Effect of gibberellic acid-3 and 6-benzylaminopurine on dormancy and sprouting of potato (Solanum tuberosum L.) tubers cv. Diacol Capiro
Efecto del ácido giberélico-3 y 6-bencilaminopurina sobre el reposo y brotación de tubérculos de papa (Solanum tuberosum L.) cultivar Diacol Capíro
DOI:
https://doi.org/10.15446/agron.colomb.v38n2.82231Keywords:
tuber potato seed, cytokinins, gibberellins, growth regulators, sprouts (en)tubérculo semilla de papa, citoquininas, giberelinas, reguladores de crecimiento, brotes (es)
Downloads
The duration of the dormancy period in tubers is a determining factor in the planning of potato planting and production. The effect of two plant growth regulators on the dormancy period and sprouting of cv. Diacol Capiro tubers was evaluated in this study. The experiment was carried out under storage conditions (15°C and 75% RH) using a completely randomized block design with 3×3×3 factorial arrangement. The factors were: gibberellic acid-3 (GA3) and 6-benzylaminopurine (6BAP) (0, 25, and 50 mg L-1) and the immersion time (iT) (10, 60, and 120 min). The application of GA3 and iT had an effect on dormancy breakage; the treatments with 25 mg L-1 GA3 and 60 min of immersion were enough to reduce dormancy by 18 d (35%) compared to untreated tubers. The factor GA3 increased tuber weight loss (10.2%), generated sprouts with higher weight (25.6-28.4%), higher length growth rate (42.3%), and lower dry matter content (21.8-28.4%), and it increased secondary sprouting (36.2-57.9%) in comparison with untreated tubers. This way, despite the treatments with 25 mg L-1 GA3 reduced the dormancy period, this dose generated sprouts more susceptible to mechanical damage. The treatments with 6BAP did not significantly affect the evaluated variables.
La duración del periodo de reposo en tubérculos es un factor determinante en la planeación de las siembras y la producción de papa. En este estudio se evaluó el efecto de dos reguladores de crecimiento sobre el periodo de reposo y la brotación de tubérculos de papa cultivar Diacol Capíro. El experimento se realizó en condiciones de almacenamiento (15°C y 75% HR)
con un diseño de bloques completamente al azar en arreglo factorial 3×3×3. Los factores fueron: ácido giberélico-3 (AG3) y 6-bencilaminopurina (6BAP) (0, 25 y 50 mg L-1) y el tiempo de inmersión (Ti) (10, 60 y 120 min). La aplicación de AG3 y Ti tuvo efecto en interrumpir el periodo de reposo y tratamientos con 25 mg L-1 de AG3 y 60 min de inmersión fueron suficientes para disminuir el reposo en 18 días (35%) con respecto a los tubérculos no tratados. El factor AG3 aumentó la pérdida de peso de los tubérculos (10.2%), generó brotes de mayor peso (25.6- 28.4%), con mayor tasa de crecimiento en longitud (42.3%), con menor contenido de masa seca (21.8-28.4%) y aumentó la brotación secundaria (36.2-57.9%) con respecto a tubérculos no tratados. De esta forma, a pesar de que los tratamientos con 25 mg L-1de AG3 redujeron el periodo de reposo, esta dosis generó brotes más susceptibles al daño mecánico. Los tratamientos con 6BAP no afectaron significativamente las variables evaluadas.
References
Alexopoulos, A., K. Koumianakis, S. Vemmos, and H. Passam. 2007. The effect of postharvest application of gibberellic acid and benzyl adenine on the duration of dormancy of potatoes produced by plants grown from TPS. Postharvest Biol. Technol. 46(1), 54-62. Doi: 10.1016/j.postharvbio.2007.03.016
Alexopoulos, A., G. Aivalakis, K.A. Akoumianakis, and H.C. Passam. 2008. Effect of gibberellic acid on the duration of dormancy of potato tubers produced by plants derived from true potato seed. Postharvest Biol. Technol. 49(1), 424-430. Doi: 10.1016/j.postharvbio.2008.02.009
Barani, M., N. Akbari, and H. Ahmadi. 2013. The effect of gibberellic acid (GA3) on seed size and sprouting of potato tubers (Solanum tuberosum L.). Afr. J. Agric. Res. 8(29), 3898-3903.
Blauer, J.M., L.O. Knowles, and R. Knowles. 2013. Manipulating stem number, tuber set and size distribution in specialty potato cultivars. Am. J. Potato Res. 90(1), 470-496. Doi: 10.1007/s12230-013-9317-0
Campbell, M., J. Suttle, D. Douches, and C.R. Buell. 2014. Treatment of potato tubers with the synthetic cytokinin 1-(α-ethylbenzyl)-3-nitroguanidine results in rapid termination of endodormancy and induction of transcripts associated with cell proliferation and growth. Funct. Integr. Genomics 14(1), 789-799. Doi: 10.1007/s10142-014-0404-1
Carli, C., E. Mihovilovich, F. Yuldashev, D. Khalikov, and M. Kadian. 2010. Assessment of dormancy and sprouting behavior of CIP elite and advanced clones under different storage conditions in Uzbekistan. Potato Res. 53(1), 313-323. Doi: 10.1007/s11540-010-9172-z
Claassens, M.M.J. and D. Vreugdenhil. 2000. Is dormancy breaking of potato tubers the reverse of tuber initiation? Potato Res. 43(1), 347-369. Doi: 10.1007/BF02360540
Chindi, A. and T. Tsegaw. 2019. Effect of gibberellic acid on growth, yield and quality of potato (Solanum tuberosum L.) in central highlands of Ethiopia. J. Hortic. Sci. For. 1(2). 1-10.
Christensen, C., L. Zotarelli, K. Haynes, and C. Kelly. 2019. Comparative evaluation of the effects of gibberellic acid concentrations on dormancy break in tubers of Solanum chacoense. Hort-Technology 30(1). 76-81. Doi: 10.21273/HORTTECH04448-19
Dean, C.J., L.O. Knowles, and N.R. Knowles. 2018a. Efficacy of seed aging and gibberellin treatments for manipulating apical dominance, Tuber Set and Size Distribution of cv. Shepody. Am. J. Potato Res. 1-13. Doi: 10.1007/s12230-018-9657-x
Dean, C.J., L.O. Knowles, and N.R. Knowles. 2018b. Auxin modulates gibberellin-induced effects on growth, yield, and raw product recovery for frozen processing in potato (Solanum tuberosum L.). Am. J. Potato Res. 95(6), 622-641. Doi: 10.1007/s12230-018-9668-7
Deligios, P., E. Rapposelli, M. Mameli, L. Baghino, G. Mallica, and L. Ledda. 2020. Effects of physical, mechanical and hormonal treatments of seed-tubers on bud dormancy and plant productivity. J. Agron. 10, 33. 1-19. Doi: 10.3390/agronomy10010033
Devaux, A., P. Kromann, and O. Ortiz. 2014. Potatoes for sustainable global food security. Potato Res. 57. 185-199. Doi: 10.1007/s11540-014-9265-1
Dobson, A.J. and A. Barnett. 2008. Texts in statistical science: An introduction to generalized linear models. CRC Press, Boca Raton, USA.
Eshel, D. 2015. Bridging dormancy release and apical dominance in potato tuber. pp. 187-196. In: Anderson, J.V. (ed.). Advances in plant dormancy. Springer International Publishing. Switzerland. Doi: 10.1007/978-3-319-14451-1_11
Guzmán, V. 1963. Activity of gibberellin levels for breaking dormancy of Solanum tuberosum L. Fla. State Hort. Soc. Proc. 76(1), 199-204.
Hartmann, A., M. Senning, P. Hedden, U. Sonnewald, and S. Sonnewald. 2011. Reactivation of meristem activity and sprout growth in potato tubers require both cytokinin and gibberellin. Plant Physiol. 155(1), 776-796. Doi: 10.1104/pp.110.168252
Henis, Y. 1987. Survival and dormancy of microorganisms. John Wiley & Sons, New York, USA. Doi: 10.1002/jobm.3620290705
Herman, D.J., L.O. Knowles, and N.R. Knowles. 2016. Differential sensitivity of genetically related potato cultivars to treatments designed to alter apical dominance, tuber set and size distribution. Am. J. Potato R. 93(4), 331-349. Doi: 10.1007/s12230-016-9507-7
Huamán, Z. and D.M. Spooner. 2002. Reclassification of landrace populations of cultivated potatoes (Solanum sect. Petota). Amer. J. Bot. 89(1), 947-965. Doi: 10.3732/ajb.89.6.947
Jansky, S. and A. Hamernik. 2015. Rapid cycling of potato tuber generations by overcoming dormancy. Am. J. Potato Res. 92(1), 148-152. Doi: 10.1007/s12230-014-9415-7
Knowles, N.R. and L.O. Knowles. 2006. Manipulating stem number, tuber set, and yield relationships for northern- and southern grown potato seed lots. Crop Sci. 46(1), 284-296. Doi: 10.2135/cropsci2005.05-0078
Krijthe, N. 1962. Observations on the sprouting of seed potatoes. Eur. Pot. J. 5(1), 316-333. Doi: 10.1007/BF02365862
Lang, G.A., J.D. Early, G.C. Martin, and R.L. Darnell. 1987. Endo-, para-, and ecodormancy: physiological terminology and classification for dormancy research. HortScience 22(1), 371-377.
Mani, F., T. Bettaieb, N. Doudech, and C. Hannachi. 2014. Physiological mechanism for potato dormancy release and sprouting: a review. Afr. Crop Sci. J. 22(2), 155-174.
Mikitzel, L.J. 1993. Influencing seed tuber yield of Ranger Russet and Shepody potatoes with gibberellic acid. Am. Potato J. 70(1), 667-676. Doi: 10.1007/BF02849155
Mohammadi, M., S. Kashani, A. Vazan, and F. Hasani. 2014. Evaluation of potato mini-tubers dormancy breaking affected by various chemicals, genotype and mini-tuber Size. Int. J. Biosci. 4(6), 100-108. Doi: 10.12692/ijb/4.6.100-108
Mustefa, G., W. Mohammed, N. Dechassa, and D. Gelmesa. 2017 . Effects of different dormancy-breaking and storage methods on seed tuber sprouting and subsequent yield of two potato (Solanum tuberosum L.) varieties. Open Agric. 2(1), 220-229. Doi: 10.1515/opag-2017-0023
Nambara, E. and A. Marion-Poll. 2005. Abscisic acid biosynthesis and catabolism. Annu. Rev. Plant Biol. 56(1), 165-185. Doi: 10.1146/annurev.arplant.56.032604.144046
Navarre, R. and M.J. Pavek. 2015. The potato: botany, production and uses, 1ed. CAB International, Croydon, UK. Doi: 10.1079/9781780642802.0000
Ñústez, C. 2011. Variedades colombianas de papa. Universidad Nacional de Colombia, Facultad de Agronomia, Bogota.
Rentzsch, S., D. Podzimska, A. Voegele, M. Imbeck, K. Müller, A. Linkies, and G. Leubner-Metzger. 2012. Dose- and tissue-specific interaction of monoterpenes with the gibberellin-mediated release of potato tuber bud dormancy, sprout growth and induction of α-amylases and β-amylases. Planta 235, 137-151. Doi: 10.1007/s00425-011-1501-1
Rodríguez, L. and L.P. Moreno. 2010. Factores y mecanismos relacionados con la dormancia en tubérculos de papa. Agron. Colomb. 28(2), 189-197.
Salimi, K.H., R.T. Afshari, M.B. Hosseini, and P.C. Struik. 2010. Effects of gibberellic acid and carbon disulphide on sprouting of potato minitubers. Sci. Hort. 124(1), 14-18. Doi: 10.1016/j.scienta.2009.12.026
Sergeeva, L.L., M.M.J. Claassens, D.C.L. Jamar, L.H.W. van der Plas, and D. Vreugdenhil. 2012. Starch-related enzymes during potato tuber dormancy and sprouting. Russ. J. Plant Physiol. 59(4), 556-564. Doi: 10.1134/S1021443712040115
Sonnewald. S. and U. Sonnewald. 2014. Regulation of potato tuber sprouting. Planta 239(1), 27-38. Doi: 10.1007/s00425-013-1968-z
Struik, P.C. 2007. The canon of potato science: 40. Physiological age of seed tubers. Potato Research 50(1), 375-377. Doi: 10.1007/s11540-008-9069-2
Suttle, J.C. 2001. Dormancy-related changes in cytokinin efficacy and metabolism in potato tubers during postharvest storage. Plant Growth Regulation 25(1), 199-206 Doi: 10.1023/A:1014448727719
Suttle, J.C. 2004. Physiological regulation of potato tuber dormancy. Am. J. Potato Res. 81(4), 253-262. Doi: 10.1007/BF02871767
Suttle, J.C. 2007. Dormancy and sprouting. pp. 287-309. In: Vreugdenhil, D., J. Bradshaw, C. Gebhardt, F. Govers, M.A. Taylor, D.K. MacKerron, and H.A. Ross (eds.). Potato biology and biotechnology: advances and perspectives. Elsevier, Amsterdam. Doi: 10.1016/B978-044451018-1/50056-7
Suttle, J.C. 2008. Effects of synthetic phenylurea and nitroguanidine cytokinins on dormancy break and sprout growth in russet burbank minitubers. Amer. J. Potato Res. 85(1), 121-128. Doi: 10.1007/s12230-008-9002-x
Teper-Bamnolker, P., Y. Buskila, Y. Lopesco, S. Ben-Dor, I. Saad, and V. Holdengreber. 2012. Release of apical dominance in potato tuber is accompanied by programmed cell death in the apical bud meristem. Plant Physiol. 158(20), 53-67. Doi: 10.1104/pp.112.194076
Turnbull, C.G.N. and D.E. Hanke. 1985. The control of bud dormancy in potato tubers. Evidence for the primary role of cytokinins and seasonal pattern of changing sensitivity to cytokinin. Planta 165(1), 359-365. Doi: 10.1007/BF00392233
Viola, R., J. Pelloux, V. Ploeg, T. Gillespie, N. Marquis, A.G. Roberts, and R.D. Hancock. 2007. Symplastic connection is required for bud outgrowth following dormancy in potato (Solanum tuberosum L.) tubers. Plant Cell Environ. 30(1), 973-983. Doi: 10.1111/j.1365-3040.2007.01692.x
Virtanen, E., H. Häggman, Y. Degefu, A.L. Välimaa, and M. Seppänen. 2013. Effects of production history and Gibberellic acid on seed potatoes. J. Agr. Sci. 12(5), 145. Doi: 10.5539/jas.v5n12p145
Wróbel, S., J. Kęsy, and K. Treder. 2017. Effect of growth regulators and ethanol on termination of dormancy in potato tubers. Am. J. Potato Res. 94(5), 544-555. Doi: 10.1007/s12230-017-9592-2
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Muhammad Wasim Haider, Muhammad Nafees, Ishtiaq Ahmad, Baber Ali, Maryam, Rashid Iqbal, Dan C. Vodnar, Romina Alina Marc, Muhammad Kamran, Muhammad Hamzah Saleem, Abdullah Ahmed Al-Ghamdi, Fahad M. Al-Hemaid, Mohamed S. Elshikh. (2022). Postharvest dormancy-related changes of endogenous hormones in relation to different dormancy-breaking methods of potato (Solanum tuberosum L.) tubers. Frontiers in Plant Science, 13 https://doi.org/10.3389/fpls.2022.945256.
2. Muhammad Mazhar Qayyum, Umbreen Shahzad, Muhammad Shah Jahan, Hossam S. El-Beltagi, Salman Ghuffar, Muhammad Qasim, Nasir Mehmood, Sadaf Anwaar, Huma Qureshi, Tauseef Anwar, Nazih Y. Rebouh, Mohd Asif Shah, Muydin M. Muminov. (2025). Optimizing gibberellic acid concentration and exposure time for effective dormancy breaking and sprouting enhancement in potato. Scientific Reports, 15(1) https://doi.org/10.1038/s41598-025-13219-5.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2020 Agronomía Colombiana

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
© Centro Editorial de la Facultad de Ciencias Agrarias, Universidad Nacional de Colombia
Reproduction and quotation of material appearing in the journal is authorized provided the following are explicitly indicated: journal name, author(s) name, year, volume, issue and pages of the source. The ideas and observations recorded by the authors are their own and do not necessarily represent the views and policies of the Universidad Nacional de Colombia. Mention of products or commercial firms in the journal does not constitute a recommendation or endorsement on the part of the Universidad Nacional de Colombia; furthermore, the use of such products should comply with the product label recommendations.
The Creative Commons license used by Agronomia Colombiana journal is: Attribution - NonCommercial - ShareAlike (by-nc-sa)

Agronomia Colombiana by Centro Editorial of Facultad de Ciencias Agrarias, Universidad Nacional de Colombia is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional License.
Creado a partir de la obra en http://revistas.unal.edu.co/index.php/agrocol/.







