Published

2020-09-01

Optimization of the extraction of antioxidant compounds from quinoa (Chenopodium quinoa Willd.)

Optimización de la extracción de compuestos antioxidantes a partir de quinua (Chenopodium quinoa Willd.)

DOI:

https://doi.org/10.15446/agron.colomb.v38n3.86520

Keywords:

hydroalcoholic extraction, bioactive compounds, face-centered central composite design (en)
extracción hidroalcohólica, compuestos bioactivos, diseño central compuesto centrado en las caras (es)

Downloads

Authors

Argentina contains a great biodiversity of natural foods such as quinoa that can be included in the human diet because of their nutritional characteristics and content of bioactive compounds. Among other properties, these bioactive have an antioxidant capacity that protects biomolecules from oxidant damage. Bioactive compounds contribute beneficially to diverse antimicrobial, anti-inflammatory and anti-carcinogenic physiological activities. The objective of this study was to optimize the parameters for the extraction of antioxidant compounds from quinoa: drying temperature of the grain, liquid/solid ratio (L/S), and ethanol concentration in the extraction solvent, based on an experimental design of three variables at three levels. A face-centered central composite design was used. The proposed levels were 40°C, 60°C and 80°C; 20:1, 30:1 and 40:1, and 30%, 50%, and 70% v/v of ethanol. Antioxidant capacity was determined by the capture of the DPPH free radical. The values obtained were from 16.3 mg to 161.5 mg of equivalent trolox (ET) 100 g-1 of quinoa. The maximum antioxidant capacity was obtained for the L/S ratio of 28:1, and the drying temperature of the grain was 58°C and 39% v/v of ethanol in the extraction solvent. The ethanol concentration was the most influential variable in the antioxidant compound extraction.

Argentina posee una gran biodiversidad de alimentos tales como la quinua que pueden ser incluidos en la dieta humana por sus características nutricionales y su contenido de compuestos bioactivos. Estos compuestos, entre otras propiedades, presentan una capacidad antioxidante que protege a las biomoléculas frente al daño oxidativo. Los compuestos bioactivos contribuyen benéficamente a diversas actividades fisiológicas antimicrobianas, antinflamatorias y anticancerígenas. El objetivo de este estudio fue optimizar los parámetros para la extracción de compuestos con capacidad antioxidante de la quinua: temperatura de secado del grano, relación liquido/sólido (L/S) y concentración de etanol en el solvente de extracción, basado en un diseño experimental de tres variables a tres niveles. Se uso un diseño central compuesto centrado en las caras. Los niveles propuestos fueron 40°C, 60°C y 80°C; 20:1, 30:1 y 40:1, y 30%, 50%, 70% v/v de etanol. La capacidad antioxidante se determinó mediante la captura del radical libre DPPH. Se obtuvieron valores desde 16.3 a 161.5 mg de trolox equivalente (TE) 100 g-1 de quinua. La máxima capacidad antioxidante se obtuvo para la relación L/S de 28:1, 58°C de temperatura de secado de grano y 39% v/v de etanol en el solvente de extracción. La variable de mayor influencia fue la concentración de etanol en el solvente.

References

Abderrahim, F., Huanatico, E., Segura, R., Arribas, S., González, M., & Condezo-Hoyos, L. (2015). Physical features, phenolic compounds, betalains and total antioxidant capacity of coloured quinoa seeds (Chenopodium quinoa Willd.) from Peruvian Altiplano. Food Chemistry, 183, 83–90. https://doi.org/10.1016/j.foodchem.2015.03.029

Álvarez-Jubete, L., Arendt, E. K., & Gallagher, E. (2009). Nutritive value and chemical composition of pseudocereals as gluten-free ingredients. International Journal of Food Sciences and Nutrition, 60(S4), 240–257. https://doi.org/10.1080/09637480902950597

Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. Food Science and Technology, 28(1), 25–30. https://doi.org/10.1016/S0023-6438(95)80008-5

Carciochi, R. A. (2014). Obtención de ingredientes alimenticios con capacidad antioxidante mejorada por aplicación de distintos procesos a semillas de quinoa (Chenopodium quinoa). [Doctoral dissertation, Universidad de Buenos Aires]. Core. https://core.ac.uk/download/pdf/299812718.pdf

FAO-ALADI. (2014). Tendencias y perspectivas del comercio internacional de quinua. Organización de las Naciones Unidas para la Alimentación y la Agricultura, Asociación Latinoamericana de Integración. http://www.fao.org/3/a-i3583s.pdf

Fischer, S., Wilckens, R., Jara, J., Aranda, M., Valdivia, W., Bustamante, L., Graf, F., & Obal, I. (2017). Protein and antioxidant composition of quinoa (Chenopodium quinoa Willd.) sprout from seeds submitted to water stress, salinity and light conditions. Industrial Crops and Products, 107, 558–564. https://doi.org/10.1016/j.indcrop.2017.04.035

Galvan d’Alessandro, L., Kriaa, K., Nikov, I., & Dimitrov, K. (2012). Ultrasound assisted extraction of polyphenols from black chokeberry. Separation and Purification Technology, 93, 42–47. https://doi.org/10.1016/j.seppur.2012.03.024

Gong, Y., Hou, Z., Gao, Y., Xue, Y., Liu, X., & Liu, G. (2012). Optimization of extraction parameters of bioactive components from deffated marigold (Tagetes erecta L.) residue using response surface methodology. Foods and Bioproducts Processing, 90(1), 9–16. https://doi.org/10.1016/j.fbp.2010.12.004

Jaikishun, S., Li, W., Yang, Z., & Song, S. (2019). Quinoa: In perspective of global challenges. Agronomy, 9, 176. https://doi.org/10.3390/agronomy9040176

López, L., Capparelli, A., & Nielsen, A. (2011). Traditional post-harvest processing to make quinoa grains (Chenopodium quinoa var. quinoa) apt for consumption in Northern Lipez (Potosí, Bolivia): ethnoarchaeological and archaeobotanical analyses. Archaeological and Anthropological Sciences, 3, 49–70. https://doi.org/10.1007/s12520-011-0060-5

Melo, D. (2016). Studio di adattabilità colturale della quinoa (Chenopodium quinoa willd.) in Italia settentrionale. [Doctoral dissertation, Università Cattolica del Sacro Cuore]. Sistema Bibliotecario d’Ateneo DocTA. http://tesionline.unicatt.it/handle/10280/35878.

Miranda, M., Vega-Gálvez, A., López, J., Parada, G., Sanders, M., Aranda, M., Uribe, E., & Di Scala, K. (2010). Impact of airdrying temperature on nutritional properties, total phenolic content and antioxidant capacity of quinoa seeds (Chenopodium quinoa Willd). Industrial Crops and Products, 32(3), 258–263. https://doi.org/10.1016/j.indcrop.2010.04.019

Naczk, M., & Shahidi, F. (2006). Phenolics in cereals, fruits and vegetables: Occurrence, extraction and analysis. Journal of Pharmaceutical and Biomedical Analysis, 41(5), 1523–1542. https://doi.org/10.1016/j.jpba.2006.04.002

Padrón-Pereira, C. A., Oropeza-González, R. A., & Montes-Hernández, A. I. (2015). Semillas de quinua (Chenopodium quinoa Willdenow): composición química y procesamiento. Aspectos relacionados con otras áreas. Revista Venezolana de Ciencia y Tecnología de Alimentos, 5(2), 166–218.

Reguera, M., Conesa, C., Gil-Gómez, A., Haros, C., Pérez-Casas, M., Briones-Labarca, V., Bolaños, L., Bonilla, I., Álvarez, R., Pinto, K., Mujica, Á., & Bascuñán-Godoy, L. (2018). The impact of different agroecological conditions on the nutritional composition of quinoa seeds. PeerJ, 14(6), Article e4442. https://doi.org/10.7717/peerj.4442

Repo-Carrasco-Valencia, R. A. M., & Serna, L. A. (2011). Quinoa (Chenopodium quinoa, Willd.) as a source of dietary fiber and other functional components. Ciência e Tecnologia de Alimentos, 31(1), 225–230. https://doi.org/10.1590/S0101-20612011000100035

Ruiz, K. B., Biondi, S., Oses, R., Acuña-Rodríguez, I. S., Antognoni, F., Martínez-Mosqueira, E. A., Coulibaly, A., Canahua-Murillo, A., Pinto, M., Zurita-Silva, A., Bazile, D., Jacobsen, S. E., & Molina-Montenegro, M. A. (2014). Quinoa biodiversity and sustainability for food security under climate change. A review. Agronomy for Sustainable Development, 34(2), 349–359. https://doi.org/10.1007/s13593-013-0195-0

Ruiz, K. B., Biondi, S., Martínez, E. A., Orsini, F., Antognoni, F., & Jacobsen, S. E. (2016). Quinoa - a model crop for understanding salt-tolerance mechanisms in halophytes. Plant Biosystems. Dealing with all Aspects of Plant Biology: Official Journal of the Società Botanica Italiana, 150(2), 357–371. https://doi.org/10.1080/11263504.2015.1027317

Sawa, T., Nakao, M., Akaike, T., Ono, K., & Maeda, H. (1999). Alkylperoxyl radical-scavenging activity of various flavonoids and other phenolic compounds: implications for the anti-tumor promoter effect of vegetables. Journal of Agricultural and Food Chemistry, 47(2), 397–402. https://doi.org/10.1021/jf980765e

Silva, E. M., Rogez, H., & Larondelle, Y. (2007). Optimization of extraction of phenolics from Inga edulis leaves using response surface methodology. Separation and Purification Technology, 55(3), 381–387. https://doi.org/10.1016/j.seppur.2007.01.008

Stikic, R., Glamoclija, D., Demin, M., Vucelic-Radovic, B., Jovanovic, Z., Milojkovic-Opsenica, D., Jacobsen, S., & Milovanovic, M. (2012). Agronomical and nutritional evaluation of quinoa seeds (Chenopodium quinoa Willd.) as an ingredient in bread formulations. Journal of Cereal Science, 55(2), 132–138. https://doi.org/10.1016/j.jcs.2011.10.010

Tang, Y., Li, X., Zhang, B., Chen, P. X., Liu, R., & Tsao, R. (2015). Characterisation of phenolics, betanins and antioxidant activities in seeds of three Chenopodium quinoa Willd. genotypes. Food Chemistry, 166(1), 380–388. https://doi.org/10.1016/j.foodchem.2014.06.018

Valencia, Z., Cámara, F., Ccapa, K., Catacora, P., & Quispe, F. (2017). Compuestos bioactivos y actividad antioxidante de Semillas de quinua peruana (Chenopodium quinoa W.). Revista de la Sociedad Química del Perú, 83(1), 16–29. https://doi.org/10.37761/rsqp.v83i1.100

Vollmannová, A., Margitanová, E., Tóth, T., Timoracká, M., Urminská, D., Bojňanská, T., & Čičová, I. (2013). Cultivar influence on total polyphenol and rutin contents and total antioxidant capacity in buckwheat, amaranth, and quinoa seeds. Czech Journal of Food Science, 31(6), 589–595. https://doi.org/10.17221/452/2012-CJFS

Vidaurre-Ruiz, J. M., Días-Rojas, G., Mendoza-Llamo, E., & Solano-Cornejo, M. A. (2017). Variación del contenido de Betalaínas, compuestos fenólicos y capacidad antioxidante durante el procesamiento de la quinua (Chenopodium quinoa W.). Revista de la Sociedad Química del Perú, 83(3), 319–330.

Wang, J., Sun, B., Cao, Y., Tian, Y., & Li, X. (2008). Optimisation of ultrasound-assisted extraction of phenolic compounds from wheat bran. Food Chemistry, 106(2), 804–810. https://doi.org/10.1016/j.foodchem.2007.06.062

Wu, G. (2015). Nutritional properties of quinoa. Industrial crops and products. In K. Murphy, & J. Matanguihan (Eds.). Quinoa: improvement and sustainable production (pp. 193–210). John Wiley & Sons, Inc. https://doi.org/10.1002/9781118628041.ch11

Zhang, G., He, L., & Hu, M. (2011). Optimized ultrasonic-assisted extraction of flavonoids from Prunella vulgaris L. and evaluation of antioxidant activities in vitro. Innovative Food Science and Emerging Technologies, 12(1), 18–25. https://doi.org/10.1016/j.ifset.2010.12.003

Zurita-Silva, A., Fuentes, F., Zamora, P., Jacobsen, S. E., & Schwember, A. R. (2014). Breeding quinoa (Chenopodium quinoa Willd.): potential and perspectives. Molecular Breeding, 34(1), 13–30. https://doi.org/10.1007/s11032-014-0023-5

How to Cite

APA

Luisetti, J., Lucero, H. and Ciappini, M. C. (2020). Optimization of the extraction of antioxidant compounds from quinoa (Chenopodium quinoa Willd.). Agronomía Colombiana, 38(3), 436–441. https://doi.org/10.15446/agron.colomb.v38n3.86520

ACM

[1]
Luisetti, J., Lucero, H. and Ciappini, M.C. 2020. Optimization of the extraction of antioxidant compounds from quinoa (Chenopodium quinoa Willd.). Agronomía Colombiana. 38, 3 (Sep. 2020), 436–441. DOI:https://doi.org/10.15446/agron.colomb.v38n3.86520.

ACS

(1)
Luisetti, J.; Lucero, H.; Ciappini, M. C. Optimization of the extraction of antioxidant compounds from quinoa (Chenopodium quinoa Willd.). Agron. Colomb. 2020, 38, 436-441.

ABNT

LUISETTI, J.; LUCERO, H.; CIAPPINI, M. C. Optimization of the extraction of antioxidant compounds from quinoa (Chenopodium quinoa Willd.). Agronomía Colombiana, [S. l.], v. 38, n. 3, p. 436–441, 2020. DOI: 10.15446/agron.colomb.v38n3.86520. Disponível em: https://revistas.unal.edu.co/index.php/agrocol/article/view/86520. Acesso em: 10 mar. 2025.

Chicago

Luisetti, Julia, Héctor Lucero, and María Cristina Ciappini. 2020. “Optimization of the extraction of antioxidant compounds from quinoa (Chenopodium quinoa Willd.)”. Agronomía Colombiana 38 (3):436-41. https://doi.org/10.15446/agron.colomb.v38n3.86520.

Harvard

Luisetti, J., Lucero, H. and Ciappini, M. C. (2020) “Optimization of the extraction of antioxidant compounds from quinoa (Chenopodium quinoa Willd.)”, Agronomía Colombiana, 38(3), pp. 436–441. doi: 10.15446/agron.colomb.v38n3.86520.

IEEE

[1]
J. Luisetti, H. Lucero, and M. C. Ciappini, “Optimization of the extraction of antioxidant compounds from quinoa (Chenopodium quinoa Willd.)”, Agron. Colomb., vol. 38, no. 3, pp. 436–441, Sep. 2020.

MLA

Luisetti, J., H. Lucero, and M. C. Ciappini. “Optimization of the extraction of antioxidant compounds from quinoa (Chenopodium quinoa Willd.)”. Agronomía Colombiana, vol. 38, no. 3, Sept. 2020, pp. 436-41, doi:10.15446/agron.colomb.v38n3.86520.

Turabian

Luisetti, Julia, Héctor Lucero, and María Cristina Ciappini. “Optimization of the extraction of antioxidant compounds from quinoa (Chenopodium quinoa Willd.)”. Agronomía Colombiana 38, no. 3 (September 1, 2020): 436–441. Accessed March 10, 2025. https://revistas.unal.edu.co/index.php/agrocol/article/view/86520.

Vancouver

1.
Luisetti J, Lucero H, Ciappini MC. Optimization of the extraction of antioxidant compounds from quinoa (Chenopodium quinoa Willd.). Agron. Colomb. [Internet]. 2020 Sep. 1 [cited 2025 Mar. 10];38(3):436-41. Available from: https://revistas.unal.edu.co/index.php/agrocol/article/view/86520

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

319

Downloads