Published

2021-01-01

Glyphosate and atrazine inhibit growth of Azospirillum brasilense, Bacillus subtilis, Bacillus thuringiensis, Chromobacterium subtsugae and Saccharopolyspora spinosa

El glifosato y la atrazina inhiben el crecimiento de Azospirillum brasilense, Bacillus subtilis, Bacillus thuringiensis, Chromobacterium subtsugae y Saccharopolyspora spinosa

DOI:

https://doi.org/10.15446/agron.colomb.v39n1.89870

Keywords:

tolerance, biodegradation, pesticides, microorganisms (en)
tolerancia, biodegradación, pesticidas, microorganismos (es)

Downloads

Authors

Glyphosate and atrazine are two herbicides used worldwide to ensure high yields in different types of crops. Despite the importance of herbicides, their application may have negative effects on non-target organisms, including bacteria used in biological control and biological nitrogen fixation. Therefore, this research aimed to analyze the in vitro effect of glyphosate and atrazine on the growth of bacteria Azospirillum brasilense, Bacillus subtilis, Bacillus thuringiensis, Chromobacterium subtsugae, and Saccharopolyspora spinosa. The design used was completely randomized, and the doses of the herbicides evaluated were 1.0, 2.0, 3.0 and 4.0 L ha-1. The results showed that glyphosate and atrazine affected the development of the bacteria under study. Atrazine showed a lineal increasing effect between the doses used and inhibition of bacterial growth. Therefore, the dose of 4.0 L ha-1 of this herbicide was the one that showed the highest inhibition of bacteria, whereas glyphosate at a dose of 2.0 L ha-1 showed the highest inhibition of bacteria compared to doses of 1.0, 3.0 and 4.0 L ha-1.

El glifosato y la atrazina son dos herbicidas utilizados en todo el mundo para garantizar una alta productividad en diferentes tipos de cultivos. A pesar de la importancia de los herbicidas, su aplicación puede causar efectos negativos en organismos no objetivo, incluyendo bacterias usadas en control biológico y fijación biológica de nitrógeno. Por lo tanto, esta investigación tuvo como objetivo analizar el efecto in vitro del glifosato y la atrazina sobre el crecimiento de las bacterias Azospirillum brasilense, Bacillus subtilis, Bacillus thuringiensis, Chromobacterium subtsugae y Saccharopolyspora spinosa. El diseño utilizado fue completamente al azar y las dosis de los herbicidas evaluadas fueron 1.0, 2.0, 3.0 y 4.0 L ha-1. Los resultados mostraron que el glifosato y la atrazina afectaron el desarrollo de las bacterias estudiadas. La atrazina tiene un efecto lineal creciente entre las dosis utilizadas y la inhibición del crecimiento bacteriano. Por lo tanto, la dosis de 4.0 L ha-1 de este herbicida fue la que mostró la mayor inhibición de crecimiento de bacterias, mientras que el glifosato a una dosis de 2.0 L ha-1 mostró la más alta inhibición de crecimiento de bacterias en comparación con las dosis de 1.0, 3.0 y 4.0 L ha-1.

References

Agostini, L. T., Otuka, A. K., Silva, E. A., Baggio, M. V., Laurentis, V. L., Duarte, R. T., Agostini, T. T., & Polanczyk, R. A. (2013). Compatibilidade de produtos à base de Bacillus thuringiensis (Berliner, 1911) com glifosato em diferentes dosagens, utilizado em soja (Glycine max (L.) Merrill). Ciência et Praxis, 6(11), 37–40.

Artigas, J., Batisson, I., & Carles, L. (2020). Dissolved organic matter does not promote glyphosate degradation in auto-heterotrophic aquatic microbial communities. Environmental Pollution, 259, Article 113951. https://doi.org/10.1016/j.envpol.2020.113951

Carranza, C. S., Regñicoli, J. P., Aluffi, M. E., Benito, N., Chiacchiera, S. M., Barberis, C. L., & Magnoli, C. E. (2019). Glyphosate in vitro removal and tolerance by Aspergillus oryzae in soil microcosms. International Journal of Environmental Science and Technology, 16, 7673–7682. https://doi.org/10.1007/s13762-019-02347-x

Caulier, S., Nannan, C., Gillis, A., Licciardi, F., Bragard, C., & Mahillon, J. (2019). Overview of the antimicrobial compounds produced by members of the Bacillus subtilis group. Frontiers in Microbiology, 10, Article 302. https://doi.org/10.3389/fmicb.2019.00302

Costa, M. A., Moscardini, V. F., Gontijo, P. C., Carvalho, G. A., Oliveira, R. L., & Oliveira, H. N. (2014). Sublethal and transgenerational effects of insecticides in developing Trichogramma galloi (Hymenoptera: Trichogrammatidae). Ecotoxicology, 23, 1399–1408. https://doi.org/10.1007/s10646-014-1282-y

Dibua, U. M. E., Mkpuma, V. O., & Enemuo, S. (2015). Isolation,characterization and biodegradation assay of glyphosate utilizing bacteria from exposed rice farm. Journal of Biology, Agriculture and Healthcare, 5(5), 96–109.

Duke, S. O. (2018). The history and current status of glyphosate. Pest Management Science, 74(5), 1027–1034. https://doi.org/10.1002/ps.4652

Duke, S. O., & Powles, S. B. (2008). Glyphosate: a once-in-a-century herbicide. Pest Management Science, 64(4), 319–325. https://doi.org/10.1002/ps.1518

Fan, J., Yang, G., Zhao, H., Shi, G., Geng, Y., Hou, T., & Tao, K. (2012). Isolation, identification and characterization of a glyphosatedegrading bacterium, Bacillus cereus CB4, from soil. Journal of General and Applied Microbiology, 58(4), 263–271. https://doi.org/10.2323/jgam.58.263

Fan, X., & Song, F. (2014). Bioremediation of atrazine: recent advances and promises. Journal of Soils and Sediments, 14, 1727–1737. https://doi.org/10.1007/s11368-014-0921-5

Fitzgibbon, J., & Braymer, H. D. (1988). Phosphate starvation induces uptake of glyphosate by Pseudomonas sp. strain PG2982. Applied and Environmental Microbiology, 54(7), 1886–1888.

Fonseca, A. P. P., Marques, E. J., Torres, J. B., Silva, L. M., & Siqueira, H. Á. A. (2015). Lethal and sublethal effects of lufenuron on sugarcane borer Diatraea flavipennella and its parasitoid Cotesia flavipes. Ecotoxicology, 24, 1869–1879. https://doi.org/10.1007/s10646-015-1523-8

Haas, P., Hoehne, L., & Kuhn, D. (2018). Revisão: avaliação dos efeitos do glifosato no ecossistema agrícola e sua toxicidade para a saúde humana. Revista Destaques Acadêmicos, 10(4), 82–90. https://doi.org/10.22410/issn.2176-3070.v10i4a2018.2014

Hair Jr., J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2009). Multivariate data analysis (7th ed.). Prentice Hall.

Hirakuri, M. H., & Lazzarotto, J. J. (2014). O agronegócio da soja nos contextos mundial e brasileiro. Embrapa Soja.

Kryuchkova, Y. V., Burygin, G. L., Gogoleva, N. E., Gogolev, Y. V., Chernyshova, M. P., Makarov, O. E., Fedorov, E. E., & Turkovskaya, O. V. (2014). Isolation and characterization of a glyphosate-degrading rhizosphere strain, Enterobacter cloacae K7. Microbiological Research, 169(1), 99–105. https://doi.org/10.1016/j.micres.2013.03.002

Manogaran, M., Shukor, M. Y., Yasid, N. A., Johari, W. L. W., & Ahmad, S. A. (2017). Isolation and characterisation of glyphosate-degrading bacteria isolated from local soils in Malaysia. Rendiconti Lincei, 28, 471–479. https://doi.org/10.1007/s12210-017-0620-4

Moscardini, V. F., Gontijo, P. C., Michaud, J. P., & Carvalho, G. A. (2015). Sublethal effects of insecticide seed treatments on two nearctic lady beetles (Coleoptera: Coccinellidae). Ecotoxicology, 24, 1152–1161. https://doi.org/10.1007/s10646-015-1462-4

Oliveira, H. N., & Ávila, C. J. (2010). Controle biológico de pragas no Centro-Oeste brasileiro. G. Bio - Revista de Controle Biológico, 11–14.

Oliveira Jr., R. S. (2011). Mecanismos de ação de herbicidas. In R. S. Oliveira Jr., J. Constantin, & M. H. Inoue (Eds.), Biologia e manejo de plantas daninhas (22nd ed., pp. 141–192). Omnipax.

Palma, L., Muñoz, D., Berry, C., Murillo, J., & Caballero, P. (2014). Bacillus thuringiensis toxins: an overview of their biocidal activity. Toxins, 6(12), 3296–3325. https://doi.org/10.3390/toxins6123296

Prosser, R. S., Anderson, J. C., Hanson, M. L., Solomon, K. R., & Sibley, P. K. (2016). Indirect effects of herbicides on biota in terrestrial edge-of-field habitats: a critical review of the literature. Agriculture, Ecosystems and Environment, 232, 59–72. https://doi.org/10.1016/j.agee.2016.07.009

Schimel, J., Balser, T. C., & Wallenstein, M. (2007). Microbial stress-response physiology and its implications for ecosystem function. Ecology, 88(6), 1386–1394. https://doi.org/10.1890/06-0219

Silva, G. N., Souza, G. M., Almeida Neto, A. F., Jorge, L. M. M., & Santos, O. A. A. (2017). Influence of ZnO content in mixed oxides catalysts applied in the photocatalytic degradation of atrazine. Chemical Engineering Transactions, 57, 637–642. https://doi.org/10.3303/CET1757107

Simonato, J. (2018). Avaliação do potencial de inimigos naturais no controle biológico de Helicoverpa armigera (HÜBNER, 1805) (Lepdoptera: Noctuidae) [Doctoral dissertation, Universidade Federal da Grande Dourados]. https://ainfo.cnptia.embrapa.br/digital/bitstream/item/191682/1/Tese-Juliana-Simonato.pdf

SYSTAT. (2014). SigmaPlot for Windows. SYSTAT Software, Inc.

Steffen, G. P. K., Steffen, R. B., & Antoniolli, Z. I. (2011). Contaminação do solo e da água pelo uso de agrotóxicos. Revista Tecno-Lógica, 15(1), 15–21.

R Core Team. (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing. http://www.R-project.org/

Wang, J., Zhu, L., Wang, Q., Wang, J., & Xie, H. (2014). Isolation and characterization of atrazine mineralizing Bacillus subtilis strain HB-6. PLOS One, 9(9), Article e107270. https://doi.org/10.1371/journal.pone.0107270

Wright, M. G. (2014). Biological control of invasive insect pests. In D. P. Abrol (Ed.), Integrated pest management - current concepts and ecological perspective (pp. 267–281). Academic Press. https://doi.org/10.1016/B978-0-12-398529-3.00015-4

How to Cite

APA

Farias, D. I. O. A. de, Leite, R. da C., Ribeiro, E. A., Martins, A. L. L. and Chagas Júnior, A. F. (2021). Glyphosate and atrazine inhibit growth of Azospirillum brasilense, Bacillus subtilis, Bacillus thuringiensis, Chromobacterium subtsugae and Saccharopolyspora spinosa. Agronomía Colombiana, 39(1), 113–120. https://doi.org/10.15446/agron.colomb.v39n1.89870

ACM

[1]
Farias, D.I.O.A. de, Leite, R. da C., Ribeiro, E.A., Martins, A.L.L. and Chagas Júnior, A.F. 2021. Glyphosate and atrazine inhibit growth of Azospirillum brasilense, Bacillus subtilis, Bacillus thuringiensis, Chromobacterium subtsugae and Saccharopolyspora spinosa. Agronomía Colombiana. 39, 1 (Jan. 2021), 113–120. DOI:https://doi.org/10.15446/agron.colomb.v39n1.89870.

ACS

(1)
Farias, D. I. O. A. de; Leite, R. da C.; Ribeiro, E. A.; Martins, A. L. L.; Chagas Júnior, A. F. Glyphosate and atrazine inhibit growth of Azospirillum brasilense, Bacillus subtilis, Bacillus thuringiensis, Chromobacterium subtsugae and Saccharopolyspora spinosa. Agron. Colomb. 2021, 39, 113-120.

ABNT

FARIAS, D. I. O. A. de; LEITE, R. da C.; RIBEIRO, E. A.; MARTINS, A. L. L.; CHAGAS JÚNIOR, A. F. Glyphosate and atrazine inhibit growth of Azospirillum brasilense, Bacillus subtilis, Bacillus thuringiensis, Chromobacterium subtsugae and Saccharopolyspora spinosa. Agronomía Colombiana, [S. l.], v. 39, n. 1, p. 113–120, 2021. DOI: 10.15446/agron.colomb.v39n1.89870. Disponível em: https://revistas.unal.edu.co/index.php/agrocol/article/view/89870. Acesso em: 14 jul. 2024.

Chicago

Farias, David Ingsson Oliveira Andrade de, Robson da Costa Leite, Evandro Alves Ribeiro, Albert Lennon Lima Martins, and Aloisio Freitas Chagas Júnior. 2021. “Glyphosate and atrazine inhibit growth of Azospirillum brasilense, Bacillus subtilis, Bacillus thuringiensis, Chromobacterium subtsugae and Saccharopolyspora spinosa”. Agronomía Colombiana 39 (1):113-20. https://doi.org/10.15446/agron.colomb.v39n1.89870.

Harvard

Farias, D. I. O. A. de, Leite, R. da C., Ribeiro, E. A., Martins, A. L. L. and Chagas Júnior, A. F. (2021) “Glyphosate and atrazine inhibit growth of Azospirillum brasilense, Bacillus subtilis, Bacillus thuringiensis, Chromobacterium subtsugae and Saccharopolyspora spinosa”, Agronomía Colombiana, 39(1), pp. 113–120. doi: 10.15446/agron.colomb.v39n1.89870.

IEEE

[1]
D. I. O. A. de Farias, R. da C. Leite, E. A. Ribeiro, A. L. L. Martins, and A. F. Chagas Júnior, “Glyphosate and atrazine inhibit growth of Azospirillum brasilense, Bacillus subtilis, Bacillus thuringiensis, Chromobacterium subtsugae and Saccharopolyspora spinosa”, Agron. Colomb., vol. 39, no. 1, pp. 113–120, Jan. 2021.

MLA

Farias, D. I. O. A. de, R. da C. Leite, E. A. Ribeiro, A. L. L. Martins, and A. F. Chagas Júnior. “Glyphosate and atrazine inhibit growth of Azospirillum brasilense, Bacillus subtilis, Bacillus thuringiensis, Chromobacterium subtsugae and Saccharopolyspora spinosa”. Agronomía Colombiana, vol. 39, no. 1, Jan. 2021, pp. 113-20, doi:10.15446/agron.colomb.v39n1.89870.

Turabian

Farias, David Ingsson Oliveira Andrade de, Robson da Costa Leite, Evandro Alves Ribeiro, Albert Lennon Lima Martins, and Aloisio Freitas Chagas Júnior. “Glyphosate and atrazine inhibit growth of Azospirillum brasilense, Bacillus subtilis, Bacillus thuringiensis, Chromobacterium subtsugae and Saccharopolyspora spinosa”. Agronomía Colombiana 39, no. 1 (January 1, 2021): 113–120. Accessed July 14, 2024. https://revistas.unal.edu.co/index.php/agrocol/article/view/89870.

Vancouver

1.
Farias DIOA de, Leite R da C, Ribeiro EA, Martins ALL, Chagas Júnior AF. Glyphosate and atrazine inhibit growth of Azospirillum brasilense, Bacillus subtilis, Bacillus thuringiensis, Chromobacterium subtsugae and Saccharopolyspora spinosa. Agron. Colomb. [Internet]. 2021 Jan. 1 [cited 2024 Jul. 14];39(1):113-20. Available from: https://revistas.unal.edu.co/index.php/agrocol/article/view/89870

Download Citation

CrossRef Cited-by

CrossRef citations1

1. L. Ferrando, M. I. Bellini, A. Fernández-Scavino. (2023). Differential response of denitrifying and diazotrophic soil populations to short and long-term exposure of glyphosate and atrazine. Environmental Sustainability, 6(2), p.229. https://doi.org/10.1007/s42398-023-00270-z.

Dimensions

PlumX

Article abstract page views

497

Downloads

Download data is not yet available.