Rhizospheric rhizobia with potential as biofertilizers from Cuban rice cultivars
Rizobios rizosféricos con potencial como biofertilizantes a partir de cultivares cubanos de arroz
DOI:
https://doi.org/10.15446/agron.colomb.v39n1.88907Keywords:
Rhizobium, grass, salinity, acidity, growth, yield (en)Rhizobium, gramínea, salinidad, acidez, crecimiento, rendimiento (es)
Downloads
Rice biofertilization with Rhizobium increases the growth and yield of the crop. However, evidence for this has not been observed in Cuban rice cultivars. This research aimed to typify two Rhizobium isolates, considering the use of different carbon sources, their tolerance to stress conditions, and the ability to promote the growth and development of rice. Two Rhizobium sp. isolates (Rpr11 and 5P1) were used and their facility to grow on different carbon sources, pH, and salinity levels was determined. The effect of the inoculation of these bacteria on the growth and yield of rice was evaluated under controlled, greenhouse, and field conditions. Both isolates grew on mannitol, glycerol, maltose, and fructose at the highest concentrations of NaCl (1.0, 1.5 and 2.0%). The isolate 5P1 grew at all evaluated pH levels, especially at pH 5.0 and pH 8.0. The inoculation of both isolates increased the plant biomass and the potassium content. The plants inoculated with 5P1 had the highest contents of nitrogen, total chlorophyll, carbohydrates and proteins, and grain yield. This study is the first in Cuba that shows the beneficial effect of Rhizobium inoculation on the physiology and yield of rice.
La biofertilización de arroz con Rhizobium incrementa el crecimiento y rendimiento del cultivo. Sin embargo, en cultivares cubanos de arroz no se han observado tales evidencias. El objetivo de esta investigación fue tipificar dos aislamientos de Rhizobium considerando el uso de diferentes fuentes de carbono, su tolerancia a condiciones de estrés y la capacidad de promover el crecimiento y el desarrollo del arroz. Se emplearon dos aislamientos de Rhizobium sp. (Rpr11 y 5P1) y se determinó su capacidad para crecer en diferentes fuentes carbonadas, pH y niveles de salinidad. Se evaluó el efecto de la inoculación de estas bacterias sobre el crecimiento y rendimiento del arroz en condiciones controladas, de invernadero y de campo. Ambos aislamientos crecieron en manitol, glicerol, maltosa y fructosa y en las mayores concentraciones de NaCl (1.0, 1.5, y 2.0%). El aislamiento 5P1 creció en todos los niveles de pH, especialmente en pH 5.0 y pH 8.0. La inoculación de ambos aislamientos incrementó la biomasa y el contenido de potasio en las plantas. Las plantas inoculadas con 5P1 mostraron un mayor contenido de nitrógeno, clorofilas totales, carbohidratos y proteínas, y rendimiento del grano. Este estudio es el primero en Cuba que demuestra el efecto benéfico de la inoculación de Rhizobium en la fisiología y el rendimiento del arroz.
References
Bécquer, C. J., Ávila, U., Galdo, Y., Quintana, M., Álvarez, O., Puentes, A., Medinilla, F., & Mirabal, A. (2017). Selection of Bradyrhizobium sp. isolates due to their effect on maize under agricultural drought conditions in Sancti Spíritus, Cuba. Cuban Journal of Agricultural Science, 51(1), 129–138.
Bécquer Granados, C. J., Nápoles Gómez, J. A., Álvarez, O., Ramos, Y., Quintana, M., & Galdo, Y. (2012). Respuesta de diferentes variedades de cereales a la inoculación con Bradyrhizobium sp. Revista Mexicana de Ciencias Agrícolas, 3(1), 187–200. https://doi.org/10.29312/remexca.v3i1.1493
Buzo, F. S., Garé, L. M., Arf, O., Portugal, J. R., Meirelles, F. C., & Garcia, N. F. S. (2019). Interaction between thidiazuron and Azospirillum brasilense on yield characteristics and productivity of rice. Revista Brasileira de Engenharia Agrícola e Ambiental, 23(4), 244–249. https://doi.org/10.1590/1807-1929/agriambi.v23n4p244-249
Čapek, P., Manzoni, S., Kaštovská, E., Wild, B., Diáková, K., Bárta, J., Schnecker , J., Biasi, C., Martikainen, P. J., Alves , R. J. E., Guggenberger, G., Gentsch, N., Hugelius, G., Palmtag, J., Mikutta, R., Shibistova, O., Urich, T., Schleper, C., Richter, A., & Šantrůčková, H. (2018). A plant–microbe interaction framework explaining nutrient effects on primary production. Nature, Ecology and Evolution, 2(10), 1588–1596. https://doi.org/10.1038/s41559-018-0662-8
Cardoso, A. A., Andraus, M. P., de Oliveira Borba, T. C., Garcia Martin-Didonet, C. C., & de Brito Ferreira, E. P. (2017). Characterization of rhizobia isolates obtained from nodules of wild genotypes of common bean. Brazilian Journal of Microbiology, 48(1), 43–50. https://doi.org/10.1016/j.bjm.2016.09.002
Chen, C., & Zhu, H. (2013). Are common symbiosis genes required for endophytic rice-rhizobial interactions? Plant Signaling and Behavior, 8(9), Article e25453. https://doi.org/10.4161/psb.25453
Chen, X., Miché, L., Sachs, S., Wang, Q., Buschart, A., Yang, H. Y., Vera Cruz, C. M., Hurek, T., & Reinhold‐Hurek, B. (2015). Rice responds to endophytic colonization which is independent of the common symbiotic signaling pathway. New Phytologist, 208(2), 531–543. https://doi.org/10.1111/nph.13458
Chi, F., Shen, S., Cheng, H., Jing, Y., Yanni, Y. G., & Dazzo, F. B. (2005). Ascending migration of endophytic rhizobia, from roots to leaves, inside rice plants and assessment of benefits to rice growth physiology. Applied and Environmental Microbiology, 71(11), 7271–7278. https://doi.org/10.1128/AEM.71.11.7271-7278.2005
Chi, F., Yang, P., Han, F., Jing, Y., & Shen, S. (2010). Proteomic analysis of rice seedlings infected by Sinorhizobium meliloti 1021. Proteomics, 10(9), 1861–1874. https://doi.org/10.1002/pmic.200900694
Conte, S. S., & Walker, E. L. (2011). Transporters contributing to iron trafficking in plants. Molecular Plant, 4(3), 464–476. https://doi.org/10.1093/mp/ssr015
De Gregorio, P. R., Michavila, G., Muller, L. R., de Souza Borges, C., Pomares, M. F., de Sá, E. L. S., Pereira, C., & Vincent, P. A. (2017). Beneficial rhizobacteria immobilized in nanofibers for potential application as soybean seed bioinoculants. PLOS One, 12(5), Article e0176930. https://doi.org/10.1371/journal.pone.0176930
Degefu, T., Wolde-meskel, E., Adem, M., Fikre, A., Amede, T., & Ojiewo, C. (2018). Morphophysiological diversity of rhizobia nodulating pigeon pea (Cajanus cajan L. Millsp.) growing in Ethiopia. African Journal of Biotechnology, 17(6), 167–177. https://doi.org/10.5897/AJB2017.16338
Degiovanni, V., Berrío, L. E., & Charry, R. E. (2010). Origen, taxonomía y morfología de la planta de arroz (Oryza sativa L.). In V. Degiovanni, C. P. Martínez, & F. Motta (Eds.), Producción eco-eficiente del arroz en América Latina (pp. 35–59). Centro Internacional de Agricultura Tropical.
Dekak, A., Chabi, R., Menasria, T., & Benhizia, Y. (2018). Phenotypic characterization of rhizobia nodulating legumes Genista microcephala and Argyrolobium uniflorum growing under arid conditions. Journal of Advanced Research, 14, 35–42. https://doi.org/10.1016/j.jare.2018.06.001
FAO. (2019). Food outlook: biannual report on global food markets. Food and Agriculture Organization of the United Nations. http://www.fao.org/3/CA6911EN/CA6911EN.pdf
Flores-Félix, J. D., Menéndez, E., Rivera, L. P., Marcos-García, M., Martínez-Hidalgo, P., Mateos, P. F., Martínez-Molina, E., Velázquez, M. D. L. E., García-Fraile, P., & Rivas, R. (2013). Use of Rhizobium leguminosarum as a potential biofertilizer for Lactuca sativa and Daucus carota crops. Journal of Plant Nutrition and Soil Science, 176(6), 876–882. https://doi.org/10.1002/jpln.201300116
Franzini, V. I., Azcón, R., Ruiz-Lozano, J. M., & Aroca, R. (2019). Rhizobial symbiosis modifies root hydraulic properties in bean plants under non-stressed and salinity-stressed conditions. Planta, 249, 1207–1215. https://doi.org/10.1007/s00425-018-03076-0
Galán, A. I. (2017, March 28). Mayor producción de semillas para asegurar el programa de alimentos en Cuba. Ministerio de la Agricultura de Cuba. https://www.minag.gob.cu/node/167
García-Fraile, P., Carro, L., Robledo, M., Ramírez-Bahena, M. H., Flores-Félix, J. D., Fernández, M. T., Mateos, P. F., Rivas, R., Igual, J. M., Martínez-Molina, E., Peix, A., & Velázquez, E. (2012). Rhizobium promotes non-legumes growth and quality in several production steps: towards a biofertilization of edible raw vegetables healthy for humans. PLOS One, 7(5), Article e38122. https://doi.org/10.1371/journal.pone.0038122
Geddes, B. A., González, J. E., & Oresnik, I. J. (2014). Exopolysaccharide production in response to medium acidification is correlated with an increase in competition for nodule occupancy. Molecular Plant-Microbe Interactions, 27(12), 1307–1317. https://doi.org/10.0.4.70/MPMI-06-14-0168-R
Gopalakrishnan, S., Sathya, A., Vijayabharathi, R., Varshney, R. K., Gowda, C. L. L., & Krishnamurthy, L. (2015). Plant growth promoting rhizobia: challenges and opportunities. 3 Biotech, 5, 355–377. https://doi.org/10.1007/s13205-014-0241-x
Goulding, K.W.T. (2016). Soil acidification and the importance of liming agricultural soils with particular reference to the United Kingdom. Soil Use and Management, 32(3), 390–399. https://doi.org/10.1111/sum.12270
Gusain, Y. S., & Sharma, A. K. (2019). PGPRs inoculations enhances the grain yield and grain nutrient content in four cultivars of rice (Oryza sativa L.) under field condition. Journal of Pharmacognosy and Phytochemistry, 8(1), 1865–1870.
Hahn, L., de Sá, E. L. S., Osório Filho, B. D., Machado, R. G., Damasceno, R. G., & Giongo, A. (2016). Rhizobial inoculation, alone or coinoculated with Azospirillum brasilense, promotes growth of wetland rice. Revista Brasileira de Ciência do Solo, 40, Article e0160006. https://doi.org/10.1590/18069657rbcs20160006
Hawkins, J. P., Geddes, B. A., & Oresnik, I. J. (2017). Succinoglycan production contributes to acidic pH tolerance in Sinorhizobium meliloti Rm1021. Molecular Plant- Microbe Interactions, 30(12), 1009–1019. https://doi.org/10.1094/MPMI-07-17-0176-R
Hernández Forte, I., & Nápoles García, M. C. (2017). Rizobios residentes en la rizosfera de plantas de arroz (Oryza sativa L.) cultivar INCA LP-5. Cultivos Tropicales, 38(1), 39–49.
Hernández Forte, I., & Nápoles García, M. C. (2019). Rhizobia promote rice (Oryza sativa L.) growth: first evidence in Cuba. In D. Zúñiga, F. González, & E. Ormeño (Eds.), Microbial probiotics for agricultural systems: sustainability in plant and crop protection (pp. 155–168). Springer Nature. https://doi.org/10.1007/978-3-030-17597-9_10
Hernández Jiménez, A., Pérez Jiménez, J. M., Bosch Infante, D., & Castro Speck, N. (2015). Clasificación de los suelos de Cuba. Instituto Nacional de Ciencias Agrícolas.
Jiang, H., Wang, T., Chi, X., Wang, M., Chen, N., Chen, M., Pan, L., & Qi, P. (2020). Isolation and characterization of halotolerant phosphate solubilizing bacteria naturally colonizing the peanut rhizosphere in salt-affected soil. Geomicrobiology Journal, 37(2), 110–118. https://doi.org/10.1080/01490451.2019.1666195
Kajić, S., Hulak, N., & Sikora, S. (2016). Environmental stress response and adaptation mechanisms in rhizobia. Agriculturae Conspectus Scientificus, 81(1), 15–19.
Koskey, G., Mburu, S. W., Kimiti, J. M., Ombori, O., Maingi, J. M., & Njeru, E. M. (2018). Genetic characterization and diversity of Rhizobium isolated from root nodules of mid-altitude climbing bean (Phaseolus vulgaris L.) varieties. Frontiers in Microbiology, 9, Article 968. https://doi.org/10.3389/fmicb.2018.00968
Lamz Piedra, A., & González Cepero, M. C. (2013). La salinidad como problema en la agricultura: la mejora vegetal una solución inmediata. Cultivos Tropicales, 34(4), 31–42.
Lemes dos Santos, F., Bonilha da Silva, F., Saccol de Sá, E. L., Vian, A. L., Westphal Muniz, A., & Nunes dos Santos, R. (2019). Inoculation and co-inoculation of growth promoting rhizobacteria in irrigated rice plants. Revista Brasileira de Ciências Agrárias, 14(3), Article e5665.
Leyva, A., Quintana, A., Sánchez, M., Rodríguez, E. N., Cremata, J., & Sánchez, J. C. (2008). Rapid and sensitive anthrone-sulfuric acid assay in microplate format to quantify carbohydrate in biopharmaceutical products: method development and validation. Biologicals, 36(2), 134–141. https://doi.org/10.1016/j.biologicals.2007.09.001
Manet, L., Boyomo, O., Ngonkeu, E. L. M., Begoudé, A. D. B., & Sarr, P. S. (2016). Diversity and dynamics of rhizobial populations in acidic soils with aluminum and manganese toxicities in forest zones. International Journal of Agricultural Research, Innovation and Technology, 6(2), 12–23. https://doi.org/10.3329/ijarit.v6i2.31700
Mesa, D. (2003). Obtención de plantas resistentes a la salinidad para los suelos salinos cubanos. Revista Cubana de Ciencia Agrícola, 37(3), 217–226.
Ministerio de la Agricultura. (2014). Instructivo técnico del cultivo del arroz. Agencia de Cooperación Internacional del Japón, Instituto de Investigaciones de Granos.
Nohwar, N., Khandare, R. V., & Desai, N. S. (2019). Isolation and characterization of salinity tolerant nitrogen fixing bacteria from Sesbania sesban (L) root nodules. Biocatalysis and Agricultural Biotechnology, 21, Article 101325. https://doi.org/10.1016/j.bcab.2019.101325
Numan, M., Bashir, S., Khan, Y., Mumtaz, R., Shinwari, Z. K., Khan, A. L., Khan, A., & AL-Harrasi, A. (2018). Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: a review. Microbiological Research, 209, 21–32. https://doi.org/10.1016/j.micres.2018.02.003
Osorio Filho, B. D., Binz, A., Lima, R. F., Giongo, A., & Saccol de Sá, E. L. (2016). Promoção de crescimento de arroz por rizóbios em diferentes níveis de adubação nitrogenada. Ciência Rural, 46(3), 478–485. https://doi.org/10.1590/0103-8478cr20141066
Pádua Oliveira, D., Alves de Figueiredo, M., Lima Soares, B., Stivanin Teixeira, O. H., Dias Martins, F. A., Rufini, M., Peixoto Chain, C., Pereira Reis, R., Ramalho de Morais, A., de Souza Moreira, F. M., & Bastos de Andrade, M. J. (2017). Acid tolerant Rhizobium strains contribute to increasing the yield and profitability of common bean in tropical soils. Journal of Soil Science and Plant Nutrition, 17(4), 922–934. https://doi.org/10.4067/S0718-95162017000400007
Paneque Pérez, V. M., Calaña Naranjo, J. M., Calderón Valdés, M., Borges Benítez, Y., Hernández García, T. C., & Caruncho Contreras, M. (2010). Manual de técnicas analíticas para análisis de suelo, foliar, abonos orgánicos y fertilizantes químicos (1st ed.). Ediciones INCA.
Pérez-Pérez, R., Oudot, M., Serrano, L., Hernández, I., Nápoles, M. C., Sosa, D., & Pérez-Martínez, S. (2019). Rhizospheric rhizobia identification in maize (Zea mays L.) plants. Agronomía Colombiana, 37(3), 255–262. https://doi.org/10.15446/agron.colomb.v37n3.80189
Plá, C. L., & Cobos-Porras, L. (2015). Salinity: physiological impacts on legume nitrogen fixation. In S. Sulieman, & L. Tran (Eds.), Legume nitrogen fixation in a changing environment (pp. 35-65). Springer International Publishing. https://doi.org/10.1007/978-3-319-06212-9_3
Praveen Biradar, B. J., & Santhosh, G. P. (2018). Cell protectants, adjuvants, surfactant and preservative and their role in increasing the shelf life of liquid inoculant formulations of Pseudomonas fluorescens. International Journal of Pure and Applied Bioscience, 6(4), 116–122. https://doi.org/10.18782/2320-7051.6821
Saber, T., & Qader Khursheed, M. (2020). Improvement of wheat quality and soil fertility by integrates chemical fertilizer with rhizobial bacteria. Zanco Journal of Pure and Applied Sciences, 32(2), 178–191. https://doi.org/10.21271/ZJPAS.32.2.19
Sethi, D., Mohanty, S., & Pattanayak, S. K. (2019). Acid and salt tolerance behavior of Rhizobium isolates and their effect on microbial diversity in the rhizosphere of redgram (Cajanus cajan L.). Indian Journal of Biochemistry and Biophysics, 56, 245–252.
Shahid, S. A., Zaman, M., & Heng, L. (2018). Soil salinity: historical perspectives and a world overview of the problem. In: S. A. Shahid, M. Zaman, & L. Heng (Eds.), Guideline for salinity assessment, mitigation and adaptation using nuclear and related techniques (pp. 43–53). Springer Open. https://doi.org/10.1007/978-3-319-96190-3_2
Shao, H., Chu, L., Lu, H., Qi, W., Chen, X., Liu, J., Kuang, S., Tang, B., & Wong, V. (2019). Towards sustainable agriculture for the salt‐affected soil. Land Degradation Development, 30(5), 574–579. https://doi.org/10.1002/ldr.3218
Singh, R., Malik, N., & Singh, S. (2013). Impact of rhizobial inoculation and nitrogen utilization in plant growth promotion of maize (Zea mays L.). Nusantara Bioscience, 5(1), 8–14. https://doi.org/10.13057/nusbiosci/n050102
Solaiman, A. R. M., Hossain, G. M. A., & Mia, M. A. B. (2011). Effect of Rhizobium on growth and biomass production of rice. Bangladesh Journal of Microbiology, 28(2), 64–68.
Sun, S. S. M. (1994). Methods in plant molecular biology and agricultural biotechnology; a laboratory training manual (1st ed.). Asian Vegetable Research and Development Center.
Taiz, L., Zeiger, E., Moller, I. M., & Murphy, A. (2015). Plant Physiology and Development (6th ed.). Sinauer Associates.
Tan, K. Z., Radziah, O., Halimi, M. S., Khairuddin, A. R., & Shamsuddin, Z. H. (2015). Assessment of plant growth-promoting rhizobacteria (PGPR) and rhizobia as multi-strain biofertilizer on growth and N2 fixation of rice plant. Australian Journal of Crop Science, 9(12), 1257–1264.
Tewari, S., & Sharma, S. (2020). Rhizobial exopolysaccharides as supplement for enhancing nodulation and growth attributes of Cajanus cajan under multi-stress conditions: a study from lab to field. Soil and Tillage Research, 198, Article 104545. https://doi.org/10.1016/j.still.2019.104545
Toledo, M. (2016). Manejo de suelos ácidos de las zonas altas de Honduras: conceptos y métodos (1st ed.). Instituto Interamericano de Cooperación para la Agricultura.
Tullio, L. D., Gomes, D. F., Silva, L. P., Hungria, M., & da Silva Batista, J. S. (2019). Proteomic analysis of Rhizobium freirei PRF 81T reveals the key role of central metabolic pathways in acid tolerance. Applied Soil Ecology, 135, 98–103. https://doi.org/10.1016/j.apsoil.2018.11.014
Vincent, J. M. (1970). A manual for the practical study of root-nodule bacteria (1st ed.). Blackwell Scientific Publications.
Wang, S., Li, C., Copeland, L., Niu, Q., & Wang, S. (2015). Starch retrogradation: a comprehensive review. Comprehensive Reviews in Food Science and Food Safety, 14(5), 568–585. https://doi.org/10.1111/1541-4337.12143
Wu, Q., Peng, X., Yang, M., Zhang, W., Dazzo, F. B., Uphoff, N., Jing, Y., & Shen, S. (2018). Rhizobia promote the growth of rice shoots by targeting cell signaling, division and expansion. Plant Molecular Biology, 97, 507–523. https://doi.org/10.1007/s11103-018-0756-3
Yanni, Y. G., & Dazzo, F. B. (2010). Enhancement of rice production using endophytic strains of Rhizobium leguminosarum bv. trifolii in extensive field inoculation trials within the Egypt Nile delta. Plant and Soil, 336, 129–142. https://doi.org/10.1007/s11104-010-0454-7
Yanni, Y. G., & Dazzo, F. B. (2015). Occurrence and ecophysiology of the natural endophytic Rhizobium–rice association and translational assessment of its biofertilizer performance within the Egypt Nile delta. In: F. J. de Bruijn (Ed.), Biological nitrogen fixation (pp. 1125–1142). John Wiley & Sons, Inc. https://doi.org/10.1002/9781119053095.ch111
Yanni, Y., Rizk, R. Y., Abd El-Fattah, F. K., Squartini, A., Corich, V., Giacomini, A., de Bruijn, F., Rademaker, J., Maya-Flores, J., Ostrom, P., Vega-Hernandez, M., Hollingsworth, R. I., Martínez-Molina, E., Mateos, P., Velázquez, E., Wopereis, J., Triplett, E., Umali-García, M., Anarna, J. A., Rolfe, B. G., Ladha, J. K., Hill, J., Mujoo, R., Ng, P. K., Dazzo, F. B. (2001). The beneficial plant growth-promoting association of Rhizobium leguminosarum bv. trifolii with rice roots. Australian Journal of Plant Physiology, 28(9), 845–870. https://doi.org/10.1071/PP01069
Yanni, Y., Zidan, M., Dazzo, F., Rizk, R., Mehesen, A., Abdelfattah, F., & Elsadany, A. (2016). Enhanced symbiotic performance and productivity of drought stressed common bean after inoculation with tolerant native rhizobia in extensive fields. Agriculture Ecosystems and Environment, 232, 119–128. https://doi.org/10.1016/j.agee.2016.07.006
Zafar, M., Ahmed, N., Mustafa, G., Zahir, Z. A., & Simms, E. L. (2017). Molecular and biochemical characterization of rhizobia from chickpea (Cicer arietinum). Pakistan Journal of Agricultural Sciences, 54(2), 373–381. https://doi.org/10.21162/PAKJAS/17.5874
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2021 Agronomía Colombiana

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
© Centro Editorial de la Facultad de Ciencias Agrarias, Universidad Nacional de Colombia
Reproduction and quotation of material appearing in the journal is authorized provided the following are explicitly indicated: journal name, author(s) name, year, volume, issue and pages of the source. The ideas and observations recorded by the authors are their own and do not necessarily represent the views and policies of the Universidad Nacional de Colombia. Mention of products or commercial firms in the journal does not constitute a recommendation or endorsement on the part of the Universidad Nacional de Colombia; furthermore, the use of such products should comply with the product label recommendations.
The Creative Commons license used by Agronomia Colombiana journal is: Attribution - NonCommercial - ShareAlike (by-nc-sa)

Agronomia Colombiana by Centro Editorial of Facultad de Ciencias Agrarias, Universidad Nacional de Colombia is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional License.
Creado a partir de la obra en http://revistas.unal.edu.co/index.php/agrocol/.