Published

2020-05-01

Impact of dry sludges and sludge biochar on height and dry matter of Solanum lycopersicum L.

Impacto de lodos secos y biocarbón de lodos sobre la altura y materia seca de Solanum lycopersicum L.

DOI:

https://doi.org/10.15446/agron.colomb.v38n2.81842

Keywords:

substrate, tomato, pyrolysis, soil fertility (en)
sustrato, tomate, pirólisis, fertilidad del suelo (es)

Downloads

Authors

The generation of sludge as anthropic waste is a fundamental pollution problem. However, its conversion to biochar can be an alternative to conventional fertilization for its management and use in agriculture. In this research, we evaluated the effect of the application of different doses of dry sludge (DS) and biochar of pyrolyzed sludge (PS) on the height and dry matter of a tomato (Solanum lycopersicum L.) crop and the nutrient content in the substrate. The biochar was made by rapid pyrolysis, and the substrate and the dry matter of plants were analyzed by different physical and chemical methods. An evaluation of 11 treatments was carried out in allometric measurements of plants and foliar dry matter, in three replicates with two materials (DS and PS) added to the substrate at different levels. The plant height and dry weight were evaluated using an incomplete factorial design in a completely randomized arrangement by performing statistical analysis of multivariate variance. An increase in plant height and dry weight was observed when the doses of DS and PS were increased; however, there were no statistical differences between the two materials. The amount of carbon, organic matter, and Ca concentrations in the dry leaf weight were increased with the addition of DS and PS. Likewise, the use of these materials as conditioners or amendments to agricultural soil at doses of 10-15 t ha-1 may be viable and can contribute to reducing environmental externalities through the use of these anthropic waste materials.

La generación de lodos como residuos antrópicos es un problema fundamental de contaminación. Sin embargo, su conversión a biocarbón puede ser una alternativa a la fertilización convencional para su manejo y uso en la agricultura. En este trabajo se evaluó el efecto de la aplicación de diferentes dosis de lodos secos (LS) y biocarbón de lodos pirolizados (LP) sobre la altura y materia seca de un cultivo de tomate (Solanum lycopersicum L.) y sobre el contenido de nutrientes en el sustrato. El biocarbón se elaboró por pirolisis rápida, y el sustrato y la materia seca de plantas se analizaron mediante diferentes métodos físicos y químicos. Se evaluaron 11 tratamientos en medidas alométricas de plantas, sustratos y materia seca foliar, en tres réplicas con dos materiales (LS y LP) adicionados en diferentes niveles al sustrato. La altura y materia seca de la planta se evaluaron bajo un diseño factorial incompleto en arreglo completamente al azar, realizando un análisis estadístico de varianza multivariante. Se observó un incremento en la altura y materia seca en las plantas cuando aumentaron las dosis de LS y LP; sin embargo, no existieron diferencias estadísticas entre los dos materiales evaluados. La cantidad de carbono, la materia orgánica y las concentraciones de Ca en el sustrato aumentaron con la adición de LS y LP. Así mismo, el uso de estos materiales como acondicionadores o enmiendas del suelo agrícola puede ser viable en dosis de 10-15 t ha-1 aportando en la disminución de externalidades ambientales mediante el uso de estos materiales de desecho antrópico.

References

Agrafioti, E., G. Bouras, D. Kalderis, and E. Diamadopoulos. 2013. Biochar production by sewage sludge pyrolysis. J. Anal. Appl. Pyrol. 101, 72-78. Doi: 10.1016/j.jaap.2013.02.010

Amonette, J. 2009. An Introduction to biochar: concept, processes, properties, and applications. URL: http://www.carbon-negative.us/docs/JimAmonette.pdf (accessed 26 July 2017).

Atkinson, C., J. Fitzgerald, and N. Hipps. 2010. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant Soil 337, 1-18. Doi: 10.1007/s11104-010-0464-5

Cabrera, J.A., C.E. Ramos, C.A. Miranda, B.E. Utria, and I.M. Reynaldo-Escobar. 2007. Aplicación de biosólidos en el cultivo de plántulas de tomate. Rev. Cien. Téc. Agropecu. 16, 65-69.

Cantrell, K.B. and J.H. Martin. 2012. Stochastic state‐space temperature regulation of biochar production. Part II: Application to manure processing via pyrolysis. J. Sci. Food Agric. 92(3), 490-495. Doi: 10.1002/jsfa.4617

Chan, K.Y., L. Van Zwieten, I. Meszaros, A. Downie, and S. Joseph. 2007. Agronomic values of green waste biochar as a soil amendment. Aust. J. Soil Res. 45(8), 629-634. Doi: 10.1071/SR07109

Combatt, E., V.H. Álvarez, and A. Dos Santos. 2014. Determination of sulphate by turbidimetry in acid sulphate soil. Acta Agron. 63(1), 42-47. Doi: 10.15446/acag.v63n1.31922

Cuartero, J. and R. Fernández-Muñoz. 1998. Tomato and salinity. Sci. Hortic. 78(1-4), 83-125. Doi: 10.1016/S0304-4238(98)00191-5 EAAB, 2009. PTAR El Salitre. URL: http://www.acueducto.com.co/ (accessed 5 October 2016).

EAAB, 2009. PTAR El Salitre. URL: http://www.acueducto.com.co/ (accessed 5 October 2016).

Egner, H. 1941. The Egner lactate method for phosphate determination. American Fertilizer 94(5), 5-7.

El-Habbasha, K.M., A.M. Shaheen, and F.A. Rizk. 1996. Germination of some tomato cultivars as affected by salinity stress condition. Egypt. J. Hort. 23(2), 179-190.

Escalante-Rebolledo, A., G. Pérez-López, C. Hidalgo-Moreno, J. López-Collado, J. Campo-Alves, E. Valtierra-Pacheco, and J.D. Etchevers-Barra. 2016. Biocarbón (biochar) I: naturaleza, historia, fabricación y uso en el suelo. Terra Latinoam. 34(3), 367-382.

Esteller, M.V., H. Martínez-Valdés, S. Garrido, and Q. Uribe. 2009. Nitrate and phosphate leaching in a Phaeozem soil treated with biosolids, composted biosolids and inorganic fertilizers. Waste Manage. 29(6), 1936-1944. Doi: 10.1016/j.wasman.2008.12.025

FAO. 2004. Actualización de la Evaluación de los Recursos Forestales Mundiales a 2005 Términos y Definiciones. Programa de evaluación de los recursos forestales. Documento de trabajo 83/S. FAO, Rome.

Gaskin, J.W., C. Steiner, K. Harris, K. Das, and B. Bibens. 2008. Effect of low-temperature pyrolysis conditions on biochar for agricultural use. Trans. ASABE 51(6), 2061-2069. Doi: 10.13031/2013.25409

Glaser, B., J. Lehmann, and W. Zech. 2002. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal - a review. Biol. Fert. Soils 35(4), 219-230. Doi: 10.1007/s00374-002-0466-4

Granatstein, D., C.E. Kruger, H. Collins, S. Galinato, M. Garcia-Perez, and J. Yoder. 2009. Use of biochar from the pyrolysis of waste organic material as a soil amendment. URL: http://www.ecy.wa.gov/biblio/0907062.htm (accessed 03 October 2017).

Harris, P.J.F. and S.C. Tsang. 1997. High-resolution electron microscopy studies of non-graphitizing carbons. Philos. Mag. 76(3), 667-677. Doi: 10.1080/01418619708214028

Hartman, M., K. Svoboda, V. Vesely, O. Trnka, and J. Chour. 2003. Sewage sludge thermal processing. Chem. Listy 97(10), 976-982.

Hospido, A., M. Carballa, M. Moreira, F. Omil, J.M. Lema, and G. Feijoo. 2010. Environmental assessment of anaerobically digested sludge reuse in agriculture: potential impacts of emerging micropollutants. Water Res. 44(10), 3225-3233. Doi: 10.1016/j.watres.2010.03.004

Hossain, M.K., V. Strezov, V. Chan, A. Ziolkowski, and P.F. Nelson. 2001. Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar. J. Environ. Manage. 92(1), 223-228. Doi: 10.1016/j.jenvman.2010.09.008

Hossain, M.K., V. Strezov, K.Y. Chan, and P.F. Nelson. 2010. Agronomic properties of wastewater sludge biochar and bioavailability of metals in production of cherry tomato (Lycopersicon esculentum). Chemosphere 78(9), 1167-1171. Doi: 10.1016/j.chemosphere.2010.01.009

Hue, N.V. and S.A. Ranjith. 1994. Sewage sludges in Hawaii: chemical composition and reactions with soils and plants. Water Air Soil Pollut. 72(1-4), 265-283. Doi: 10.1007/BF01257129

IBI. 2012. Standardized product definition and product testing guidelines for biochar that is used in soil. URL: http://www.biochar-international.org/sites/default/files/Guidelines_for_Biochar_That_Is_Used_in_Soil_Final.pdf (accessed 16 June 2019).

Jeffery, S., F.G. Verheijen, M. van der Velde, and A.C. Bastos. 2011. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric. Ecosystems Environ. 144(1), 175-187.

Kistler, R., F. Widmer, and P.H. Brunner. 1987. Behavior of chromium, nickel, copper, zinc, cadmium, mercury, and lead during the pyrolysis of sewage sludge. Environ. Sci. Technol. 21(7), 704-708. Doi: 10.1021/es00161a012

Korboulewsky, N., S. Dupouyet, and G. Bonin. 2002. Environmental risk of applying sewage sludge compost to vineyards. J. Environ. Qual. 31(5), 1522-1527. Doi: 10.2134/jeq2002.1522

Kumada, K. 1987. Chemistry of soil organic matter. Japan Scientific Societies Press, Tokyo. Elsevier Science Publishers, Amsterdam.

Lal, R. 2004. Carbon sequestration in dryland ecosystems. Environ. Manag. 33, 528-544. Doi: 10.1007/s00267-003-9110-9

Lal, R. 2016. Soil health and carbon management. Food Energy Secur. 5(4), 212-222. Doi: 10.1002/fes3.96

Lehmann, J., B. Liang, D. Solomon, M. Lerotic, F. Luizão, J. Kinyangi, T. Schäfer, S. Wirick, and C. Jacobsen. 2005. Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy for mapping nano-scale distribution of organic carbon forms in soil: application to black carbon particles. Global Biochem. Cycles 19(1), 1-12. Doi: 10.1029/2004GB002435

Lehmann, J., J. Gaunt, and M. Rondon. 2006. Bio-char sequestration in terrestrial ecosystems - a review. Mitig. Adapt. Strateg. Glob. Chang. 11(2), 403-427. Doi: 10.1007/s11027-005-9006-5

Lehmann, J. and S. Joseph. 2009. Biochar for environmental management: an Introduction. Routledge, London, UK.

Lehmann, J., J.E. Amonette, and K. Roberts. 2010. Role of biochar in mitigation of climate change. pp. 343-363. In: Hillel, D., and C. Rosenzweig (eds.). Handbook of climate change and agroecosystems: impacts, adaptation, and mitigation. Imperial College Press, London. Doi: 10.1142/9781848166561_0018

Lehmann, J., M.C. Rillig, J. Thies, C.A. Masiello, W.C. Hockaday, and D. Crowley. 2011. Biochar effects on soil biota: a review. Soil Biol. Biochem. 43(9), 1812-1836. Doi: 10.1016/j.soilbio.2011.04.022

Lin, Y., S. Zhou, F. Li, and Y. Lin. 2012. Utilization of municipal sewage sludge as additives for the production of eco-cement. J. Hazard. Mater. 213, 457-465. Doi: 10.1016/j.jhazmat.2012.02.020

Major, J., M. Rondon, D. Molina, S.J. Riha, and J. Lehmann. 2010. Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant Soil 333, 117-128. Doi: 10.1007/s11104-010-0327-0

Mašek, O. and P. Brownsort. 2011. Biochar Production. pp. 37-44. In: Shackley, S., and S. Sohi (eds.). An assessment of the benefits and issues associated with the application of biochar to soil. UK Biochar Research Centre, London, UK.

McBride, M., S. Sauvé, and W. Hendershot. 1997. Solubility control of Cu, Zn, Cd and Pb in contaminated soils. Eur. J. Soil Sci. 48(2), 337-346. Doi: 10.1111/j.1365-2389.1997.tb00554.x

McLaughlin, H., P.S. Anderson, F.E. Shields, and T.B. Reed. 2009. All biochars are not created equal, and how to tell them apart. Proceedings of the North American Biochar Conference, 2009 August 9-12; Boulder, Colorado, USA.

Melo, W.J., P.S. Aguiar, G.M. Melo, and V.P. Melo. 2007. Nickel in a tropical soil treated with sewage sludge and cropped with maize in a long-term field study. Soil Biol. Biochem. 39(6), 1341-1347. Doi: 10.1016/j.soilbio.2006.12.010

Moral, R., J. Moreno-Caselles, M.D. Perez-Murcia, A. Perez-Espinosa, B. Rufete, and C. Paredes. 2005. Characterization of the organic matter pool in manures. Bioresour. Technol. 96(2), 153-158. Doi: 10.1016/j.biortech.2004.05.003

Morales, P. 2005. Digestión anaerobia de lodos de plantas de tratamiento de aguas y su aprovechamiento. Undergraduate thesis, Universidad de las Américas, Puebla, Mexico.

Motta, B. 1990. Métodos analíticos del laboratorio de suelos. IGAC, Bogota.

Mtshali, J.S., A.T. Tiruneh, and A.O. Fadiran. 2014. Characterization of sewage sludge generated from wastewater treatment plants in Swaziland in relation to agricultural uses. Resources and Environment 4(4), 190-199.

Nzanza, B., D. Marais, and P. Soundy. 2012. Effect of arbuscular mycorrhizal fungal inoculation and biochar amendment on growth and yield of tomato. Int. J. Agric. Biol. 14(6), 965-969.

Okuno, T., N. Sonoyama, J. Hayashi, C.Z. Li, C. Sathe, and T. Chiba. 2005. Primary release of alkali and alkaline earth metallic species during the pyrolysis of pulverized biomass. Energy Fuels 19(5), 2164-2171. Doi: 10.1021/ef050002a

Paterson, E., G. Osler, L.A. Dawson, T. Gebbing, A. Sim, and B. Ord. 2008. Labile and recalcitrant plant fractions are utilized by distinct microbial communities in soil: independent of the presence of roots and mycorrhizal fungi. Soil Biol. Biochem. 40(5), 1103-1113. Doi: 10.1016/j.soilbio.2007.12.003

Pérez-Sanz, A., A. Álvarez-Férnandez, T. Casero, G. Legaz, and J.J. Lucena. 2002. Fe enriched biosolids as fertilizers for orange and peach trees grown in field condition. Plant Soil 241, 145-153. Doi: 10.1023/A:1016055607447

PTAR. 2009. Informe mensual de actividades. URL: http://www.acueducto.com.co/ (accessed 07 April 2017).

Rajkovich, S., A. Enders, K. Hanley, C. Hyland, A.R. Zimmerman, and J. Lehmann. 2012. Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biol. Fert. Soil. 48 (3), 271-284. Doi: 10.1007/s00374-011-0624-7

Shannon, M.C. and C.M. Grieve. 1999. Tolerance of vegetable crops to salinity. Sci. Hort. 78(1-4), 5-38. Doi: 10.1016/S0304-4238(98)00189-7

Shuman, L.M. 1998. Effects of organic waste amendments on cadmium and lead in soil fractions of two soils. Commun. Soil Sci. Plan. 29(19-20), 2939-2952. Doi: 10.1080/00103629809370167

Silva, M.I., C. Mackowiak, P. Minogue, A.F. Reis, and E.F. Moline. 2017. Potential impacts of using sewage sludge biochar on the growth of plant forest seedlings. Ciênc. Rural 47(1), 1-5. Doi: 10.1590/0103-8478cr20160064

SSL (Soil Survey Laboratory). 1995. Information manual. Soil survey investigations report Nº 45. Version 1.0. USDA, Lincoln, USA

Steiner, C., K.C. Das, M. Garcia, B. Förster, and W. Zech. 2008. Charcoal and smoke extract stimulate the soil microbial community in a highly weathered xanthic ferralsol. Pedobiologia 51(5-6), 359-366. Doi: 10.1016/j.pedobi.2007.08.002

Sullivan, D.M., A.I. Bary, D.R. Thomas, S.C. Fransen, and C.G. Cogger. 2002. Food waste effects on fertilizer nitrogen efficiency, available nitrogen, and tall fescue yield. Soil Sci. Soc. Am. J. 66(1), 154-161.

Thomson, B. 2008. Potassium. URL: www.back-to-basic.net/efu/pdfs/ptassium.pdf (accessed 23 December 2017).

Van Zwieten, L., B. Singh, S. Joseph, S. Kimber, A. Cowie, and K.Y. Chan. 2009. Biochar and emissions of non-CO2 greenhouse gases from soil. pp. 227-250. In: Lehmann, J. and S. Joseph (eds). Biochar for environmental management: science and technology. Earthscan, London

Verheijen, F.G.A., S. Jeffery, A.C. Bastos, M. van der Velde, and I. Diafas. 2009. Biochar application to soils: a critical scientific review of effects on soil properties, processes and functions. European Commission. Luxembourg. Doi: 10.2788/472

Wolf, B., 1974. Improvements in the azomethine-H method for the determination of boron. Comm. Soil Sci. Plant Anal. 5, 39-44. Doi: 10.1080/00103627409366478

You, S.J., Y. Yin, and H.E. Allen. 1999. Partitioning of organic matter in soils: effects of pH and water/soil ratio. Sci. Total Environ. 227(2-3), 155-160. Doi: 10.1016/s0048-9697(99)00024-8

Zimmerman, A.R., B. Gao, and M.Y. Ahn. 2011. Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil biology and biochemistry, 43(6), 1169-1179 Doi: 10.1016/j.soilbio.2011.02.005

How to Cite

APA

Reyes-Moreno, G., Cuervo-Andrade, J. L., Darghan-Contreras, A. E. and Cárdenas-Pardo, N. J. (2020). Impact of dry sludges and sludge biochar on height and dry matter of Solanum lycopersicum L. Agronomía Colombiana, 38(2), 242–252. https://doi.org/10.15446/agron.colomb.v38n2.81842

ACM

[1]
Reyes-Moreno, G., Cuervo-Andrade, J.L., Darghan-Contreras, A.E. and Cárdenas-Pardo, N.J. 2020. Impact of dry sludges and sludge biochar on height and dry matter of Solanum lycopersicum L. Agronomía Colombiana. 38, 2 (May 2020), 242–252. DOI:https://doi.org/10.15446/agron.colomb.v38n2.81842.

ACS

(1)
Reyes-Moreno, G.; Cuervo-Andrade, J. L.; Darghan-Contreras, A. E.; Cárdenas-Pardo, N. J. Impact of dry sludges and sludge biochar on height and dry matter of Solanum lycopersicum L. Agron. Colomb. 2020, 38, 242-252.

ABNT

REYES-MORENO, G.; CUERVO-ANDRADE, J. L.; DARGHAN-CONTRERAS, A. E.; CÁRDENAS-PARDO, N. J. Impact of dry sludges and sludge biochar on height and dry matter of Solanum lycopersicum L. Agronomía Colombiana, [S. l.], v. 38, n. 2, p. 242–252, 2020. DOI: 10.15446/agron.colomb.v38n2.81842. Disponível em: https://revistas.unal.edu.co/index.php/agrocol/article/view/81842. Acesso em: 24 aug. 2024.

Chicago

Reyes-Moreno, Giovanni, Jairo Leonardo Cuervo-Andrade, Aquiles Enrique Darghan-Contreras, and Néstor Julián Cárdenas-Pardo. 2020. “Impact of dry sludges and sludge biochar on height and dry matter of Solanum lycopersicum L”. Agronomía Colombiana 38 (2):242-52. https://doi.org/10.15446/agron.colomb.v38n2.81842.

Harvard

Reyes-Moreno, G., Cuervo-Andrade, J. L., Darghan-Contreras, A. E. and Cárdenas-Pardo, N. J. (2020) “Impact of dry sludges and sludge biochar on height and dry matter of Solanum lycopersicum L”., Agronomía Colombiana, 38(2), pp. 242–252. doi: 10.15446/agron.colomb.v38n2.81842.

IEEE

[1]
G. Reyes-Moreno, J. L. Cuervo-Andrade, A. E. Darghan-Contreras, and N. J. Cárdenas-Pardo, “Impact of dry sludges and sludge biochar on height and dry matter of Solanum lycopersicum L”., Agron. Colomb., vol. 38, no. 2, pp. 242–252, May 2020.

MLA

Reyes-Moreno, G., J. L. Cuervo-Andrade, A. E. Darghan-Contreras, and N. J. Cárdenas-Pardo. “Impact of dry sludges and sludge biochar on height and dry matter of Solanum lycopersicum L”. Agronomía Colombiana, vol. 38, no. 2, May 2020, pp. 242-5, doi:10.15446/agron.colomb.v38n2.81842.

Turabian

Reyes-Moreno, Giovanni, Jairo Leonardo Cuervo-Andrade, Aquiles Enrique Darghan-Contreras, and Néstor Julián Cárdenas-Pardo. “Impact of dry sludges and sludge biochar on height and dry matter of Solanum lycopersicum L”. Agronomía Colombiana 38, no. 2 (May 1, 2020): 242–252. Accessed August 24, 2024. https://revistas.unal.edu.co/index.php/agrocol/article/view/81842.

Vancouver

1.
Reyes-Moreno G, Cuervo-Andrade JL, Darghan-Contreras AE, Cárdenas-Pardo NJ. Impact of dry sludges and sludge biochar on height and dry matter of Solanum lycopersicum L. Agron. Colomb. [Internet]. 2020 May 1 [cited 2024 Aug. 24];38(2):242-5. Available from: https://revistas.unal.edu.co/index.php/agrocol/article/view/81842

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

647

Downloads

Download data is not yet available.