Optimization of the extraction of antioxidant compounds from quinoa (Chenopodium quinoa Willd.)
Optimización de la extracción de compuestos antioxidantes a partir de quinua (Chenopodium quinoa Willd.)
DOI:
https://doi.org/10.15446/agron.colomb.v38n3.86520Keywords:
hydroalcoholic extraction, bioactive compounds, face-centered central composite design (en)extracción hidroalcohólica, compuestos bioactivos, diseño central compuesto centrado en las caras (es)
Downloads
Argentina contains a great biodiversity of natural foods such as quinoa that can be included in the human diet because of their nutritional characteristics and content of bioactive compounds. Among other properties, these bioactive have an antioxidant capacity that protects biomolecules from oxidant damage. Bioactive compounds contribute beneficially to diverse antimicrobial, anti-inflammatory and anti-carcinogenic physiological activities. The objective of this study was to optimize the parameters for the extraction of antioxidant compounds from quinoa: drying temperature of the grain, liquid/solid ratio (L/S), and ethanol concentration in the extraction solvent, based on an experimental design of three variables at three levels. A face-centered central composite design was used. The proposed levels were 40°C, 60°C and 80°C; 20:1, 30:1 and 40:1, and 30%, 50%, and 70% v/v of ethanol. Antioxidant capacity was determined by the capture of the DPPH free radical. The values obtained were from 16.3 mg to 161.5 mg of equivalent trolox (ET) 100 g-1 of quinoa. The maximum antioxidant capacity was obtained for the L/S ratio of 28:1, and the drying temperature of the grain was 58°C and 39% v/v of ethanol in the extraction solvent. The ethanol concentration was the most influential variable in the antioxidant compound extraction.
Argentina posee una gran biodiversidad de alimentos tales como la quinua que pueden ser incluidos en la dieta humana por sus características nutricionales y su contenido de compuestos bioactivos. Estos compuestos, entre otras propiedades, presentan una capacidad antioxidante que protege a las biomoléculas frente al daño oxidativo. Los compuestos bioactivos contribuyen benéficamente a diversas actividades fisiológicas antimicrobianas, antinflamatorias y anticancerígenas. El objetivo de este estudio fue optimizar los parámetros para la extracción de compuestos con capacidad antioxidante de la quinua: temperatura de secado del grano, relación liquido/sólido (L/S) y concentración de etanol en el solvente de extracción, basado en un diseño experimental de tres variables a tres niveles. Se uso un diseño central compuesto centrado en las caras. Los niveles propuestos fueron 40°C, 60°C y 80°C; 20:1, 30:1 y 40:1, y 30%, 50%, 70% v/v de etanol. La capacidad antioxidante se determinó mediante la captura del radical libre DPPH. Se obtuvieron valores desde 16.3 a 161.5 mg de trolox equivalente (TE) 100 g-1 de quinua. La máxima capacidad antioxidante se obtuvo para la relación L/S de 28:1, 58°C de temperatura de secado de grano y 39% v/v de etanol en el solvente de extracción. La variable de mayor influencia fue la concentración de etanol en el solvente.
References
Abderrahim, F., Huanatico, E., Segura, R., Arribas, S., González, M., & Condezo-Hoyos, L. (2015). Physical features, phenolic compounds, betalains and total antioxidant capacity of coloured quinoa seeds (Chenopodium quinoa Willd.) from Peruvian Altiplano. Food Chemistry, 183, 83–90. https://doi.org/10.1016/j.foodchem.2015.03.029
Álvarez-Jubete, L., Arendt, E. K., & Gallagher, E. (2009). Nutritive value and chemical composition of pseudocereals as gluten-free ingredients. International Journal of Food Sciences and Nutrition, 60(S4), 240–257. https://doi.org/10.1080/09637480902950597
Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. Food Science and Technology, 28(1), 25–30. https://doi.org/10.1016/S0023-6438(95)80008-5
Carciochi, R. A. (2014). Obtención de ingredientes alimenticios con capacidad antioxidante mejorada por aplicación de distintos procesos a semillas de quinoa (Chenopodium quinoa). [Doctoral dissertation, Universidad de Buenos Aires]. Core. https://core.ac.uk/download/pdf/299812718.pdf
FAO-ALADI. (2014). Tendencias y perspectivas del comercio internacional de quinua. Organización de las Naciones Unidas para la Alimentación y la Agricultura, Asociación Latinoamericana de Integración. http://www.fao.org/3/a-i3583s.pdf
Fischer, S., Wilckens, R., Jara, J., Aranda, M., Valdivia, W., Bustamante, L., Graf, F., & Obal, I. (2017). Protein and antioxidant composition of quinoa (Chenopodium quinoa Willd.) sprout from seeds submitted to water stress, salinity and light conditions. Industrial Crops and Products, 107, 558–564. https://doi.org/10.1016/j.indcrop.2017.04.035
Galvan d’Alessandro, L., Kriaa, K., Nikov, I., & Dimitrov, K. (2012). Ultrasound assisted extraction of polyphenols from black chokeberry. Separation and Purification Technology, 93, 42–47. https://doi.org/10.1016/j.seppur.2012.03.024
Gong, Y., Hou, Z., Gao, Y., Xue, Y., Liu, X., & Liu, G. (2012). Optimization of extraction parameters of bioactive components from deffated marigold (Tagetes erecta L.) residue using response surface methodology. Foods and Bioproducts Processing, 90(1), 9–16. https://doi.org/10.1016/j.fbp.2010.12.004
Jaikishun, S., Li, W., Yang, Z., & Song, S. (2019). Quinoa: In perspective of global challenges. Agronomy, 9, 176. https://doi.org/10.3390/agronomy9040176
López, L., Capparelli, A., & Nielsen, A. (2011). Traditional post-harvest processing to make quinoa grains (Chenopodium quinoa var. quinoa) apt for consumption in Northern Lipez (Potosí, Bolivia): ethnoarchaeological and archaeobotanical analyses. Archaeological and Anthropological Sciences, 3, 49–70. https://doi.org/10.1007/s12520-011-0060-5
Melo, D. (2016). Studio di adattabilità colturale della quinoa (Chenopodium quinoa willd.) in Italia settentrionale. [Doctoral dissertation, Università Cattolica del Sacro Cuore]. Sistema Bibliotecario d’Ateneo DocTA. http://tesionline.unicatt.it/handle/10280/35878.
Miranda, M., Vega-Gálvez, A., López, J., Parada, G., Sanders, M., Aranda, M., Uribe, E., & Di Scala, K. (2010). Impact of airdrying temperature on nutritional properties, total phenolic content and antioxidant capacity of quinoa seeds (Chenopodium quinoa Willd). Industrial Crops and Products, 32(3), 258–263. https://doi.org/10.1016/j.indcrop.2010.04.019
Naczk, M., & Shahidi, F. (2006). Phenolics in cereals, fruits and vegetables: Occurrence, extraction and analysis. Journal of Pharmaceutical and Biomedical Analysis, 41(5), 1523–1542. https://doi.org/10.1016/j.jpba.2006.04.002
Padrón-Pereira, C. A., Oropeza-González, R. A., & Montes-Hernández, A. I. (2015). Semillas de quinua (Chenopodium quinoa Willdenow): composición química y procesamiento. Aspectos relacionados con otras áreas. Revista Venezolana de Ciencia y Tecnología de Alimentos, 5(2), 166–218.
Reguera, M., Conesa, C., Gil-Gómez, A., Haros, C., Pérez-Casas, M., Briones-Labarca, V., Bolaños, L., Bonilla, I., Álvarez, R., Pinto, K., Mujica, Á., & Bascuñán-Godoy, L. (2018). The impact of different agroecological conditions on the nutritional composition of quinoa seeds. PeerJ, 14(6), Article e4442. https://doi.org/10.7717/peerj.4442
Repo-Carrasco-Valencia, R. A. M., & Serna, L. A. (2011). Quinoa (Chenopodium quinoa, Willd.) as a source of dietary fiber and other functional components. Ciência e Tecnologia de Alimentos, 31(1), 225–230. https://doi.org/10.1590/S0101-20612011000100035
Ruiz, K. B., Biondi, S., Oses, R., Acuña-Rodríguez, I. S., Antognoni, F., Martínez-Mosqueira, E. A., Coulibaly, A., Canahua-Murillo, A., Pinto, M., Zurita-Silva, A., Bazile, D., Jacobsen, S. E., & Molina-Montenegro, M. A. (2014). Quinoa biodiversity and sustainability for food security under climate change. A review. Agronomy for Sustainable Development, 34(2), 349–359. https://doi.org/10.1007/s13593-013-0195-0
Ruiz, K. B., Biondi, S., Martínez, E. A., Orsini, F., Antognoni, F., & Jacobsen, S. E. (2016). Quinoa - a model crop for understanding salt-tolerance mechanisms in halophytes. Plant Biosystems. Dealing with all Aspects of Plant Biology: Official Journal of the Società Botanica Italiana, 150(2), 357–371. https://doi.org/10.1080/11263504.2015.1027317
Sawa, T., Nakao, M., Akaike, T., Ono, K., & Maeda, H. (1999). Alkylperoxyl radical-scavenging activity of various flavonoids and other phenolic compounds: implications for the anti-tumor promoter effect of vegetables. Journal of Agricultural and Food Chemistry, 47(2), 397–402. https://doi.org/10.1021/jf980765e
Silva, E. M., Rogez, H., & Larondelle, Y. (2007). Optimization of extraction of phenolics from Inga edulis leaves using response surface methodology. Separation and Purification Technology, 55(3), 381–387. https://doi.org/10.1016/j.seppur.2007.01.008
Stikic, R., Glamoclija, D., Demin, M., Vucelic-Radovic, B., Jovanovic, Z., Milojkovic-Opsenica, D., Jacobsen, S., & Milovanovic, M. (2012). Agronomical and nutritional evaluation of quinoa seeds (Chenopodium quinoa Willd.) as an ingredient in bread formulations. Journal of Cereal Science, 55(2), 132–138. https://doi.org/10.1016/j.jcs.2011.10.010
Tang, Y., Li, X., Zhang, B., Chen, P. X., Liu, R., & Tsao, R. (2015). Characterisation of phenolics, betanins and antioxidant activities in seeds of three Chenopodium quinoa Willd. genotypes. Food Chemistry, 166(1), 380–388. https://doi.org/10.1016/j.foodchem.2014.06.018
Valencia, Z., Cámara, F., Ccapa, K., Catacora, P., & Quispe, F. (2017). Compuestos bioactivos y actividad antioxidante de Semillas de quinua peruana (Chenopodium quinoa W.). Revista de la Sociedad Química del Perú, 83(1), 16–29. https://doi.org/10.37761/rsqp.v83i1.100
Vollmannová, A., Margitanová, E., Tóth, T., Timoracká, M., Urminská, D., Bojňanská, T., & Čičová, I. (2013). Cultivar influence on total polyphenol and rutin contents and total antioxidant capacity in buckwheat, amaranth, and quinoa seeds. Czech Journal of Food Science, 31(6), 589–595. https://doi.org/10.17221/452/2012-CJFS
Vidaurre-Ruiz, J. M., Días-Rojas, G., Mendoza-Llamo, E., & Solano-Cornejo, M. A. (2017). Variación del contenido de Betalaínas, compuestos fenólicos y capacidad antioxidante durante el procesamiento de la quinua (Chenopodium quinoa W.). Revista de la Sociedad Química del Perú, 83(3), 319–330.
Wang, J., Sun, B., Cao, Y., Tian, Y., & Li, X. (2008). Optimisation of ultrasound-assisted extraction of phenolic compounds from wheat bran. Food Chemistry, 106(2), 804–810. https://doi.org/10.1016/j.foodchem.2007.06.062
Wu, G. (2015). Nutritional properties of quinoa. Industrial crops and products. In K. Murphy, & J. Matanguihan (Eds.). Quinoa: improvement and sustainable production (pp. 193–210). John Wiley & Sons, Inc. https://doi.org/10.1002/9781118628041.ch11
Zhang, G., He, L., & Hu, M. (2011). Optimized ultrasonic-assisted extraction of flavonoids from Prunella vulgaris L. and evaluation of antioxidant activities in vitro. Innovative Food Science and Emerging Technologies, 12(1), 18–25. https://doi.org/10.1016/j.ifset.2010.12.003
Zurita-Silva, A., Fuentes, F., Zamora, P., Jacobsen, S. E., & Schwember, A. R. (2014). Breeding quinoa (Chenopodium quinoa Willd.): potential and perspectives. Molecular Breeding, 34(1), 13–30. https://doi.org/10.1007/s11032-014-0023-5
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2020 Agronomía Colombiana

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
© Centro Editorial de la Facultad de Ciencias Agrarias, Universidad Nacional de Colombia
Reproduction and quotation of material appearing in the journal is authorized provided the following are explicitly indicated: journal name, author(s) name, year, volume, issue and pages of the source. The ideas and observations recorded by the authors are their own and do not necessarily represent the views and policies of the Universidad Nacional de Colombia. Mention of products or commercial firms in the journal does not constitute a recommendation or endorsement on the part of the Universidad Nacional de Colombia; furthermore, the use of such products should comply with the product label recommendations.
The Creative Commons license used by Agronomia Colombiana journal is: Attribution - NonCommercial - ShareAlike (by-nc-sa)

Agronomia Colombiana by Centro Editorial of Facultad de Ciencias Agrarias, Universidad Nacional de Colombia is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional License.
Creado a partir de la obra en http://revistas.unal.edu.co/index.php/agrocol/.