Efecto de la temperatura del substrato sobre el consumo de agua y la transpiración en la uchuva (Physalis peruviana L.). Suelos Ecuat. 29(1), 45-49.

García-Tejero, I., R. Romero-Vicente, J.A. Jiménez-Bocanegra, G. Martínez-García, V.H. Durán-Zuazo, and J.L. Muriel-Fernández. 2010. Response of citrus trees to deficit irrigation during different phenological periods in relation to yield, fruit quality, and water productivity. Agr. Water Manage. 97, 689-699. Doi: 10.1016/j.agwat.2009.12.012

Girona, J., M. Mata, J. del Campo, A. Arbone, E. Bartra, and J. Marsal. 2006. The use of midday leaf water potential for scheduling deficit irrigation in vineyards. Irrig. Sci. 24, 115-127. Doi: 10.1007/s00271-005-0015-7

Gordillo, O., G. Fischer, and R. Guerrero. 2004. Efecto del riego y de la fertilización sobre la incidencia del rajado en frutos de uchuva (Physalis peruviana L.) en la zona de Silvania (Cundinamarca). Agron. Colomb. 22(1), 53-62.

Griñan, I., P. Rodriguez, Z.N. Cruz, H. Nouri, E. Borsato, A.J. Molina, A. Moriana, A. Centeno, M.J. Martin-Palomo, D. Perez-Lopez, A. Torrecillas, and A. Galindo. 2019. Leaf water relations in Diospyros kaki during a mild water deficit exposure. Agr. Water Manage. 217, 391-398. Doi: 10.1016/j.agwat.2019.03.008

Hogg, E.H. and P.A. Hurdle. 1997. Sap flow in trembling aspen: implications for stomatal responses to vapor pressure deficit. Tree Physiol. 17, 501-509. Doi: 10.1093/treephys/17.8-9.501

Hogg, E.H., B. Saugier, J.Y. Pontailler, T.A. Black, W. Chen, P.A. Hurdle, and A. Wu. 2000. Responses of trembling aspen and hazelnut to vapor pressure deficit in a boreal deciduous forest. Tree Physiol. 20, 725-734. Doi: 10.1093/treephys/20.11.725

Intrigliolo, D.S. and J.R. Castel. 2005. Usefulness of diurnal trunkshrinkage as a water stress indicator in plum trees. Tree Physiol. 26, 303-311. Doi: 10.1093/treephys/26.3.303

Intrigliolo, D.S. and J.R. Castel. 2006. Performance of various water stress indicators for prediction of fruit size response to deficit irrigation in plum. Agr. Water Manage. 83, 173-180. Doi: 10.1016/j.agwat.2005.12.005

Intrigliolo, D.S. and J.R. Castel. 2010. Response of plum trees to deficit irrigation under two crop levels: tree growth, yield and fruit quality. Irrig. Sci. 28, 525-534. Doi: 10.1007/s00271-010-0212-x

Jaimez, R.E., F. Rada, and C. García-Nuñez. 1999. The effect of irrigation frequency on water and carbon relations in three cultivars of sweet pepper (Capsicum chinense Jacq), in a tropical semiarid region. Sci. Hortic. 81, 301-388. Doi: 10.1016/S0304-4238(99)00017-5

Kitsaki, C.K. and J.B. Drossopoulos. 2005. Environmental effect on ABA concentration and water potential in olive leaves (Olea europaea L. cv. “Koroneiki”) under non-irrigated field conditions. Environ. Exp. Botany 54, 77-89. Doi: 10.1016/j.envexpbot.2004.06.002

Li, M., G. Xuan-Wang, and J. Lin. 2003. Application of external calcium in improving the PEG-induced water stress tolerance in licorice cells. Bot. Bull. Acad. Sin. 44, 275-284. Doi: 10.7016/BBAS.200310.0275

Marsal, J. and J. Girona. 1997. Relationship between leaf water potential and gas exchange activity at different phenological stages and fruit loads in peach trees. J. Am. Soc. Hort. Sci. 122, 297-464. Doi: 10.21273/JASHS.122.3.415

Marschner, P. 2012. Marschner’s mineral nutrition of higher plants. Elsevier, Amsterdam.

Miranda, R.D., M.V. Cuevas, A. Diaz-Espejo, and V. Hernandez-Santana. 2018. Effects of water stress on fruit growth and water relations between fruits and leaves in a hedgerow olive orchard. Agr. Water Manage. 210, 32-40. Doi: 10.1016/j.agwat.2018.07.028

Moriana, A., D. Pérez-López, M.H. Prieto, M. Ramírez-Santa-Pau, and J.M. Pérez Rodríguez. 2012. Midday stem water potential as a useful tool for estimating irrigation requirements in olive trees. Agr. Water Manage. 112, 43-54. Doi: 10.1016/j.agwat.2012.06.003

Murray, F.W. 1967. On the computation of saturation vapor pressure. J. Appl. Meteorol. 6, 203-204. Doi:10.1175/1520-0450(1967)006<0203:OTCOSV>2.0.CO;2

Navarro, A., S. Bañon, E. Olmos, and M.J. Sánchez-Blanco. 2007. Effects of sodium chloride on water potential components, hydraulic conductivity, gas exchange and leaf ultrastructure of Arbutus unedo plants. Plant Sci. 172, 473-480. Doi: 10.1016/j.plantsci.2006.10.006

Nortes, P.A., A. Pérez-Pastor, G. Egea, W. Conejero, and R. Domingo. 2005. Comparison of changes in stem diameter and water potential in young almond trees. Agric. Water Manage. 77, 296-307. Doi: 10.1016/j.agwat.2004.09.034

Rahil, M.H. and A. Qanadillo. 2015. Effects of different irrigation regimes on yield and water use efficiency of cucumber crop. Agr. Water Manage. 148, 10-15. Doi: 10.1016/j.agwat.2014.09.005

Sato, T., O. Abdalla, T. Oweis, and T. Sakuratani. 2006. The validity of predawn leaf water potential as an irrigation-timing indicator for field-grown wheat in northern Syria. Agr. Water Manage. 82, 223-236. Doi: 10.1016/j.agwat.2005.07.023

Savic, S., R. Stikic, V. Zaric, B. Vucelic-Radovic, Z. Jovanovic, S. Djordjevic, and D. Petkovic. 2011. Deficit irrigation technique for reducing water use of tomato under polytunnel conditions. J. Cent. Eur. Agr. 12(4), 597-607. Doi: 10.5513/JCEA01/12.4.960

Singh, B. and G. Singh. 2006. Effects of controlled irrigation on water potential, nitrogen uptake and biomass production in Dalbergia sissoo seedlings. Environ. Exp. Botany 55, 209-219. Doi: 10.1016/j.envexpbot.2004.11.001

Sousa, T., M. Oliveira, and M. Pereira. 2006. Physiological indicators of plant water status of irrigated and non-irrigated grapevines grown in a low rainfall area of Portugal. Plant Soil 282, 127-134. Doi: 10.1007/s11104-005-5374-6

Taiz, L. and E. Zeiger. 2010. Plant physiology. Sinauer Associates, Sunderland, USA.

Urban, L. and I. Langelez. 2003. Effect of high-pressure mist on leaf water potential, leaf diffusive conductance, CO2 fixation and production of cultivar ‘Sonia’ rose plants grown on rockwool. Sci. Hortic. 50, 229-244. Doi: 10.1016/0304-4238(92)90176-D

Vélez, J.E., D.S. Intrigliolo, and J.R. Castel. 2007. Scheduling deficit irrigation of citrus trees with maximum daily trunk shrinkage. Agr. Water Manage. 90, 197-204. Doi: 10.1016/j.agwat.2007.03.007

Villarreal-Navarrete, A., G. Fischer, L.M. Melgarejo, G. Correa, and L. Hoyos-Carvajal. 2017. Growth response of the cape gooseberry (Physalis peruviana L.) to waterlogging stress and Fusarium oxysporum infection. Acta Hortic. 1178, 161-168. Doi: 10.17660/ActaHortic.2017.1178.28

Zhu, Li-Hua., A. van de Peppel, X.Y. Li, and M. Welander. 2004. Changes of leaf water potential and endogenous cytokinins in young apple trees treated with or without paclobutrazol under drought conditions. Sci. Hortic. 99, 133-141. Doi: 10.1016/S0304-4238(03)00089-X

Zotarelli, L., J. Scholberg, M. Dukes, R. Muñoz-Carpena, and J. Icerman. 2009. Tomato yield, biomass accumulation, root distribution and irrigation water use efficiency on a sandy soil, as affected by nitrogen rate and irrigation scheduling. Agr. Water Manage. 96, 23-34. Doi: 10.1016/j.agwat.2008.06.007

How to Cite

APA

Álvarez-Herrera, J., González, H. and Fischer, G. (2019). Water potential in cape gooseberry (Physalis peruviana L.) plants subjected to different irrigation treatments and doses of calcium. Agronomía Colombiana, 37(3), 274–282. https://doi.org/10.15446/agron.colomb.v37n3.79935

ACM

[1]
Álvarez-Herrera, J., González, H. and Fischer, G. 2019. Water potential in cape gooseberry (Physalis peruviana L.) plants subjected to different irrigation treatments and doses of calcium. Agronomía Colombiana. 37, 3 (Sep. 2019), 274–282. DOI:https://doi.org/10.15446/agron.colomb.v37n3.79935.

ACS

(1)
Álvarez-Herrera, J.; González, H.; Fischer, G. Water potential in cape gooseberry (Physalis peruviana L.) plants subjected to different irrigation treatments and doses of calcium. Agron. Colomb. 2019, 37, 274-282.

ABNT

ÁLVAREZ-HERRERA, J.; GONZÁLEZ, H.; FISCHER, G. Water potential in cape gooseberry (Physalis peruviana L.) plants subjected to different irrigation treatments and doses of calcium. Agronomía Colombiana, [S. l.], v. 37, n. 3, p. 274–282, 2019. DOI: 10.15446/agron.colomb.v37n3.79935. Disponível em: https://revistas.unal.edu.co/index.php/agrocol/article/view/79935. Acesso em: 19 apr. 2024.

Chicago

Álvarez-Herrera, Javier, Hernán González, and Gerhard Fischer. 2019. “Water potential in cape gooseberry (Physalis peruviana L.) plants subjected to different irrigation treatments and doses of calcium”. Agronomía Colombiana 37 (3):274-82. https://doi.org/10.15446/agron.colomb.v37n3.79935.

Harvard

Álvarez-Herrera, J., González, H. and Fischer, G. (2019) “Water potential in cape gooseberry (Physalis peruviana L.) plants subjected to different irrigation treatments and doses of calcium”, Agronomía Colombiana, 37(3), pp. 274–282. doi: 10.15446/agron.colomb.v37n3.79935.

IEEE

[1]
J. Álvarez-Herrera, H. González, and G. Fischer, “Water potential in cape gooseberry (Physalis peruviana L.) plants subjected to different irrigation treatments and doses of calcium”, Agron. Colomb., vol. 37, no. 3, pp. 274–282, Sep. 2019.

MLA

Álvarez-Herrera, J., H. González, and G. Fischer. “Water potential in cape gooseberry (Physalis peruviana L.) plants subjected to different irrigation treatments and doses of calcium”. Agronomía Colombiana, vol. 37, no. 3, Sept. 2019, pp. 274-82, doi:10.15446/agron.colomb.v37n3.79935.

Turabian

Álvarez-Herrera, Javier, Hernán González, and Gerhard Fischer. “Water potential in cape gooseberry (Physalis peruviana L.) plants subjected to different irrigation treatments and doses of calcium”. Agronomía Colombiana 37, no. 3 (September 1, 2019): 274–282. Accessed April 19, 2024. https://revistas.unal.edu.co/index.php/agrocol/article/view/79935.

Vancouver

1.
Álvarez-Herrera J, González H, Fischer G. Water potential in cape gooseberry (Physalis peruviana L.) plants subjected to different irrigation treatments and doses of calcium. Agron. Colomb. [Internet]. 2019 Sep. 1 [cited 2024 Apr. 19];37(3):274-82. Available from: https://revistas.unal.edu.co/index.php/agrocol/article/view/79935

Download Citation

CrossRef Cited-by

CrossRef citations4

1. Olga Panfilova, Volkan Okatan, Mikhail Tsoy, Olga Golyaeva, Sergey Knyazev, İbrahim Kahramanoğlu. (2021). Evaluation of the growth, drought tolerance and biochemical compositions of introduced red currant cultivars and Russian breeding genotypes in temperate continental climate. Folia Horticulturae, 33(2), p.309. https://doi.org/10.2478/fhort-2021-0023.

2. Ayten Kübra Yağız, Caner Yavuz, Muhammad Naeem, Sarbesh Das Dangol, Emre Aksoy. (2022). Principles and Practices of OMICS and Genome Editing for Crop Improvement. , p.347. https://doi.org/10.1007/978-3-030-96925-7_15.

3. Javier Enrique Vélez-Sánchez, Helber Enrique Balaguera-López, Pedro Rodríguez Hernández. (2022). The water status of pear (Pyrus communis L.) under application of regulated deficit irrigation in high tropical latitudinal conditions. Journal of the Saudi Society of Agricultural Sciences, 21(7), p.460. https://doi.org/10.1016/j.jssas.2021.12.003.

4. Gerhard Fischer, Helber Enrique Balaguera-López, Luz Marina Melgarejo. (2024). Handbook of Goldenberry (Physalis Peruviana). , p.101. https://doi.org/10.1016/B978-0-443-15433-1.00010-8.

Dimensions

PlumX

Article abstract page views

543

Downloads

Download data is not yet available.