Área foliar, contenido de clorofila, y masa seca de raíces en palmas de aceite (Elaeis guineensis Jacq.) afectadas por el disturbio del plumero
Leaf area, chlorophyll content, and root dry mass in oil palms (Elaeis guineensis Jacq.) affected by the plumero disorder
DOI:
https://doi.org/10.15446/agron.colomb.v38n3.85309Keywords:
fisiología, daño, severidad de enfermedad, materia seca (es)physiology, damage, disease severity, dry matter (en)
Downloads
El disturbio del plumero en palma de aceite se caracteriza por una anormalidad en el desarrollo del área foliar, el amarillamiento de las hojas jóvenes y el rayado clorótico longitudinal paralelo a la nervadura central. En esta investigación se determinó el área foliar de la hoja 17, el área foliar específica, los contenidos de clorofilas y la masa seca de raíces en una plantación de palma de aceite (Elaeis guineensis Jacq.) en la costa norte de Colombia con el objetivo de caracterizar los daños morfofisiológicos y cuantificar la severidad del disturbio. Para el análisis estadístico se realizó un modelo de regresión ordinal y pruebas de análisis de varianzas. Los resultados indicaron que la palma reduce su área foliar antes de que el disturbio sea evidente a nivel visual. Las hojas se vuelven más gruesas con menor contenido de clorofilas. También se presentó un aumento de la masa seca de raíces terciarias y cuaternarias en los grados iniciales. Esta variable disminuyó en los grados más severos del disturbio.
The plumero disorder in oil palm is characterized by an abnormality in the development of the leaf area, yellowing of young leaves, and longitudinal chlorotic strips parallel to the central rib. In this research, the leaf area of leaf 17, the specific leaf area, chlorophyll contents, and root dry mass were evaluated in an oil palm (Elaeis guineensis Jacq.) plantation on the northern coast of Colombia to characterize the morphophysiological damage and quantify the severity of the disorder. For the statistical analysis, an ordinal regression model and analysis of variance tests were performed. The results indicated that the palm reduces its leaf area before the disorder is visually evident. Leaves became thicker and lower in chlorophyll content. There was also an increase in the tertiary and quaternary root dry mass in the initial grades. This variable decreased in the more severe grades of this disorder.
References
Agarwala, S.C., C.P. Sharma, S. Farooq, and C. Chatterjee. 1978. Effect of molybdenum deficiency on the growth and metabolism of corn plants raised in sand culture. Can. J. Bot. 56(16), 1905-1908. Doi: 10.1139/b78-227
Arias, N., D. Ibagué, and A. Ospino. 2014. Guía de bolsillo. Identificación y registro del Plumero en palma de aceite. Centro de Investigación en Palma de Aceite CENIPALMA, Bogota.
Ayala, I.M. and P.L. Gómez. 2000. Identificación de variables morfológicas y fisiológicas asociadas con el rendimiento en materiales de palma de aceite (Elaeis guineensis Jacq.). Rev. Palmas, 21, 10-21.
Carretero, R., R.A. Serrago, M.O. Bancal, A.E. Perelló, and D.J. Miralles. 2009. Absorbed radiation and radiation use efficiency as affected by foliar diseases in relation to their vertical position into the canopy in wheat. Field Crops Res.116, 184-195. Doi: 10.1016/j.fcr.2009.12.009
Casierra-Posada, C. and J. Cutler. 2017. Photosystem II fluorescence and growth in cabbage plants (Brassica oleracea var. capitata) grown under waterlogging stress. Rev. UDCA Act. Div. Cient. 20(2), 321-328. Doi: 10.31910/rudca.v20.n2.2017.390
Cayón, D.G., C.A. Avellaneda, and F. Rodríguez. 2007. Aspectos fisiológicos asociados a marchitez letal de la palma de aceite. Rev. Palmas 28(1), 373-382.
Chang, R.K., Y.H. Wang, X.T. Zhang, G.C. Tang, and Y. Wei, 2015. The research of disease detection method of greenhouse cucumber leaf based on chlorophyll fluorescence analysis. Univers. J. Agric. Res. 3(3), 76-80. Doi: 10.13189/ujar.2015.030302
Corley, R.H.V., J.J. Hardon, and G.Y. Tang. 1971. Analysis of growth of the oil palm (Elaeis guineensis Jacq.) I. estimation of growth parameters and application in breeding. Euphytica 20, 307-315.012.
Corley, R.H.V. and P.B.H Tinker. 2003. The oil palm. 4th ed. Blackwell Science, Oxford, UK.
Espinal, L. and E. Montenegro. 1963. Formaciones vegetales de Colombia: memoria explicativa sobre el mapa ecológico. Instituto geográfico Agustín Codazzi IGAC. Bogota
Fischer, G. and L.M. Melgarejo. 2020. The ecophysiology of cape gooseberry (Physalis peruviana L.) - an Andean fruit crop. A review. Rev. Colomb. Cienc. Hortíc. 14(2). Doi: 10.17584/rcch.2020v14i1.10893
Fischer, G., F. Ramírez, and F. Casierra-Posada. 2016. Ecophysiological aspects of fruit crops in the era of climate change. A review. Agron. Colomb. 34(2), 190-199. Doi: 10.15446/agron.colomb.v34n2.56799
Flórez, V. and R. Cruz. 2004. Guías de laboratorio de fisiología vegetal. 1st ed. Universidad Nacional de Colombia, Bogota.
Gerardeaux, E., L. Jordan-Meille, J. Constantin, S. Pellerin, and M. Dingkuhn. 2010. Changes in plant morphology and dry matter partitioning caused by potassium deficiency in Gossypium hirsutum (L.). Environ. Exp. Bot. 67(3), 451-459. Doi: 10.1016/j.envexpbot.2009.09.008
Goh, K.M., M. Dickinson, P. Alderson, L.V Yap., and C.V. Supramaniam. 2016. Development of an in planta infection system for the early detection of Ganoderma spp. in oil palm. J. Plant Pathol. 98(2), 255-264. Doi: 10.4454/JPP.V98I2.019
Granier, C. and F. Tardieu. 2009. Multi-scale phenotyping of leaf expansion in response to environmental changes: the whole is more than the sum of parts. Plant Cell Environ. 32, 1175-1184. Doi: 10.1111/j.1365-3040.2009.01955.x
Gruber, B.D., R.F.H. Giehl, S. Friedel, and N. von Wirén. 2013. Plasticity of the Arabidopsis Root System under Nutrient Deficiencies. Plant Physiol. 163, 161-179. Doi: 10.1104/pp.113.218453
Hoefgen, R. and V.J. Nikiforova. 2008. Metabolomics integrated with transcriptomics: assessing systems response to sulfur-deficiency stress. Physiol. Plant. 132, 190-198. Doi: 10.1111/j.1399-3054.2007.01012.x
López, J. 2014. Caracterización fisiológica y morfológica de palmas de aceite Taisha (Elaeis oleífera HBK Cortes) y sus híbridos (Elaeis oleífera HBK Cortes x Elaeis guineensis Jacq.) en la región Amazónica del Ecuador. MSc thesis, Universidad Nacional de Colombia, Bogota.
Mandal, K., R. Saravanan, S. Maiti, and I.L. Kothari. 2009. Effect of downy mildew disease on photosynthesis and chlorophyll fluorescence in Plantago ovata Forsk. J. Plant Dis. Prot. 116(4), 164-168. Doi: 10.1007/BF03356305
Mittelberger, C., H. Yalcinkaya, C. Pichler, J. Gasser, G. Scherzer, T. Erhart, S. Schumacher, B. Holzner, K. Janik, P. Robatscher, T. Müller, B. Kräutler, and M. Oberhuber. 2017. Pathogen-induced leaf chlorosis: products of chlorophyll breakdown found in degreened leaves of phytoplasma-infected apple (Malus x domestica Borkh.) and apricot (Prunus armeniaca L.) trees relate to the Pheophorbide a Oxygenase/Phyllobilin pathway. J. Agric. Food Chem. 65(13), 2651-2660. Doi: 10.1021/acs.jafc.6b05501
Mittler, R. 2006. Abiotic stress, the field environment and stress combination. Trends Plant Sci. 11(1), 15-19. Doi: 10.1016/j.tplants.2005.11.002
Munné-Bosch, S. 2008. Do perennials really senesce? Trends Plant Sci. 13(5), 216-220. Doi: 10.1016/j.tplants.2008.02.002
Nenova, V. 2006. Effect of iron supply on growth and photosystem II efficiency of pea plants. Gen. Appl. Plant Physiol. Special issue, 81-90.
Oren, R., K.S. Werk, N. Buchmann, and R. Zimmermann. 1993. Chlorophyllnutrient relationships identify nutritionally caused decline in Piceaabies stands. Can. J. For. Res. 23(6), 1187-1195. Doi: 10.1139/x93-150
Poorter, H. and R. de Jong. 1999. A comparison of specific leaf area, chemical composition and leaf construction costs of field plants from 15 habitats differing in productivity. New Phytol. 143(1), 163-176. Doi: 10.1046/j.1469-8137.1999.00428.x
Rakib, M.R.M., A.H. Borhan, and A.N. Jawahir. 2019. The relationship between SPAD chlorophyll and disease severity index in Ganoderma-infected oil palm seedlings. J. Bangladesh Agril. Univ. 17(3), 355-358. Doi: 10.3329/jbau.v17i3.43211
Ramírez, J., R. Bedoya, J. Guerrero, W. Valero, S. Otero, A. Erazo, and R. Bedoya. 2004. Resumen de actividades realizadas sobre la marchitez letal 1994-2004. Palmar del Oriente S.A.
Rodríguez, P.A. and D.G. Cayón. 2008. Efecto de Mycosphaerella fijiensis sobre la fisiología de la hoja de banano. Agron. Colomb, 26(2), 256-265.
Sadok, W., P. Naudin, B. Boussuge, B. Muller, C. Welcker, and F. Tardieu. 2007. Leaf growth rate per unit thermal time follows QTL-dependent daily patterns in hundreds of maize lines under naturally fluctuating conditions. Plant Cell Environ. 30, 135-146. Doi: 10.1111/j.1365-3040.2006.01611.x
Sánchez-Reinoso, A.D., Y. Jiménez-Pulido, J.P. Martínez-Pérez, C.S. Pinilla, and G. Fischer. 2019. Chlorophyll fluorescence and other physiological parameters as indicators of waterlogging and shadow stress in lulo (Solanum quitoense var. septentrionale) seedlings. Rev. Colomb. Cienc. Hortíc. 13(3), 325-335. Doi: 10.17584/rcch.2019v13i3.10017
Schierenbeck, M., M.C. Fleitas, and M.R. Simón. 2014. Componentes ecofisiológicos involucrados en la generación de biomasa afectados por enfermedades foliares en trigo. Rev. Agron. Noroeste Argent. 34(2), 247-250.
Tailliez, B. 1971. The root system of the oil palm on the San Alberto Plantation in Colombia. Oleagineux 26(7), 435-447.
Uddling, J., J. Gelang-Alfredsson, K. Piikki, and H. Pleijel. 2007. Evaluating the relationship between leaf chlorophyll concentration and SPAD-502 chlorophyll meter readings. Photosynth. Res. 91, 37-46. Doi: 10.1007/s11120-006-9077-5
Verbruggen, N. and C. Hermans. 2013. Physiological and molecular responses to magnesium nutritional imbalance in plants. Plant Soil 368, 87-99. Doi: 10.1007/s11104-013-1589-0
Wimmer, M.A. and T. Eichert. 2013. Review: mechanisms for boron deficiency-mediated changes in plant water relations. Plant Sci. 2003-2004, 25-32. Doi: 10.1016/j.plantsci.2012.12.012
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Tulia Delgado, Greydy Ladino, Nolver Arias. (2024). Evaluation of the Effect of Soil Water Conditions on the Development and Water Requirements of Adult Oil Palm (Elaeis guineensis Jacq.) in the Northern Region of Colombia. Agronomy, 14(9), p.1976. https://doi.org/10.3390/agronomy14091976.
2. Lisa Buchner, Anna-Katharina Eisen, Susanne Jochner-Oette. (2024). Effects of ash dieback on leaf physiology and leaf morphology of Fraxinus excelsior L.. Trees, 38(5), p.1205. https://doi.org/10.1007/s00468-024-02546-1.
3. I Pradiko, Hariyadi, T June, Sujadi. (2023). Performance of three oil palm varieties on the East Coast of North Sumatra. IOP Conference Series: Earth and Environmental Science, 1133(1), p.012005. https://doi.org/10.1088/1755-1315/1133/1/012005.
4. Rahime Sarkari, Alireza Babaei, Arman Beyraghdar Kashkooli, Ali Mokhtassi-Bidgoli, Peter A. van de Pol, Mohammad Omidi. (2024). Physiological and biochemical aspects of successful stenting in Rosa hybrida L.: Role of rootstock. Scientia Horticulturae, 336, p.113415. https://doi.org/10.1016/j.scienta.2024.113415.
5. I Pradiko, D Wati, D Wiratmoko, N H Darlan. (2024). Estimation of oil palm’s leaf area index (LAI) using Unmanned Aerial Vehicle (UAV) images. IOP Conference Series: Earth and Environmental Science, 1308(1), p.012051. https://doi.org/10.1088/1755-1315/1308/1/012051.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2020 Agronomía Colombiana

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
© Centro Editorial de la Facultad de Ciencias Agrarias, Universidad Nacional de Colombia
Reproduction and quotation of material appearing in the journal is authorized provided the following are explicitly indicated: journal name, author(s) name, year, volume, issue and pages of the source. The ideas and observations recorded by the authors are their own and do not necessarily represent the views and policies of the Universidad Nacional de Colombia. Mention of products or commercial firms in the journal does not constitute a recommendation or endorsement on the part of the Universidad Nacional de Colombia; furthermore, the use of such products should comply with the product label recommendations.
The Creative Commons license used by Agronomia Colombiana journal is: Attribution - NonCommercial - ShareAlike (by-nc-sa)

Agronomia Colombiana by Centro Editorial of Facultad de Ciencias Agrarias, Universidad Nacional de Colombia is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional License.
Creado a partir de la obra en http://revistas.unal.edu.co/index.php/agrocol/.