Co-inoculation with a product based on native microorganisms improves germination and seedling growth of Phaseolus vulgaris L.
La co-inoculación con un producto a base de microorganismos nativos mejora la germinación y el crecimiento de plántulas de Phaseolus vulgaris L.
DOI:
https://doi.org/10.15446/agron.colomb.v39n3.91841Keywords:
agroecology, biochemistry, common bean, efficient microorganisms (en)agroecología, bioquímica, frijol común, microorganismos eficientes (es)
Downloads
Agricultural products based on native microorganisms represent an ecological alternative to traditional chemical fertilizers for enhancing growth and crop yield. This study aimed to evaluate the effect of the product based on native microorganisms IHPLUS® on germination, emergence, and primary leaf formation of Phaseolus vulgaris L. seedlings. The treatments consisted of a control (immersion in distilled water) and nine treatments that were the combination of IHPLUS® at three concentrations and three immersion times. The application of IHPLUS® significantly increased the percentage of germination, mainly in the first days. After 7 d, the germination rate and root and hypocotyl lengths increased in almost all treatments compared to control seedlings. The beneficial effects of IHPLUS® on the germination of P. vulgaris may be partially attributed to changes on seedling metabolism due to an increase in α-amylase activity and in the content of reducing sugars and soluble proteins. Results suggest that IHPLUS® may act as an enhancer of germination in common beans that might lead to rapid seed germination, uniform seedling growth, and better seedling establishment and crop productivity.
Los productos agrícolas a base de microorganismos nativos constituyen una alternativa ecológica al uso tradicional de fertilizantes químicos para potenciar el crecimiento y el rendimiento de los cultivos. Este estudio tuvo como objetivo evaluar el efecto del producto a base de microorganismos nativos IHPLUS® en la germinación, emergencia y formación de hojas primarias de plántulas de Phaseolus vulgaris L. Los tratamientos consistieron en un control (inmersión en agua destilada) y nueve tratamientos con la combinación de tres concentraciones de IHPLUS® y tres tiempos de inmersión. La aplicación de IHPLUS® incrementó significativamente el porcentaje de germinación principalmente en los primeros días. Después de 7 d, la tasa de germinación y la longitud de la raíz y del hipocótilo aumentaron en casi todos los tratamientos con relación a las plántulas control. El efecto benéfico de IHPLUS® sobre la germinación de P. vulgaris se puede atribuir, en parte, a cambios en el metabolismo de las plántulas debidos a un aumento en la actividad de la α-amilasa y en el contenido de azúcares reductores y las proteínas solubles. Los resultados sugieren que el IHPLUS® puede actuar como un potenciador de la germinación en el frijol común, lo que puede contribuir a elevar la velocidad de germinación, el crecimiento uniforme de las plántulas y a un mejor establecimiento y productividad del cultivo.
References
Abri, Kuswinanti, T., Sengin, E. L., & Sjahrir, R. (2015). Production of indole acetic acid (IAA) hormone from fungal isolates collected from rhizosphere of aromatic rice in Tana Toraja. International Journal of Current Research in Biosciences and Plant Biology, 2(6), 198–201.
Alori, E. T., Glick, B. R., & Babalola, O. O. (2017). Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Frontiers in Microbiology, 8, Article 971. https://doi.org/10.3389/fmicb.2017.00971
Angeles-Núñez, J. G., & Cruz-Acosta, T. (2015). Aislamiento, caracterización molecular y evaluación de cepas fijadoras de nitrógeno en la promoción del crecimiento de frijol. Revista Mexicana de Ciencias Agrícolas, 6(5), 929–942.
Ayala-Villegas, M. J., Ayala-Garay, Ó. J., Aguilar-Rincón, V. H., & Corona-Torres, T. (2014). Evolución de la calidad de semillas de Capsicum annuum L. durante su desarrollo en el fruto. Revista Fitotecnia Mexicana, 37(1), 79–87.
Blanco-Betancourt, D., Ojeda-García, F., Cepero-Casas, L., Estupiñán- Carrillo, L. J., Álvarez Núñez, L. M., & Martín-Martín, G. J. (2017). Efecto del bioproducto IHplus® en los indicadores productivos y de salud de precebas porcinas. Pastos y Forrajes, 40(3), 201–205.
Calero-Hurtado, A., Pérez-Díaz, Y., González-Pardo, Y., Olivera-Viciedo, D., Peña-Calzada, K., Castro-Lizazo, I., & Meléndrez- Rodríguez, J. F. (2020). Complementary application of two bioproducts increasing the productivity on common bean. Cultivos Tropicales, 41(3), Article e07.
Calero Hurtado, A., Pérez Díaz, Y., Olivera Viciedo, D., Quintero Rodríguez, E., Peña Calzada, K., Theodore Nedd, L. L., & Jiménez Hernández, J. (2019). Effect of different application forms of efficient microorganisms on the agricultural productive of two bean cultivars. Revista Facultad Nacional de Agronomía Medellín, 72(3), 8927–8935. https://doi.org/10.15446/rfnam.v72n3.76272
Celmeli, T., Sari, H., Canci, H., Sari, D., Adak, A., Eker, T., & Toker, C. (2018). The nutritional content of common bean (Phaseolus vulgaris L.) landraces in comparison to modern varieties. Agronomy, 8(9), Article 166. https://doi.org/10.3390/agronomy8090166
Channaoui, S., El Kahkahi, R., Charafi, J., Mazouz, H., El Fechtali, M., & Nabloussi, A. (2017). Germination and seedling growth of a set of rapeseed (Brassica napus) varieties under drought stress conditions. International Journal of Environment, Agriculture and Biotechnology, 2(1), 487–494. https://doi.org/10.22161/ijeab/2.1.61
Custodio, C. C., Araújo, F. F., Ribeiro, A. M., Souza Filho, N. V., & Machado-Neto, N. B. (2013). Seed treatment with Bacillus subtilis or indol butyric acid: germination and early development of bean seedlings. Interciencia, 38(4), 273–279.
Díaz Solares, M., Pérez Hernández, Y., González Fuentes, J., Castro Cabrera, I., Fuentes Alfonso, L., Matos Trujillo, M., & Sosa del Castillo, M. (2019). Efecto del IHPLUS® sobre el proceso de germinación de Sorghum bicolor L. (Moench). Pastos y Forrajes, 42(1), 30–38.
Djavanshir, K., & Pourbeik, H. (1976). Germination value - a new formula. Silvae Genetica, 25(2), 79–83.
Felestrino, É. B., Santiago, I. F., Freitas, L. S., Rosa, L. H., Ribeiro, S. P., & Moreira, L. M. (2017). Plant growth promoting bacteria associated with Langsdorffia hypogaea-rhizosphere-host biological interface: a neglected model of bacterial prospection. Frontiers in Microbiology, 8, Article 172. https://doi.org/10.3389/fmicb.2017.00172
Finch-Savage, W. E., & Bassel, G. W. (2016). Seed vigour and crop establishment: extending performance beyond adaptation. Journal of Experimental Botany, 67(3), 567–591. https://doi.org/10.1093/jxb/erv490
Gabre, V. V., Venancio, W. S., Moraes, B. A., Furmam, F. G., Galvão, C. W., Goncalves, D. R. P., & Etto, R. M. (2020). Multiple effect of different plant growth promoting microorganisms on beans (Phaseolus vulgaris L.) crop. Brazilian Archives of Biology and Technology, 63, Article e20190493. https://doi.org/10.1590/1678-4324-solo-2020190493
Gholami, A., Shahsavani, S., & Nezarat, S. (2009). The effect of plant growth promoting rhizobacteria (PGPR) on germination, seedling growth and yield of maize. International Journal of Agricultural and Biosystems Engineering, 3(1), 9–14.
Ha-Tran, D. M., Nguyen, T. T. M., Hung, S. H., Huang, E., & Huang, C. C. (2021). Roles of plant growth-promoting rhizobacteria (PGPR) in stimulating salinity stress defense in plants: a review. International Journal of Molecular Sciences, 22(6), Article 3154. https://doi.org/10.3390/ijms22063154
ISTA. (2014). Rules proposals for the international rules for seed testing 2014 edition. International Seed Testing Association.
Jochum, M. D., McWilliams, K. L., Borrego, E. J., Kolomiets, M. V., Niu, G., Pierson, E. A., & Jo, Y. K. (2019). Bioprospecting plant growth-promoting rhizobacteria that mitigate drought stress in grasses. Frontiers in Microbiology, 10, Article 2106. https://doi.org/10.3389/fmicb.2019.02106
Kumar, P., Pandey, P., Dubey, R. C., & Maheshwari, D. K. (2016). Bacteria consortium optimization improves nutrient uptake, nodulation, disease suppression and growth of the common bean (Phaseolus vulgaris) in both pot and field studies. Rhizosphere, 2, 13–23. https://doi.org/10.1016/j.rhisph.2016.09.002
Liu, L., Xia, W., Li, H., Zeng, H., Wei, B., Han, S., & Yin, C. (2018). Salinity inhibits rice seed germination by reducing α-amylase activity via decreased bioactive gibberellin content. Frontiers in Plant Science, 9, Article 275. https://doi.org/10.3389/fpls.2018.00275
Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the folin phenol reagent. Journal of Biological Chemistry, 193(1), 265–275. https://doi.org/10.1016/S0021-9258(19)52451-6
Maan, P. K., Garcha, S., & Walia, G. S. (2019). Prevalence of bacteriocinogenic Rhizobium spp. in mungbean (Vigna radiata). Legume Research, 42(4), 557–564. https://doi.org/10.18805/LR-3884
Mahadevamurthy, M., Channappa, T. M., Sidappa, M., Raghupathi, M. S., & Nagaraj, A. K. (2016). Isolation of phosphate solubilizing fungi from rhizosphere soil and its effect on seed growth parameters of different crop plants. Journal of Applied Biology and Biotechnology, 4(6), 22–26. https://doi.org/10.7324/JABB.2016.40604
Marquina, M. E., Ramírez, Y., & Castro, Y. (2018). Efecto de bacterias rizosféricas en la germinación y crecimiento del pimentón Capsicum annuum L. var. Cacique Gigante. Bioagro, 30(1), 3–16.
Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426–428. https://doi.org/10.1021/ac60147a030
Mohd Din, A. R. J., Hanapi, S. Z., Supari, N., Alam, S. A. Z., Javed, M. A., Tin, L. C., & Sarmidi, M. R. (2014). Germination, seedling growth, amylase and protease activities in Malaysian upland rice seed under microbial inoculation condition. Journal of Pure and Applied Microbiology, 8(4), 2627–2635.
Nushair, A. M., Saha, A. K., Mandal, A., Rahman, A., Mohanta, M. K., Hasan, A., & Haque, F. (2018). Rhizobium sp. CCNWYC119: a single strain highly effective as biofertilizer for three different peas (pigeon pea, sweet pea and chick pea). Legume Research, 41(5), 771–777. https://doi.org/10.18805/LR-389
Olle, M., & Williams, I. (2015). The influence of effective microorganisms on the growth and nitrate content of vegetable transplants. Journal of Advanced Agricultural Technologies, 2(1), 25–28. https://doi.org/10.12720/joaat.2.1.25-28
Pérez-Hernández, Y., Díaz-Solares, M., Rondón-Castillo, A. J., Fuentes-Alonso, L., González-Sierra, L., & Guzmán-Cedeño, A. M. (2020). Aislamiento de cepas de Bacillus spp. a partir del bioproducto IHPLUS® con potencialidades para el desarrollo agropecuario e industrial. Pastos y Forrajes, 43(1), 56–65.
Prathibha, K. S., & Siddalingeshwara, K. G. (2013). Effect of plant growth promoting Bacillus subtilis and Pseudomonas fluorescence as rhizobacteria on seed quality of sorghum. International Journal of Current Microbiology and Applied Sciences, 2(3), 11–18.
Remans, R., Beebe, S., Blair, M., Manrique, G., Tovar, E., Rao, I., Croonenborghs, A., Torres-Gutiérrez, R., El-Howeity, M., Michiels, J., & Vanderleyden, J. (2008). Physiological and genetic analysis of root responsiveness to auxin-producing plant growth-promoting bacteria in common bean (Phaseolus vulgaris L.). Plant and Soil, 302, 149–161. https://doi.org/10.1007/s11104-007-9462-7
Rezende, A. A., Pacheco, M. T. B., Silva, V. S. N., & Ferreira, T. A. P. C. (2018). Nutritional and protein quality of dry Brazilian beans (Phaseolus vulgaris L.). Food Science and Technology, 38(3), 421–427. https://doi.org/10.1590/1678-457x.05917
Romero-García, V. E., García-Ortiz, V. R., Hernández-Escareño, J. J., & Sánchez-Yáñez, J. M. (2016). Respuesta de Phaseolus vulgaris a microorganismos promotores de crecimiento vegetal. Scientia Agropecuaria, 7(3), 313–319. https://doi.org/10.17268/sci.agropecu.2016.03.20
Saxena, J., Geetika, R., & Pandey, M. (2013). Impact of addition of biochar along with Bacillus sp. on growth and yield of French beans. Scientia Horticulturae, 162, 351–356. https://doi.org/10.1016/j.scienta.2013.08.002
Sözer Bahadir, P., Liaqat, F., & Eltem, R. (2018). Plant growth promoting properties of phosphate solubilizing Bacillus species isolated from the Aegean Region of Turkey. Turkish Journal of Botany, 42, 183–196. https://doi.org/10.3906/bot-1706-51
Tabatabaei, S., Ehsanzadeh, P., Etesami, H., Alikhani, H. A., & Glick, B. R. (2016). Indole-3-acetic acid (IAA) producing Pseudomonas isolates inhibit seed germination and α-amylase activity in durum wheat (Triticum turgidum L.). Spanish Journal of Agricultural Research, 14(1), Article e0802.
Taiwo, L. B., Ailenokhuoria, B. V., & Oyedele, A. O. (2017). Profiling rhizosphere microbes on the root of maize (Zea mays) planted in an alfisol for selection as plant growth promoting rhizobacteria (PGPR). Microbiology Research Journal International, 21(5), 1–10.
Taiz, L., & Zeiger, E. (2010). Plant Physiology (5th ed.). Sinauer Associates Inc.
Talaat, N. B., Ghoniem, A. E., Abdelhamid, M. T., & Shawky, B. T. (2015). Effective microorganisms improve growth performance, alter nutrients acquisition and induce compatible solutes accumulation in common bean (Phaseolus vulgaris L.) plants subjected to salinity stress. Plant Growth Regulation, 75, 281–295. https://doi.org/10.1007/s10725-014-9952-6
Tarekegn, M. M., Salilih, F. Z., & Ishetu, A. I. (2020). Microbes used as a tool for bioremediation of heavy metal from the environment. Cogent Food and Agriculture, 6(1), Article 1783174. https://doi.org/10.1080/23311932.2020.1783174
Tellez-Soria, T., & Orberá-Ratón, T. (2018). Efecto estimulador del crecimiento de dos biopreparados biotecnológicos en cultivos de remolacha (Beta vulgaris L.). Revista Cubana de Química, 30(3), 483–494.
Thakur, D., Kaur, M., & Mishra, A. (2017). Isolation and screening of plant growth promoting Bacillus spp. and Pseudomonas spp. and their effect on growth, rhizospheric population and phosphorous concentration of Aloe vera. Journal of Medicinal Plants Studies, 5(1), 187–192.
Ugochi, K., Etienne, C., & Egbadon, E. (2016). Enhancement potential of plant growth-promoting rhizobacteria on white beans (Phaseolus vulgaris) seedlings. International Letters of Natural Sciences, 57, 11–17. https://doi.org/10.18052/www.scipress.com/ILNS.57.11
Vasallo Cristia, D. C., Montejo Viamontes, J. L., López Labarta, P., Morgado, A. I., Robinson Pérez, M., & Piñeiro Esquivel, D. (2018). Efficient microorganisms as biostimulators to enhance yields of Phaseolus vulgaris L. cultivar Delicia Rojo 364. Agrisost, 24(3), 152–159.
Wangdi, U., Ngawang, Yangden, T., Phuentsho, T., & Kencho. (2020). Effect of effective microorganism (EM) application and mulching on the yield of Japanese pole bean (Phaseolus vulgaris). Bhutanese Journal of Agriculture, 2(1), 138–147.
Yadav, S. K., Dave, A., Sarkar, A., Singh, H. B., & Sarma, B. K. (2013). Co-inoculated biopriming with Trichoderma, Pseudomonas and Rhizobium improves crop growth in Cicer arietinum and Phaseolus vulgaris. International Journal of Agriculture, Environment & Biotechnology, 6(2), 255–259.
Yan, D., Duermeyer, L., Leoveanu, C., & Nambara, E. (2014). The functions of the endosperm during seed germination. Plant & Cell Physiology, 55(9), 1521–1533. https://doi.org/10.1093/pcp/pcu089
Yaxley, J. R., Ross, J. J., Sherriff, L. J., & Reid, J. B. (2001). Gibberellin biosynthesis mutations and root development in pea. Plant Physiology, 125(2), 627–633. https://doi.org/10.1104/pp.125.2.627
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
© Centro Editorial de la Facultad de Ciencias Agrarias, Universidad Nacional de Colombia
Reproduction and quotation of material appearing in the journal is authorized provided the following are explicitly indicated: journal name, author(s) name, year, volume, issue and pages of the source. The ideas and observations recorded by the authors are their own and do not necessarily represent the views and policies of the Universidad Nacional de Colombia. Mention of products or commercial firms in the journal does not constitute a recommendation or endorsement on the part of the Universidad Nacional de Colombia; furthermore, the use of such products should comply with the product label recommendations.
The Creative Commons license used by Agronomia Colombiana journal is: Attribution - NonCommercial - ShareAlike (by-nc-sa)
Agronomia Colombiana by Centro Editorial of Facultad de Ciencias Agrarias, Universidad Nacional de Colombia is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional License.
Creado a partir de la obra en http://revistas.unal.edu.co/index.php/agrocol/.