Interaction of triacontanol with other plant growth regulators on morphology and yield of field pea (Pisum sativum L.)
Interacción del triacontanol con otros reguladores de crecimiento vegetal en la morfología y el rendimiento de arveja (Pisum sativum L.)
DOI:
https://doi.org/10.15446/agron.colomb.v39n2.94096Keywords:
auxins, cytokinins, gibberellins, plant physiology, legumes (en)auxinas, citoquininas, giberelinas, fisiología vegetal, leguminosas (es)
Downloads
The effect of a recent plant growth regulator, triacontanol (TRIA), on plant growth and yield of Pisum sativum L. was investigated. The experiment was carried out under field conditions at the Instituto Nacional de Innovación Agraria (INIA), La Molina, Lima, Peru, using a completely randomized block design with eight treatments and three replicates. Treatments consisted in the foliar application of TRIA alone and in all possible combinations with three plant growth regulators based on auxins (AUX), gibberellins (GA), and cytokinins (CK), on pea plants cv. Rondo. The highest green pod yields were obtained with the application of TRIA+AUX+GA+CK, and TRIA+AUX+CK. The TRIA+AUX increased the values of the yield variables while TRIA+GA increased the values of the morphological variables. TRIA+CK showed a stimulating effect on morphological variables and number of grains per pod, while TRIA+AUX+CK acted synergistically on yield variables since their combined effect overweighed the effect of each growth regulator separately. Treatments with TRIA exceeded the control treatment in yield variables, indicating its great potential to be used in sustainable agriculture to guarantee food security in the future.
Se investigó el efecto de un regulador del crecimiento vegetal relativamente nuevo, el triacontanol (TRIA), sobre el crecimiento de las plantas y el rendimiento de Pisum sativum L. El experimento se llevó a cabo en condiciones de campo en el Instituto Nacional de Innovación Agraria (INIA), Lima, Perú, utilizando un diseño de bloques completamente al azar con ocho tratamientos y tres repeticiones. Los tratamientos consistieron en la aplicación foliar de TRIA solo y en todas las combinaciones posibles con tres reguladores del crecimiento vegetal a base de auxinas (AUX), giberelinas (GA) y citoquininas (CK), en plantas de arveja cv. Rondo. Los mayores rendimientos de vaina verde se obtuvieron con la aplicación de TRIA+AUX+GA+CK y TRIA+AUX+CK. TRIA+AUX incrementó los valores de las variables de rendimiento mientras que TRIA+GA incrementó los valores de las variables morfológicas. TRIA+CK mostró un efecto estimulante sobre las variables morfológicas y el número de granos por vaina, mientras que TRIA+AUX+CK actuó sinérgicamente en las variables de rendimiento, ya que su efecto combinado sobrepasó el efecto de cada regulador de crecimiento por separado. Los tratamientos con TRIA superaron al tratamiento control en las variables de rendimiento, lo que indica su gran potencial de uso en la agricultura sostenible para garantizar la seguridad alimentaria en el futuro.
References
Aftab, T., Khan, M. M. A., Idrees, M., Naeem, M., Singh, M., & Ram, M. (2010). Stimulation of crop productivity, photosynthesis and artemisinin production in Artemisia annua L. by triacontanol and gibberellic acid application. Journal of Plant Interactions, 5(4), 273–281. https://doi.org/10.1080/17429141003647137
Anchivilca Rojas, G. H. (2018). Abonamiento orgánico y fertilización NPK en arveja verde (Pisum sativum L.) cv. Rondo, bajo riego por goteo en Tupicocha, Huarochirí [Undergraduate honors thesis, Universidad Nacional Agraria La Molina]. Repositorio Institucional Universidad Nacional Agraria La Molina. http://repositorio.lamolina.edu.pe/handle/UNALM/3559
Baba, T. R., Ali, A., Kumar, A., & Husain, M. (2017). Effect of exogenous application of salicylic acid and triacontanol on growth characters and yield of strawberry. The Pharma Innovation Journal, 6(11), 274–279.
Bertolin, D. C., Sá, M. E., Arf, O., Furlani Junior, E., Colombo, A. S., & Carvalho, F. L. B. M. (2010). Aumento da produtividade de soja com a aplicação de bioestimulantes. Bragantia, 69(2), 339–347. https://doi.org/10.1590/S0006-87052010000200011
Borowski, E., Blamowski, Z. K., & Michałek, W. (2000). Effects of Tomatex/Triacontanol/ on chlorophyll fluorescence and tomato (Lycopersicon esculentum Mill.) yields. Acta Physiologiae Plantarum, 22, 271–274. https://doi.org/10.1007/s11738-000-0030-5
Burt, R. (Ed.). (2014). Soil survey field and laboratory methods manual. Soil survey investigations report no. 51, Version 2. United States Department of Agriculture, Natural Resources Conservation Service.
Carlson, D. R., Dyer, D. J., Cotterman, C. D., & Durley, R. C. (1987). The physiological basis for cytokinin induced increases in pod set in IX93-100 soybeans. Plant Physiology, 84(2), 233–239. https://doi.org/10.1104/pp.84.2.233
Cato, S. C., Macedo, W. R., Peres, L. E. P., & Castro, P. R. C. (2013). Sinergism among auxins, gibberellins and cytokinins in tomato cv. Micro-Tom. Horticultura Brasileira, 31, 549–553. https://doi.org/10.1590/S0102-05362013000400007
Checa Coral, Ó. E., Bastidas Acosta, J. E., & Narváez Taimal, O. C. (2017). Evaluación agronómica y económica de arveja arbustiva (Pisum sativum L.) en diferentes épocas de siembra y sistemas de tutorado. Revista U.D.C.A Actualidad & Divulgación Científica, 20(2), 279–288.
Checa Coral, O. E., Getial Pantoja, J. A., & Rodríguez Rodríguez, D. M. (2020). Evaluación de ocho líneas de arveja arbustiva (Pisum sativum L.) en seis ambientes de la zona cerealista de Nariño. Revista U.D.C.A Actualidad & Divulgación Científica, 23(1), Article e1211. https://doi.org/10.31910/rudca.v23.n1.2020.1211
Chen, X., Yuan, H., Chen, R., Zhu, L., Du, B., Weng, Q., & He, G. (2002). Isolation and characterization of triacontanol-regulated genes in rice (Oryza sativa L.): possible role of triacontanol as a plant growth stimulator. Plant Cell Physiology, 43(8), 869–876. https://doi.org/10.1093/pcp/pcf100
Csukasi, F., Merchante, C., & Valpuesta, V. (2009). Modification of plant hormone levels and signaling as a tool in plant biotechnology. Biotechnology Journal, 4(9), 1293–1304. https://doi.org/10.1002/biot.200800286
Davies, P. J. (2010). The plant hormones: their nature, occurrence, and functions. In P. J. Davies (Ed.), Plant hormones: biosynthesis, signal transduction, action! (pp. 1–15). Springer. https://doi.org/10.1007/978-1-4020-2686-7_1
Depuydt, S., & Hardtke, C. S. (2011). Hormone signalling crosstalk in plant growth regulation. Current Biology, 21(9), R365–R373. https://doi.org/10.1016/j.cub.2011.03.013
Digruber, T., Sass, L., Cseri, A., Paul, K., Nagy, A. V., Remenyik, J., Molnár, I., Vass, I., Toldi, O., Gyuricza, C., & Dudits, D. (2018). Stimulation of energy willow biomass with triacontanol and seaweed extract. Industrial Crops and Products, 120, 104–112. https://doi.org/10.1016/j.indcrop.2018.04.047
Erisman, J. W. (2011). The new global nitrogen cycle. In J. C. Polacco, & C. D. Todd (Eds.), Ecological aspects of nitrogen metabolism in plants (1st ed., pp. 3–15). Wiley-Blackwell. https://doi.org/10.1002/9780470959404.ch1
Espinosa, N., & Ligarreto, G. A. (2005). Evaluación de la habilidad combinatoria y heterosis de siete progenitores de arveja Pisum sativum L. Agronomía Colombiana, 23(2), 197–206.
Gomez-Roldan, V., Fermas, S., Brewer, P. B., Puech-Pagès, V., Dun, E. A., Pillot, J. P., Letisse, F., Matusova, R., Danoun, S., Portais, J. C., Bouwmeester, H., Bécard, G., Beveridge, C. A., Rameau, C., & Rochange, S. F. (2008). Strigolactone inhibition of shoot branching. Nature, 455, 189–194. https://doi.org/10.1038/nature07271
Hardtke, C. S., Dorcey, E., Osmont, K. S., & Sibout, R. (2007). Phytohormone collaboration: zooming in on auxin-brassinosteroid interactions. Trends in Cell Biology, 17(10), 485–492. https://doi.org/10.1016/j.tcb.2007.08.003
Hedden, P. (2016). Gibberellins. In B. Thomas, B. G. Murray, & D. J. Murphy (Eds.), Encyclopedia of applied plant sciences (Vol. 1, pp. 411–420). Academic Press. https://doi.org/10.1016/B978-0-12-394807-6.00219-7
Henry, E. W., & Gordon, C. J. (1980). The effect of triacontanol on peroxidase, IAA, and plant growth in Pisum sativum var. ‘Alaska’ and ‘Little marvel’. Journal of Experimental Botany, 31(5), 1297–1303. https://doi.org/10.1093/jxb/31.5.1297
Jadhav, S. M., Burondkar, M. M., Patil, M. Y., & Sawant, G. B. (2017). Effect of plant growth regulators on physiological behavior of rice (Oryza sativa L.) under kharif Konkan condition. International Journal of Chemical Studies, 5(6), 1365–1367.
Khan, M. M. A., Bhardwaj, G., Naeem, M., Moinuddin, Mohammad, F., Singh, M., Nasir, S., & Idrees, M. (2009). Response of tomato (Solanum lycopersicum L.) to application of potassium and triacontanol. Acta Horticulturae, 823, 199–208. https://doi.org/10.17660/actahortic.2009.823.29
Khandaker, M. M., Faruq, G., Rahman, M. M., Sofian-Azirun, M., & Boyce, A. N. (2013). The influence of 1-triacontanol on the growth, flowering, and quality of potted Bougainvillea plants (Bougainvillea glabra var. “Elizabeth Angus”) under natural conditions. The Scientific World Journal, 2013, Article 308651. https://doi.org/10.1155/2013/308651
Kuppusamy, K. T., Walcher, C. L., & Nemhauser, J. L. (2009). Cross-regulatory mechanisms in hormone signaling. Plant Molecular Biology, 69, Article 375. https://doi.org/10.1007/s11103-008-9389-2
Liu, C., Wang, S., Copeland, L., & Wang, S. (2015). Physicochemical properties and in vitro digestibility of starches from field peas grown in China. LWT - Food Science and Technology, 64(2), 829–836. https://doi.org/10.1016/j.lwt.2015.06.060
Marschner, P. (Ed.). (2011). Mineral nutrition of higher plants (3rd ed.). Academic Press. https://doi.org/10.1016/C2009-0-63043-9
Martínez González, L., Maqueira López, L., Nápoles García, M. C., & Núñez Vázquez, M. (2017). Efecto de bioestimulantes en el rendimiento de dos cultivares de frijol (Phaseolus vulgaris L.) biofertilizados. Cultivos Tropicales, 38(2), 113–118.
Müller, D., & Leyser, O. (2011). Auxin, cytokinin and the control of shoot branching. Annals of Botany, 107(7), 1203–1212. https://doi.org/10.1093/aob/mcr069
Naeem, M., Idrees, M., Aftab, T., Khan, M. M. A., & Moinuddin. (2010). Changes in photosynthesis, enzyme activities and production of anthraquinone and sennoside content of coffee senna (Senna occidentalis L.) by triacontanol. International Journal of Plant Developmental Biology, 4(1), 53–59.
Naeem, M., Khan, M. M. A., & Moinuddin. (2012). Triacontanol: a potent plant growth regulator in agriculture. Journal of Plant Interactions, 7(2), 129–142. https://doi.org/10.1080/17429145.2011.619281
Naeem, M., Khan, M. M. A., Moinuddin, Idrees, M., & Aftab, T. (2011). Triacontanol-mediated regulation of growth and other physiological attributes, active constituents and yield of Mentha arvensis L. Plant Growth Regulation, 65, 195–206. https://doi.org/10.1007/s10725-011-9588-8
Naeem, M., Khan, M. M. A., Moinuddin, & Siddiqui, M. H. (2009). Triacontanol stimulates nitrogen-fixation, enzyme activities, photosynthesis, crop productivity and quality of hyacinth bean (Lablab purpureus L.). Scientia Horticulturae, 121(4), 389–396. https://doi.org/10.1016/j.scienta.2009.02.030
Nakaya, M., Tsukaya, H., Murakami, N., & Kato, M. (2002). Brassinosteroids control the proliferation of leaf cells of Arabidopsis thaliana. Plant & Cell Physiology, 43(2), 239–244. https://doi.org/10.1093/pcp/pcf024
Mosjidis, C. O., Peterson, C. M., Truelove, B., & Dute, R. R. (1993). Stimulation of pod and ovule growth of soybean, Glycine max (L.) Merr. by 6-benzylaminopurine. Annals of Botany, 71(3), 193–199. https://doi.org/10.1006/anbo.1993.1024
Pozo, M. J., López-Ráez, J. A., Azcón-Aguilar, C., & García-Garrido, J. M. (2015). Phytohormones as integrators of environmental signals in the regulation of mycorrhizal symbioses. New Phytologist, 205(4), 1431–1436. https://doi.org/10.1111/nph.13252
Rajak, R., Sengupta, S., Tiwary, A. K., Verma, S., Minz, A., Bibhuti, T. O. P., & Rani, V. (2018). Effect of bio regulators on yield parameters of sweet potato (Ipomoea batatas L.). Journal of Pharmacognosy and Phytochemistry, 7(1), 2425–2427.
Rasool, R., Ganai, B. A., Kamili, A. N., Akbar, S., & Masood, A. (2013). Synergistic effect of auxins and cytokinins on propagation of Artemisia amygdalina (Asteraceae), a critically endangered plant of Kashmir. Pakistan Journal of Botany, 45(2), 629–634.
Ratnayake, W. S., Hoover, R., Shahidi, F., Perera, C., & Jane, J. (2001). Composition, molecular structure, and physicochemical properties of starches from four field pea (Pisum sativum L.) cultivars. Food Chemistry, 74(2), 189–202.
Rodríguez Quispe, G. (2015). Evaluación de 12 cultivares de arveja (Pisum sativum L.) de tipo industrial para cosecha en verde en condiciones de Tarma [Undergraduate thesis, Universidad Nacional del Centro del Perú]. Repositorio Institucional Digital Universidad Nacional del Centro del Perú. http://repositorio.uncp.edu.pe/bitstream/handle/20.500.12894/977/RODR%C3%8DGUEZ%20QUISPE%20GUSTAVO.pdf
Rondinel Ruíz, R. (2014). Rendimiento en vaina verde de tres variedades de arveja (Pisum sativum L.) en tres modalidades de siembra bajo el sistema de agricultura de conservación. Canaán a 2750 msnm - Ayacucho [Undergraduate honors tesis, Universidad Nacional de San Cristóbal de Huamanga]. Repositorio Institucional Universidad Nacional de San Cristóbal de Huamanga. http://repositorio.unsch.edu.pe/bitstream/handle/UNSCH/901/TesisAg1139_Ron.pdf
Sahu, G., Aslam, T., Das, S. P., Maity, T. K., & Gupta, N. K. (2017). A study on pre-flowering foliar spray of plant growth regulator on growth and yield parameters in sweet pepper (Capsicum annuum L.) under protected condition. International Journal of Current Microbiology and Applied Sciences, 6(7), 3998–4007. https://doi.org/10.20546/ijcmas.2017.607.414
Santner, A., Calderon-Villalobos, L. I. A., & Estelle, M. (2009). Plant hormones are versatile chemical regulators of plant growth. Nature Chemical Biology, 5, 301–307. https://doi.org/10.1038/nchembio.165
Santos, J., Herrero, M., Mendiola, J. A., Oliva-Teles, M. T., Ibáñez, E., Delerue-Matos, C., & Oliveira, M. B. P. P. (2014). Assessment of nutritional and metabolic profiles of pea shoots: the new ready-to-eat baby-leaf vegetable. Food Research International, 58, 105–111. https://doi.org/10.1016/j.foodres.2014.01.062
Santos, O. F., Cunha, F. F., Taira, T. L., Souza, E. J., & Leal, A. J. F. (2018). Increase in pea productivity associated with irrigation management. Horticultura Brasileira, 36(2), 178–183. https://doi.org/10.1590/s0102-053620180205
Schaller, G. E., Bishopp, A., & Kieber, J. J. (2015). The Yin-Yang of hormones: cytokinin and auxin interactions in plant development. The Plant Cell, 27(1), 44–63. https://doi.org/10.1105/tpc.114.133595
Shukla, A., Abad Farooqi, A. H., Shukla, Y. N., & Sharma, S. (1992). Effect of triacontanol and chlormequat on growth, plant hormones and artemisinin yield in Artemisia annua L. Plant Growth Regulation, 11, 165–171. https://doi.org/10.1007/BF00024071
Singh, K., Sharma, M., & Singh, S. K. (2017). Effect of plant growth regulators on fruit yield and quality of guava (Psidium guajava) cv. Allahabad Safeda. Journal of Pure and Applied Microbiology, 11(2), 1149–1154. https://doi.org/10.22207/JPAM.11.2.61
Taiz, L., Zeiger, E., Møller, I. M., & Murphy, A. (Eds.). (2014). Plant Physiology and Development (6th ed.). Oxford University Press.
Wang, Y., Zhao, J., Lu, W., & Deng, D. (2017). Gibberellin in plant height control: old player, new story. Plant Cell Reports, 36, 391–398. https://doi.org/10.1007/s00299-017-2104-5
Weeden, N. F. (2007). Genetic changes accompanying the domestication of Pisum sativum: is there a common genetic basis to the ‘domestication syndrome’ for legumes? Annals of Botany, 100(5), 1017–1025. https://doi.org/10.1093/aob/mcm122
Wehner, T., & Gritton, E. T. (1981). Effect of the n gene on pea pod characteristics. Journal of the American Society for Horticultural Science, 106(2), 181–183.
Wolters, H., & Jürgens, G. (2009). Survival of the flexible: hormonal growth control and adaptation in plant development. Nature Reviews Genetics, 10, 305–317. https://doi.org/10.1038/nrg2558
Wu, L., Chang, K. F., Hwang, S. F., Conner, R., Fredua-Agyeman, R., Feindel, D., & Strelkov, S. E. (2019). Evaluation of host resistance and fungicide application as tools for the management of root rot of field pea caused by Aphanomyces euteiches. The Crop Journal, 7(1), 38–48. https://doi.org/10.1016/j.cj.2018.07.005
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. V. Timofeev, A. Yaroslavcev, L. Kolchina, T. Aleksanina, T. Babushkina, O. Vyushina, G. Uzakov, I. Chudov, A. Gibadullin, Z. Zalilova. (2023). Phytosanitary features of pea morphotypes under the conditions of the Tyumen region. BIO Web of Conferences, 71, p.01034. https://doi.org/10.1051/bioconf/20237101034.
2. Ahmed Madi Waheed Al-Mayahi. (2024). Triacontanol ‘TRIA’ application to mitigate the adverse effects of drought and salinity stress under in vitro culture of date palm plants. Folia Oecologica, 51(2), p.250. https://doi.org/10.2478/foecol-2024-0023.
3. Hassan Naseer, Kanval Shaukat, Noreen Zahra, Muhammad Bilal Hafeez, Ali Raza, Mereen Nizar, Muhammad Akram Qazi, Qasim Ali, Asma A. Al-Huqail, Manzar H. Siddiqui, Hayssam M. Ali, Jen-Tsung Chen. (2022). Appraisal of foliar spray of iron and salicylic acid under artificial magnetism on morpho-physiological attributes of pea (Pisum sativum L.) plants. PLOS ONE, 17(4), p.e0265654. https://doi.org/10.1371/journal.pone.0265654.
Dimensions
PlumX
Article abstract page views
Downloads
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
© Centro Editorial de la Facultad de Ciencias Agrarias, Universidad Nacional de Colombia
Reproduction and quotation of material appearing in the journal is authorized provided the following are explicitly indicated: journal name, author(s) name, year, volume, issue and pages of the source. The ideas and observations recorded by the authors are their own and do not necessarily represent the views and policies of the Universidad Nacional de Colombia. Mention of products or commercial firms in the journal does not constitute a recommendation or endorsement on the part of the Universidad Nacional de Colombia; furthermore, the use of such products should comply with the product label recommendations.
The Creative Commons license used by Agronomia Colombiana journal is: Attribution - NonCommercial - ShareAlike (by-nc-sa)
Agronomia Colombiana by Centro Editorial of Facultad de Ciencias Agrarias, Universidad Nacional de Colombia is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional License.
Creado a partir de la obra en http://revistas.unal.edu.co/index.php/agrocol/.