Ginkgo biloba L. mini-cuttings: indole butyric acid, substrates, and biochemical composition of the mother plants
Miniestacas de Ginkgo biloba L.: ácido indolbutírico, substratos y composición bioquímica de las plantas madre
DOI:
https://doi.org/10.15446/agron.colomb.v38n3.86430Keywords:
vegetative propagation, medicinal plants, plant growth regulators, medicinal plant cloning, rooting (en)propagación vegetativa, plantas medicinales, reguladores del crecimiento, clonación de plantas medicinales, enraizamiento (es)
Downloads
The objective of this study was to evaluate the viability of the Ginkgo biloba mini-cutting technique, as well as the influence of substrates and different concentrations of indole butyric acid (IBA) on adventitious rooting in addition to the protein and sugar content in the mini-cutting. Mini-cuttings were 4 ± 1 cm in length, with the bases immersed in solutions of 0, 1000, 2000, and 3000 mg L-1 IBA. They were then planted in polypropylene tubes using two substrates (vermiculite and Tropstrato®) and maintained under greenhouse conditions for 60 d. The experiment was carried out with a 2 × 4 factorial scheme (substrates × IBA). There was no influence of IBA application on the promotion of rhizogenesis in Ginkgo biloba mini-cuttings. The rooting percentages were higher than 55% regardless of the treatment used. The vermiculite substrate showed a higher number of roots (4.94) and lower mortality (11.60) of mini-cuttings than Tropstrato®. We conclude that the mini-cutting technique is feasible for Ginkgo biloba, and the use of IBA is not necessary. We found that the induction of
adventitious rooting depended on the biochemical composition of the mother plants, due to the translocation of non-reducing sugars and leaf proteins for root formation.
El objetivo de este estudio fue evaluar la viabilidad de la técnica de miniestacas de Ginkgo biloba, así como la influencia de diferentes sustratos y diferentes concentraciones de ácido indolbutírico (IBA) en el enraizamiento adventicio además del contenido de proteínas y azúcares en las miniestacas. Las miniestacas tenían 4 ± 1 cm de longitud, y sus bases se sumergieron en soluciones de 0, 1000, 2000 y 3000 mg L-1 IBA. Luego las miniestacas se plantaron en tubos de polipropileno usando dos sustratos (vermiculita y Tropstrato®), bajo condiciones de invernadero durante 60 d. El experimento se llevó a cabo en un esquema factorial 2 × 4 (sustratos × IBA). No hubo influencia de la aplicación de IBA en la promoción de la rizogénesis de las miniestacas de Ginkgo biloba. Los porcentajes de enraizamiento fueron superiores al 55%, independientemente del tratamiento utilizado. El sustrato de vermiculita mostró un mayor número de raíces (4.94) y menor mortalidad (11.60) de miniestacas que el Tropstrato®. Por lo tanto, se puede concluir que la técnica de miniestaca es factible para Ginkgo biloba, y que el uso de IBA no es necesario. Se encontró que la inducción de raíces adventicias depende de la composición bioquímica de las plantas madre, debido a la translocación de azúcares no reductores y proteínas de la hoja para la formación de las raíces.
References
Acharya, M., Ghosh, T. C., Acharya, R., & Acharya, K. (2001). Ginkgo propagation by simple cutting. Indian Forester, 127(7), 827–828.
Agulló-Antón, M. Á., Sánchez-Bravo, J., Acosta, M., & Druege, U. (2011). Auxins or sugars: what makes the difference in the adventitious rooting of stored carnation cuttings? Journal of Plant Growth Regulation, 30(1), 100–113. https://doi.org/10.1007/s00344-010-9174-8
Agulló-Antón, M. Á., Ferrández-Ayela, A., Fernández-García, N., Nicolás, C., Albacete, A., Pérez-Alfocea, F., Sánchez-Bravo, J., Pérez-Pérez, J. M., & Acosta, M. (2014). Early steps of adventitious rooting: morphology, hormonal profiling and carbohydrate turnover in carnation stem cuttings. Physiologia Plantarum, 150(3), 446–462. https://doi.org/10.1111/ppl.12114
Alfenas, A. C., Zauza, E. A. V., Mafia, R. G., & Assis, T. F. (2009). Clonagem e doenças do eucalipto (2nd ed.) Editora UFV.
Aslmoshtaghi, E., & Reza-Shahsavar, A. (2010). Endogenous soluble sugars, starch contents and phenolic compounds in easy-and difficult-to-root olive cuttings. Journal of Biological and Environmental Sciences, 4(11), 83–86.
Bitencourt, J., Zuffellato-Ribas, K. C., & Koehler, H. S. (2010). Estaquia de Ginkgo biloba L. utilizando três substratos. Revista Brasileira de Plantas Medicinais, 12(2), 135–140. https://doi.org/10.1590/S1516-05722010000200002
Bona, C. M., & Biasi, L. A. (2010). Influence of leaf retention on cutting propagation of Lavandula dentata L. Revista Ceres, 57(4), 526–529. https://doi.org/10.1590/S0034-737X2010000400014
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248–254. https://doi.org/10.1016/0003-2697(76)90527-3
Carpanezzi, A. A., Tavares, F. R., & Sousa, V. A. (2001). Estaquia de Corticeira-do-Banhado (Erythrina crista-galli L.). Embrapa Florestas-Comunicado Técnico 64.
Denaxa, N. K., Vemmos, S. N., & Roussos, P. A. (2012). The role of endogenous carbohydrates and seasonal variation in rooting ability of cuttings of an easy and a hard to root olive cultivars (Olea europaea L.). Scientia Horticulturae, 143, 19–28. https://doi.org/10.1016/j.scienta.2012.05.026
Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analitycal Chemistry, 28(3), 350–356. https://doi.org/10.1021/ac60111a017
El-Ghazaly, M. A., Sadik, N. A., Rashed, E. R., & Abd-El-Fattah, A. A. (2015). Neuroprotective effect of EGb761® and low-dose whole-body γ-irradiation in a rat model of Parkinson’s disease. Toxicology and Industrial Health, 31(12), 1128–1143. https://doi.org/10.1177/0748233713487251
Fachinello, J. C., Hoffmann, A., & Nachtigal, J. C. (2005). Propagação de plantas frutíferas. EMBRAPA informação tecnológica.
Ferriani, A. P., Zuffellato-Ribas, K. C., & Wendling, I. (2010). Miniestaquia aplicada a espécies florestais. Revista Agroambiente On-line, 4(2), 102–109. https://doi.org/10.18227/1982-8470ragro.v4i2.363
Fragoso, R. O., Witt, N. G. P. M., Obrzut, V. V., Valério, S., Zuffellato-Ribas, K. C., & Stuepp, C. A. (2015). Maintenance of leaves and indole butyric acid in rooting of juvenile Japanese Flowering Cherry cuttings. Revista Brasileira de Ciências Agrárias, 10(1), 97–101. https://doi.org/10.5039/agraria.v10i1a5111
Franklin, K. A., Lee, S. H., Patel, D., Kumar, V., Spartz, A. K., Gu, C., Ye, S., Yu, P., Breen, G., Cohen, J. D., Wigge, P. A., & Gray, W. M. (2011). Phytochrome-interacting factor 4 (PIF4) regulates auxin biosynthesis at high temperature. Proceedings of the National Academy of Sciences, 108(50), 20231–20235. https://doi.org/10.1073/pnas.1110682108
Hartmann, H. T., Kester, D. E., Davies Jr, F. T., & Geneve, R. L. (2011). Hartmann and Kester’s plant propagation: principles and practices (8th ed.). Prentice Hall
Hornitschek, P., Kohnen, M. V., Lorrain, S., Rougemont, J., Ljung, K., López-Vidriero, I., Franco-Zorrilla, J. M., Solano, R., Trevisan, M., Pradervand, S., Xenarios, I., & Fankhauser, C. (2012). Phytochrome interacting factors 4 and 5 control seedling growth in changing light conditions by directly controlling auxin signaling. The Plant Journal, 71(5), 699–711. https://doi.org/10.1111/j.1365-313X.2012.05033.x
Husen, A., & Pal, M. (2007). Effect of branch position and auxin treatment on clonal propagation of Tectona grandis Linn. f. New Forests, 34(3), 223–233. Doi: https://doi.org/10.1007/s11056-007-9050-y
Lin, L. Z., Chen, P., Ozcan, M., & Harnly, J. M. (2008). Chromatographic profiles and identification of new phenolic components of Ginkgo biloba leaves and selected products. Journal of Agricultural and Food Chemistry, 56(15), 6671–6679. https://doi.org/10.1021/jf800488x
Martins, F. B., Soares, C. P. B., Leite, H. G., Souza, A. L., & Castro, R. V. (2011). Índices de competição em árvores individuais de eucalipto. Pesquisa Agropecuária Brasileira, 46(9), 1089–1098. https://doi.org/10.1590/S0100-204X2011000900017451.
Moubayidin, L., Perilli, S., Ioio, R. D., Mambro, R. D. M., Costantino, P., & Sabatini, S. (2010). The rate of cell differentiation controls the Arabidopsis root meristem growth phase. Current Biology, 20(12), 1138–1143. https://doi.org/10.1016/j.cub.2010.05.035
Ragonezi, C., Klimaszewska, K., Castro, M. R., Lima, M., Oliveira, P., & Zavattieri, M. A. (2010). Adventitious rooting of conifers: influence of physical and chemical factors. Trees, 24(6), 975–992. https://doi.org/10.1007/s00468-010-0488-8
Rezende, A. A. (2007). Enraizamanto de estacas de candeia (Eremanthus erythropappus (DC.) MacLeish). [Master’s thesis, Universidade Federal de Lavras]. UFLA Repository. http://repositorio.ufla.br/bitstream/1/2714/1/DISSERTA%C3%87%-C3%83O_Enraizamento%20de%20estacas%20de%20candeia%20(Eremanthus%20erytropappus%20DC.)%20Mac%20Leish.pdf
Singh, B., Kaur, P., Gopichand, Singh, R. D., & Ahuja, P. S. (2008). Biology and chemistry of Ginkgo biloba. Fitoterapia, 79(6), 401–418. https://doi.org/10.1016/j.fitote.2008.05.007
Song, J., Fang, G., Zhang, Y., Deng, Q., & Wang, S. (2010). Fingerprint analysis of Ginkgo biloba leaves and related health foods by high-performance liquid chromatography/electrospray ionization-mass spectrometry. Journal of AOAC International, 93(6), 1798–1805.
Souza, C. M., & Miranda, R. M. (2006). Otimização do balanço entre auxina e citocinina para multiplicação in vitro de Gerbera jamesonni var. ‘Ornela’. Revista Agronomia, 40(1–2), 66–72.
Souza, E. R., Lenk, F. L., Ono, E. O., & Rodrigues, J. D. (2015). Conteúdo de carboidratos em estacas de videira do porta-enxerto cv. IAC 572. Brazilian Journal of Applied Technology for Agricultural Science, 8(2), 7–15. https://doi.org/10.5935/PAeT.V8.N2.01
Steffens, B., & Rasmussen, A. (2016). The physiology of adventitious roots. Plant Physiology, 170, 603–617. https://doi.org/10.1104/pp.15.01360
Stuepp, C. A., Zuffellato-Ribas, K. C., Koehler, H. S., & Wendling, I. (2015). Rooting mini-cuttings of Paulownia fortunei var. Mikado derived from clonal mini-garden. Revista Árvore, 39(3), 497–504. https://doi.org/10.1590/0100-67622015000300010
Stuepp, C. A., Fragoso, R. O., Maggioni, R. A., Zuffellato-Ribas, K. C., & Wendling, I. (2017a). Vegetative rescue and ex vitro plants production system for Ginkgo biloba by cuttings and mini-cuttings. Revista Brasileira de Plantas Medicinais, 19(2), 300–303.
Stuepp, C. A., Wendling, I., Koehler, H. S., & Zuffellato-Ribas, K. C. (2017b). Successive mini-cuttings collection in Piptocarpha angustifolia mini-stumps: Effects on maturation, adventitious root induction and root vigor. Acta Scientiarum Agronomy, 39(2), 245–253. https://doi.org/10.4025/actasciagron.v39i2.31059
Taiz, L., Zeiger, E., Møller, I. A., & Murphy, A. (2017). Fisiologia e Desenvolvimento Vegetal (6th ed.). Artmed
Tommasi, F., & Scaramuzzi, F. (2004). In vitro propagation of Ginkgo biloba by using various bud cultures. Biologia Plantarum, 48, 297–300. https://doi.org/10.1023/B:BIOP.0000033460.75432.d1
Valmorbida, J., & Lessa, A. O. (2008). Enraizamento de estacas de Ginkgo biloba tratadas com ácido indolbutírico e ácido bórico. Ciência e agrotecnologia, 32(2), 398–401. https://doi.org/10.1590/S1413-70542008000200008
Van Beek, T. A., & Montoro, P. (2009). Chemical analysis and quality control of Ginkgo biloba leaves, extracts, and phytopharmaceuticals. Journal of Chromatography, 1216(11), 2002–2032. https://doi.org/10.1016/j.chroma.2009.01.013
Wang, L., & Ruan, Y. (2013). Regulation of cell division and expansion by sugar and auxin signaling. Frontiers in Plant Science, 4, 1–9. https://doi.org/10.3389/fpls.2013.00163
Wendling, I., Brooks, P. R., & Trueman, S. J. (2015). Topophysis in Corymbia torelliana × C. citriodora seedlings: adventitious rooting capacity, stem anatomy, and auxin and abscisic acid concentrations. New Forests, 46, 107–120. https://doi.org/10.1007/s11056-014-9451-7
Wendling, I., Stuepp, C. A., & Zuffellato-Ribas, K. C. (2016). Araucaria clonal forestry: types of cuttings and mother tree sex in field survival and growth. Cerne, 22(1), 19–26. https://doi.org/10.1590/01047760201622012105
Xavier, A., Wendling, I., & Silva, R. L. (2009). Silvicultura clonal: princípios e técnicas (2nd ed.). Editora UFV
Yan, S. P., Yang, R. H., Wang, F., Sun, L. N., & Song, X. S. (2017). Effect of auxins and associated metabolic changes on cuttings of hybrid aspen. Forests, 8(4), Article 117. https://doi.org/10.3390/f8040117
Zhang, L., Lam, W. P., Lü, L., Wang, Y. X., Wong, Y. W., Lam, L. H., Tang, H. C., Wai, M. S., Mak, Y. T., Wang, M., & Yew, D. T. (2011). How would composite traditional chinese medicine protect the brain - an example of the composite formula “Pien Tze Huang”. Current Medicinal Chemistry, 18(23), 3590–3594. https://doi.org/10.2174/092986711796642535
Zhang, W., Fan, J., Tan, Q., Zhao, M., & Cao, F. (2017). Mechanisms underlying the regulation of root formation in Malus hupehensis stem cuttings by using exogenous hormones. Journal of Plant Growth Regulation, 36(1), 174–185. https://doi.org/10.1007/s00344-016-9628-8
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2020 Agronomía Colombiana

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
© Centro Editorial de la Facultad de Ciencias Agrarias, Universidad Nacional de Colombia
Reproduction and quotation of material appearing in the journal is authorized provided the following are explicitly indicated: journal name, author(s) name, year, volume, issue and pages of the source. The ideas and observations recorded by the authors are their own and do not necessarily represent the views and policies of the Universidad Nacional de Colombia. Mention of products or commercial firms in the journal does not constitute a recommendation or endorsement on the part of the Universidad Nacional de Colombia; furthermore, the use of such products should comply with the product label recommendations.
The Creative Commons license used by Agronomia Colombiana journal is: Attribution - NonCommercial - ShareAlike (by-nc-sa)

Agronomia Colombiana by Centro Editorial of Facultad de Ciencias Agrarias, Universidad Nacional de Colombia is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional License.
Creado a partir de la obra en http://revistas.unal.edu.co/index.php/agrocol/.