Published

2021-05-01

Causes of fruit cracking in the era of climate change. A review

Causas del rajado de frutos en la era del cambio climático. Una revisión

DOI:

https://doi.org/10.15446/agron.colomb.v39n2.97071

Keywords:

mineral nutrition, climate, heavy rains, fleshy fruits, fruit growing, physiological disorders (en)
nutrición mineral, clima, lluvias intensas, frutos carnosos, fruticultura, fisiopatías (es)

Downloads

Authors

The objective of this review was to report on advances in environmental, cultural, and physiological aspects of fleshy fruit cracking to reduce or avoid this disorder, which affects many fruit species. Cracking is a physiological disorder that limits the production and quality of fleshy fruits because it affects the exocarp and mesocarp, especially with climate change and variability. Fruit cracking is generated by external factors (agronomic and environmental) and internal factors, several of which require exhaustive study. The incidence of cracking varies widely according to climatic characteristics during fruit development, different fruit species and varieties, growth sites, and crop management. This physiological disorder is aggravated by increases in rain intensity, especially after a dry season or in areas with increased temperatures. Knowledge on causes of cracking has generated management strategies that involve genetic improvement, ecophysiological conditions, agronomic practices such as pruning, irrigation, and fertilization (mainly with Ca, Mg, B, and K), applications of plant growth regulators, and use of plastic covers, etc. For several fruit trees, these strategies are effective, but in species such as the cape gooseberry, cracking remains without a full explanation or effective management.

El objetivo de esta revisión es informar sobre los avances en los aspectos ambientales, culturales y fisiológicos del rajado en los frutos carnosos más importantes para disminuir o evitar este desorden el cual afecta numerosas especies frutales. El rajado es una fisiopatía que limita la producción y la calidad de frutos carnosos porque afecta el exocarpio y el mesocarpio, especialmente en escenarios de cambio y variabilidad climática. El rajado del fruto es generado por  actores externos (agronómicos y ambientales), e internos, varios de los cuales todavía son motivos de exhaustivo estudio. La incidencia del rajado varía ampliamente según las características climáticas durante el desarrollo del fruto, las diferentes especies frutales y variedades, además de los sitios de crecimiento y el manejo del cultivo. Esta fisiopatía se agrava por el aumento de la intensidad en las lluvias y especialmente cuando estas ocurren después de una época seca, igualmente en zonas donde ha aumentado la temperatura. El conocimiento de las causas del rajado ha permitido generar estrategias de manejo que involucran: mejoramiento genético y de condiciones ecofisiológicas, practicas agronómicas como podas, riego y fertilización (principalmente Ca, Mg, B y K), aplicación de fitorreguladores y uso de cubiertas plásticas, entre otros. En varios frutales estas estrategias son efectivas, pero en especies como la uchuva aún el problema del rajado permanece sin total explicación y manejo efectivo.

References

Alvarez-Herrera, J., Balaguera-López, H., & Fischer, G. (2012). Effect of irrigation and nutrition with calcium on fruit cracking of the cape gooseberry (Physalis peruviana L.) in the three strata of the plant. Acta Horticulturae, 928, 163–170. https://doi.org/10.17660/ActaHortic.2012.928.19

Álvarez-Herrera, J., Fischer, G., & Vélez, J. E. (2021). Análisis de la producción de uchuva (Physalis peruviana L.) durante el ciclo de cosechas en invernadero con diferentes láminas de riego. Revista de la Academia Colombiana de Ciencias Exactas Físicas y Naturales, 45(174), 109–121. https://doi.org/10.18257/raccefyn.1239

Amézquita, N., Balaguera-López, H. E., & Álvarez-Herrera, J. G. (2008). Efecto de la aplicación precosecha de giberelinas y calcio en la producción, calidad y rajado del fruto de uchuva (Physalis peruviana L.). Revista Colombiana de Ciencias Hortícolas, 2(2), 133–144. https://doi.org/10.17584/rcch.2008v2i2.1182

Amiri, N. A., Kangarshahi, A. A., & Arzani, K. (2012). Reducing of citrus losses by spraying of synthetic auxins. International Journal of Agriculture and Crop Sciences, 4(22), 1720–1724.

Aydin, M., & Kaptan, M. A. (2015). Effect of nutritional status on fruit cracking of fig (Ficus carica L. cv. Sarilop) grown in high level boron contained soils. Scientific Papers. Series A. Agronomy, 58, 20–25.

Balaguera-López, H. E., Fischer, G., & Magnitskiy, S. (2020). Seedfruit relationships in fleshy fruits: role of hormones. A review. Revista Colombiana de Ciencias Hortícolas, 14(1), 90–103. https://doi.org/10.17584/rcch.2020v14i1.10921

Balbontín, C., Ayala, H., Bastías, R. M., Tapia, G., Ellena, M., Torres, C., Yuri, J. A., Quero-García, J., Ríos, J. C., & Silva, H. (2013). Cracking in sweet cherries: a comprehensive review from a physiological, molecular, and genomic perspective. Chilean Journal of Agricultural Research, 73(1), 66–72.

Balbontín, C., Ayala, H., Rubilar, J., Cote, J., & Figueroa, C. R. (2014). Transcriptional analysis of cell wall and cuticle related genes during fruit development of two sweet cherry cultivars with contrasting levels of cracking tolerance. Chilean Journal of Agricultural Research, 74(2), 162–169. https://doi.org/10.4067/S0718-58392014000200006

Bhatt, B. B., Rawat, S. S., Naithani, D. C., Kumar, D., & Singh, K. K. (2016). Effect of foliar application of bio-regulators and nutrients on growth and yield characters of lemon (Citrus limon Burma.) cv. Pant Lemon-1 under subtropical condition of Garhwal region. Plant Archives, 16(2), 821–825.

Bohlmann, T. E. (1962). Why does fruit crack? Farming in South Africa, 38, 12–13.

Brüggenwirth, M., & Knoche, M. (2016). Mechanical properties of skins of sweet cherry fruit of differing susceptibilities to cracking. Journal of the American Society for Horticultural Science, 141(2), 162–168. https://doi.org/10.21273/JASHS.141.2.162

Brüggenwirth, M., & Knoche, M. (2017). Cell wall swelling, fracture mode, and the mechanical properties of cherry fruit skins are closely related. Planta, 245, 765–777. https://doi.org/10.1007/s00425-016-2639-7

Casierra-Posada, F. (2012). Manzano y peral (Malus domestica Borkh. y Pyrus communis L.). In G. Fischer (Ed.), Manual para el cultivo de frutales en el trópico (pp. 657–681). Produmedios.

Chabbal, M. D., Yfran-Elvira, M. M., Giménez, L. I., Martínez, G. C., Llarens-Beyer, L. A., & Rodríguez, V. A. (2020). Control del rajado de los frutos en plantas de mandarino Clementino. Cultivos Tropicales, 41(4), Article e06.

Chen, J., Duan, Y., Hu, Y., Li, W., Sun, D., Hu, H., & Xie, J. (2019). Transcriptome analysis of atemoya pericarp elucidates the role of polysaccharide metabolism in fruit ripening and cracking after harvest. BMC Plant Biology, 19, Article 219. https://doi.org/10.1186/s12870-019-1756-4

Chmielewski, F. M., Blümel, K., Henniges, Y., & Müller, A. (2008). Vulnerability of fruit growers to climate change observed impacts and assessments. Italian Journal of Agronomy, 3(3), 605–606.

Considine, J. A., & Kriedemann, P. E. (1972). Fruit splitting in grapes: determination of the critical turgor pressure. Australian Journal of Agricultural Research, 23(1),17–24. https://doi.org/10.1071/AR9720017

Cooman, A., Torres, C., & Fischer, G. (2005). Determinación de las causas del rajado del fruto de uchuva (Physalis peruviana L.) bajo cubierta: II. Efecto de la oferta de calcio, boro y cobre. Agronomía Colombiana, 23(1), 74–82.

Criollo, H., Lagos, T. C., Fischer, G., Mora, L., & Zamudio, L. (2014). Comportamiento de tres genotipos de uchuva (Physalis peruviana L.) bajo diferentes sistemas de poda. Revista Colombiana de Ciencias Hortícolas, 8(1), 34–43. https://doi.org/10.17584/rcch.2014v8i1.2798

Cronjé, P. J. R., Stander, O. P. J., & Theron, K. I. (2013). Fruit splitting in citrus. Horticultural Reviews, 41, 177–200.

Davarpanah, S., Tehranifar, A., Abadía, J., Val, J., Davarynejad, G., Aran, M., & Khorassani, R. (2018). Foliar calcium fertilization reduces fruit cracking in pomegranate (Punica granatum cv. Ardestani). Scientia Horticulturae, 230, 86–91. https://doi.org/10.1016/j.scienta.2017.11.023

Devi, K., Kumar, R., Wali, V. K., Bakshi, P., Sharma, N., & Arya, V. M. (2018). Effect of foliar nutrition and growth regulators on nutrient status and fruit quality of Eureka lemon (Citrus limon). Indian Journal of Agricultural Sciences, 88(5), 704–708.

Dubey, S., Kuruwanshi, V. B., Bhagat, K. P., & Ghodke, P. H. (2021). Impact of excess moisture in onion genotypes (Allium cepa L.) under climate change scenario. International Journal of Current Microbiology and Applied Sciences, 10(03), 166–175.

Erogul, D. (2014). Effect of preharvest calcium treatments on sweet cherry fruit quality. Notulae Botanicae Horti Agrobotanici, 42(1), 150–153.

Fischer, G. (2000). Ecophysiological aspects of fruit growing in tropical highlands. Acta Horticulturae, 531, 91–98. https://doi.org/10.17660/ActaHortic.2000.531.13

Fischer, G. (2005). El problema del rajado del fruto de uchuva y su posible control. In G. Fischer, D. Miranda, W. Piedrahita, & J. Romero (Eds.), Avances en cultivo, poscosecha y exportacion de la uchuva (Physalis peruviana L.) en Colombia (pp. 55–82). Unibiblos, Universidad Nacional de Colombia.

Fischer, G., Balaguera-López, H. E., & Magnitskiy, S. (2021). Review on the ecophysiology of important Andean fruits: Solanaceae. Revista U.D.C.A Actualidad & Divulgación Científica, 24(1), Article e1701. http://doi.org/10.31910/rudca.v24.n1.2021.1701

Fischer, G., & Melgarejo, L. M. (2020). The ecophysiology of cape gooseberry (Physalis peruviana L.), an Andean fruit crop. A review. Revista Colombiana de Ciencias Hortícolas, 14(1), 76–89. https://doi.org/10.17584/rcch.2020v14i1.10893

Fischer, G., & Melgarejo, L. M. (2021). Ecophysiological aspects of guava (Psidium guajava L.). A review. Revista Colombiana de Ciencias Hortícolas, 15(2), Article e12355. https://doi.org/10.17584/rcch.2021v15i2.12355

Fischer, G., & Miranda, D. (2012). Uchuva (Physalis peruviana L.). In G. Fischer (Ed.), Manual para el cultivo de frutales en el trópico (pp. 851–873). Produmedios.

Fischer, G., & Miranda, D. (2021). Review on the ecophysiology of important Andean fruits: Passiflora L. Revista Facultad Nacional de Agronomía Medellín, 74(2), 9471–9481. https://doi.org/10.15446/rfnam.v74n2.91828

Fischer, G., & Orduz-Rodríguez, J. O. (2012). Ecofisiología en frutales. In G. Fischer (Ed.), Manual para el cultivo de frutales en el trópico (pp. 54–72). Produmedios.

Fischer, G., Quintero, O. C., Tellez, C. P., & Melgarejo, L. M. (2020). Curuba: Passiflora tripartita var. mollissima y Passiflora tarminiana. In A. Rodríguez Carlosama, F. G. Faleiro, M. Parra Morera, & A. M. Costa (Eds.), Pasifloras - especies cultivadas en el mundo (pp. 105–121). ProImpress & Cepass.

Garzón-Acosta, C. P., Villarreal-Garzón, D. M., Fischer, G., Herrera, A. O., & Sanjuanelo, D. W. (2014). La deficiencia de fósforo, calcio y magnesio afecta la calidad poscosecha del fruto de uchuva (Physalis peruviana L.). Acta Horticulturae, 1016, 83–88. https://doi.org/10.17660/ActaHortic.2014.1016.9

Ginzberg, I., & Stern, R. A. (2016). Strengthening fruit-skin resistance to growth strain by application of plant growth regulators. Scientia Horticulturae, 198, 150–153. https://doi.org/10.1016/j.scienta.2015.11.016

Gordillo, O. P., Fischer, G., & Guerrero, R. (2004). Efecto del riego y de la fertilización sobre la incidencia del rajado en frutos de uchuva (Physalis peruviana L.) en la zona de Silvania (Cundinamarca). Agronomía Colombiana, 22(1), 53–62.

Grimm, E., Hahn, J., Pflugfelder, D., Schmidt, M. J., van Dusschoten, D., & Knoche, M. (2019). Localized bursting of mesocarp cells triggers catastrophic fruit cracking. Horticulture Research, 6, Article 79. https://doi.org/10.1038/s41438-019-0161-3

Hardiyanto, & Nirmala, F. D. (2019). Application of K, Ca and Mg on peel thickness and fruit cracking incidence of citrus. Russian Journal of Agricultural and Socioeconomic Sciences, 3(87), 45–56. https://doi.org/10.18551/rjoas.2019-03.07

Herrera, A. M., Ortiz, J. D., Fischer, G., & Chacón, M. I. (2011). Behavior in yield and quality of 54 cape gooseberry (Physalis peruviana L.) accessions from north-eastern Colombia. Agronomía Colombiana, 29(2), 189–196.

Ikram, S., Shafqat, W., Qureshi, M. A., Din, S. U., Rehman, S. U., Mehmood, A., Sajjad, Y., & Nafees, M. (2020). Causes and control of fruit cracking in pomegranate: a review. Journal of Global Innovations in Agricultural and Social Sciences, 8(4), 183–190. https://doi.org/10.22194/JGIASS/8.920

IPCC. (2019). Summary for policymakers. In Climate change and land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. Intergovernmental Panel on Climate Change.

Jiang, F., Lopez, A., Jeon, S., Freitas, S. T., Yu, Q., Wu, Z., Labavitch, J. M., Tian, S., Powell, A. L. T., & Mitcham, E. (2019). Disassembly of the fruit cell wall by the ripening-associated polygalacturonase and expansin influences tomato cracking. Horticulture Research, 6, Article 17. https://doi.org/10.1038/s41438-018-0105-3

Khadivi-Khub, A. (2015). Physiological and genetic factors influencing fruit cracking. Acta Physiologiae Plantarum, 37, Article 1718. https://doi.org/10.1007/s11738-014-1718-2

Khalil, H. A., & Aly, H. S. H. (2013). Cracking and fruit quality of pomegranate (Punica granatum L.) as affected by pre-harvest sprays of some growth regulators and mineral nutrients. Journal of Horticultural Science and Ornamental Plants, 5(2), 71–76.

Knoche, M. (2015). Water uptake through the surface of fleshy soft fruit: barriers, mechanism, factors, and potential role in cracking. In Y. Kanayama, & A. Kochetov (Eds.), Abiotic stress biology in horticultural plants (pp. 147–166). Springer. https://doi.org/10.1007/978-4-431-55251-2_11

Knoche, M., & Lang, A. (2017). Ongoing growth challenges fruit skin integrity. Critical Reviews in Plant Sciences, 36(3), 190–215. https://doi.org/10.1080/07352689.2017.1369333

Lagos-Burbano, T. C., Mejía-España, D. F., Arango-Bedoya, O., Villaquirán-Samboni, Z. Y., Lagos-Santander, L. K., & Duarte- Alvarado, D. E. (2021). Fruit characterization of 36 cape gooseberry hybrids for identification of potential industrial or fresh consumption uses. Revista Colombiana de Ciencias Hortícolas, 15(2), Article e12526. https://doi.org/10.17584/rcch.2021v15i2.12526

Li, J., & Chen, J. (2017). Citrus fruit-cracking: causes and occurrence. Horticultural Plant Journal, 3(6), 255–260. https://doi.org/10.1016/j.hpj.2017.08.002

Lichter, A., Dvir, O., Fallik, E., Cohen, S., Golan, R., Shemer, Z., & Sagi, M. (2002). Cracking of cherry tomatoes in solution. Postharvest Biology and Technology, 26, 305–312.

Lopez-Zaplana, A., Bárzana, G., Agudelo, A., & Carvajal, M. (2020). Foliar mineral treatments for the reduction of melon (Cucumis melo L.) fruit cracking. Agronomy, 10, Article 1815. https://doi.org/10.3390/agronomy10111815

Lu, P. L., & Lin, C. H. (2011). Physiology of fruit cracking in wax apple (Syzygium samarangense). Botanica Orientalis: Journal of Plant Science, 8, 70–76. https://doi.org/10.3126/botor.v8i0.5954

Marengo, J. A., Pabón, J. D., Díaz, A., Rosas, G., Ávalos, G., Montealegre, E., Villacis, M., Solman, S., & Rojas, M. (2011). Climate change: evidence and future scenarios for the Andean region. In S. K. Herzog, R. Martinez, P. M. Jørgensen, & H. Tiessen (Eds.), Climate change and biodiversity in the tropical Andes (pp. 110–127). IAI, SCOPE.

Marsal, J., Lopez, G., Mata, M., & Girona, J. (2006). Branch removal and defruiting for the amelioration of water stress effects on fruit growth during stage III of peach fruit development. Scientia Horticulturae, 108(1), 55–60. https://doi.org/10.1016/j.scienta.2006.01.008

Marschner, P. (Ed.). (2012). Marschner’s mineral nutrition of higher plants (3rd ed.). Elsevier.

Martínez Bolaños, M., Martínez Bolaños, L., Guzmán Deheza, A., Gómez Jaimes, R., & Reyes Reyes, A. L. (2017). Calcio y ácido giberélico en el bretado de frutos de litchi (Litchi chinensis Soon.) cultivar Mauritius. Revista Mexicana de Ciencias Agrícolas, 8(4), 837–848.

Medina, C. I., Lobo, M., & Martínez, E. (2009). Revisión del estado del conocimiento sobre la función productiva del lulo (Solanum quitoense Lam.) en Colombia. Corpoica Ciencia y Tecnología Agropecuaria, 10(2), 167–179.

Mika, A., Buler, Z., Wójcik, K., Konopacka, D. (2019). Influence of the plastic cover on the protection of sweet cherry fruit against cracking, on the microclimate under cover and fruit quality. Journal of Horticultural Research, 27(2), 31–38. https://doi.org/10.2478/johr-2019-0018

Miranda Lasprilla, D. (2020). Granadilla: Passiflora ligularis Juss. In A. Rodríguez Carlosama, F. G. Faleiro, M. Parra Morera, & A. M. Costa (Eds.), Pasifloras - especies cultivadas en el mundo (pp. 65–103). ProImpress & Cepass.

Mishra, D. S., Tripathi, A., & Nimbolkar, P. K. (2016). Review on physiological disorders of tropical and subtropical fruits: causes and management approach. International Journal of Agriculture, Environment and Biotechnology, 9(6), 925–935. https://doi.org/10.5958/2230-732X.2016.00120.0

Nie, G., Kai, L. I., Tian, Y., Dai, G., Yang, X., Song, Y., Jingjiang, L. I., Zhang, X., & Lyu, J. (2017). Correlation of fruit cracking and mineral nutrient content in apricot. Journal of Agriculture, 7(5), 23–27.

Opara, L. U., Studman, C. J., & Banks, N. H. (1997). Fruit skin splitting and cracking. Horticultural Reviews, 19, 217–262.

Peet, M. M. (2009). Physiological disorders in tomato fruit development. Acta Horticulturae, 821, 151–159. https://doi.org/10.17660/ActaHortic.2009.821.16

Ramteke, S. D., Urkude, V., Parhe, S. D., & Bhagwat, S. R. (2017). Berry cracking; its causes and remedies in grapes - a review. Trends in Biosciences, 10(2), 549–556.

Ranty, B., Aldon, D., Cotelle, V., Galaud, J. P., Thuleau, P., & Mazars, C. (2016). Ca lcium sensors as key hubs in plant responses to biotic and abiotic stresses. Frontiers in Plant Science, 7, Article 327. https://doi.org/10.3389/fpls.2016.00327

Reddy, A. G. K., Kumar, J. S., Maruthi, V., Venkatasubbaiah, K., & Rao, S. (2017). Fruit production under climate changing scenario in India: a review. Environment & Ecology, 35(2B), 1010–1017.

Rojas Alfonso, D., Velandia Torres, S. R., & Castro Sánchez, A. M. (2012). Aprovechamiento del fruto rajado de uchuva (Physalis peruviana L.) en la elaboración de mermeladas. Revista de Investigación, Desarrollo e Innovación, 3(1), 18–24.

Sabino-López, J. E., Sandoval-Villa, M., Alcántar-González, G., Ortiz-Solorio, C., Vargas-Hernández, M., & Colinas-León, T. (2018). Fecha de trasplante, boro, potasio y poda en la producción de frutos de Physalis peruviana L. en hidroponía e invernadero. Agrociencia, 52, 255–265.

Saei, H., Sharifani, M. M., Dehghani, A., Seifi, E., & Akbarpour, V. (2014). Description of biomechanical forces and physiological parameters of fruit cracking in pomegranate. Scientia Horticulturae, 178, 224–230. https://doi.org/10.1016/j.scienta.2014.09.005

Sahu, P., & Sharma, N. (2019). Fruit cracking and quality of pomegranate (Punica granatum L.) cv. Kandhari as influenced by CPPU and boron. Journal of Pharmacognosy and Phytochemistry, 8(1), 2644–2648.

Sdoodee, S., & Chiarawipa, R. (2005). Fruit splitting occurrence of Shogun mandarin (Citrus reticulata Blanco cv. Shogun) in southern Thailand and alleviation by calcium and boron sprays. Songklanakarin Journal of Science and Technology, 27(4), 719–730.

Sharma, N., & Belsare, C. (2011). Effect of plant bio-regulators and nutrients on fruit cracking and quality in pomegranate (Punica granatum L.) ‘G-137’ in Himachal Pradesh. Acta Horticulturae, 890, 347–352. https://doi.org/10.17660/ActaHortic.2011.890.48

Simon, G., Tóth, M., & Papp, J. (2007). Cracking susceptibility of sour cherry (Prunus cerasus L.) in Hungary and relation to calcium application. International Journal of Horticultural Science, 13(3), 109–118. https://doi.org/10.31421/IJHS/13/3/757

Singh, A., Shukla, A. K., & Meghwal, P. R. (2020): Fruit cracking in pomegranate: extent, cause, and management - a review. International Journal of Fruit Science, 20(Sup 3), S1234–S1253. https://doi.org/10.1080/15538362.2020.1784074

Sthapit, B., Rao, V. R., & Sthapit, S. (Eds.). (2012). Tropical fruit tree species and climate change. Bioversity International.

Suzuki, T., Yanase, S., Enya, T., Shimazu, T., & Tanaka, I. (2007). Effects of total integrated solar radiation on radial fruit cracking in tomato cultivation under rain shelter in cool uplands. Horticultural Research, 6(3), 405–409.

Torres Azuero, C., Fischer, G., & Miranda, D. (2016). Principales fisiopatías del cultivo de uchuva (Physalis peruviana L.). In D. Miranda, C. Carranza, & G. Fischer (Eds.), Problemas de campo asociados al cultivo de uchuva (Physalis peruviana L.) (pp. 139–146). Universidad Nacional de Colombia.

Trevisani, N., Melo, R. C., Colli, M. P., Coimbra, J. L. M., & Guidolin, A. F. (2017). Associations between traits in fisális: a tool for indirect selection of superior plants. Revista Brasileira de Fruticultura, 39(4), Article e-106. https://doi.org/10.1590/0100-29452017106

Ulinnuha, Z., Chozin, M. A., & Santosa, E. (2020). The growth, fruit set and fruit cracking incidents of tomato under shade. Journal of Tropical Crop Science, 7(2), 92–101.

Wang, Y., Guo, L., Zhao, X., Zhao, Y., Hao, Z., Luo, H., & Yuan, Z. (2021). Advances in mechanisms and omics pertaining to fruit cracking in horticultural plants. Agronomy, 11(6), Article 1045. https://doi.org/10.3390/agronomy11061045

Winkler, A., Peschel, S., Kohrs, K., & Knoche, M. (2016). Rain cracking in sweet cherries is not due to excess water uptake but to localized skin phenomena. Journal of the American Society for Horticultural Science, 141(6), 653–660. https://doi.org/10.21273/JASHS03937-16

Yilmaz, C. (2020, December 6–9). The effect of mineral content on fruit cracking of loquat [Conference presentation]. Eurasia Summit Congress on scientific researches and recent trends. Baku Eurasian University, Azerbaijan.

Yılmaz, C., & Özgüven, A. I. (2019). Physiology of pre-harvest fruit cracking in pomegranate: mineral contents. Acta Horticulturae, 1254, 205–211. https://doi.org/10.17660/ActaHortic.2019.1254.31

Yohannes, H. (2016). A review on relationship between climate change and agriculture. Journal of Earth Science and Climatic Change, 7(2), Article 335. https://doi.org/10.4172/2157-7617.1000335

Yu, J., Zhu, M., Bai, M., Xu, Y., Fan, S., & Yang, G. (2020). Effect of calcium on relieving berry cracking in grape (Vitis vinifera L.) ‘Xiangfei’. PeerJ, 8, Article e9896. https://doi.org/10.7717/peerj.9896

Zandalinas, S. I., Fritschi, F. B., & Mittler, R. (2021). Global warming, climate change, and environmental pollution: recipe for a multifactorial stress combination disaster. Trends in Plant Science, 26(6), 588–599. https://doi.org/10.1016/j.tplants.2021.02.011

Zaouay, F., Marwa Brahem, M., Boussaa, F., Haddada, F. M., Tounsi, M. S., & Mars, M. (2020). Effects of fruit cracking and maturity stage on quality attributes and fatty acid composition of pomegranate seed oils. International Journal of Fruit Science, 20(sup3), S1959–S1968. https://doi.org/10.1080/15538362.2020.1839625

How to Cite

APA

Fischer, G., Balaguera-López, H. E. and Álvarez-Herrera, J. (2021). Causes of fruit cracking in the era of climate change. A review. Agronomía Colombiana, 39(2), 196–207. https://doi.org/10.15446/agron.colomb.v39n2.97071

ACM

[1]
Fischer, G., Balaguera-López, H.E. and Álvarez-Herrera, J. 2021. Causes of fruit cracking in the era of climate change. A review. Agronomía Colombiana. 39, 2 (May 2021), 196–207. DOI:https://doi.org/10.15446/agron.colomb.v39n2.97071.

ACS

(1)
Fischer, G.; Balaguera-López, H. E.; Álvarez-Herrera, J. Causes of fruit cracking in the era of climate change. A review. Agron. Colomb. 2021, 39, 196-207.

ABNT

FISCHER, G.; BALAGUERA-LÓPEZ, H. E.; ÁLVAREZ-HERRERA, J. Causes of fruit cracking in the era of climate change. A review. Agronomía Colombiana, [S. l.], v. 39, n. 2, p. 196–207, 2021. DOI: 10.15446/agron.colomb.v39n2.97071. Disponível em: https://revistas.unal.edu.co/index.php/agrocol/article/view/97071. Acesso em: 27 jul. 2024.

Chicago

Fischer, Gerhard, Helber Enrique Balaguera-López, and Javier Álvarez-Herrera. 2021. “Causes of fruit cracking in the era of climate change. A review”. Agronomía Colombiana 39 (2):196-207. https://doi.org/10.15446/agron.colomb.v39n2.97071.

Harvard

Fischer, G., Balaguera-López, H. E. and Álvarez-Herrera, J. (2021) “Causes of fruit cracking in the era of climate change. A review”, Agronomía Colombiana, 39(2), pp. 196–207. doi: 10.15446/agron.colomb.v39n2.97071.

IEEE

[1]
G. Fischer, H. E. Balaguera-López, and J. Álvarez-Herrera, “Causes of fruit cracking in the era of climate change. A review”, Agron. Colomb., vol. 39, no. 2, pp. 196–207, May 2021.

MLA

Fischer, G., H. E. Balaguera-López, and J. Álvarez-Herrera. “Causes of fruit cracking in the era of climate change. A review”. Agronomía Colombiana, vol. 39, no. 2, May 2021, pp. 196-07, doi:10.15446/agron.colomb.v39n2.97071.

Turabian

Fischer, Gerhard, Helber Enrique Balaguera-López, and Javier Álvarez-Herrera. “Causes of fruit cracking in the era of climate change. A review”. Agronomía Colombiana 39, no. 2 (May 1, 2021): 196–207. Accessed July 27, 2024. https://revistas.unal.edu.co/index.php/agrocol/article/view/97071.

Vancouver

1.
Fischer G, Balaguera-López HE, Álvarez-Herrera J. Causes of fruit cracking in the era of climate change. A review. Agron. Colomb. [Internet]. 2021 May 1 [cited 2024 Jul. 27];39(2):196-207. Available from: https://revistas.unal.edu.co/index.php/agrocol/article/view/97071

Download Citation

CrossRef Cited-by

CrossRef citations15

1. Javier Giovanni Álvarez-Herrera, Javier Enrique Vélez, Marilcen Jaime-Guerrero. (2022). Characterization of cape gooseberry (Physalis peruviana L.) fruits from plants irrigated with different regimens and calcium doses. Revista Colombiana de Ciencias Hortícolas, 16(1) https://doi.org/10.17584/rcch.2022v16i1.13269.

2. Adel M. Al-Saif, Ibrahim A. Elnaggar, Abd El-wahed N. Abd El-wahed, Ibrahim M. Taha, Hosny F. Abdel-Aziz, Mohammed H. Farouk, Ashraf E. Hamdy. (2023). Improvement of Fruit Quality and Phytochemical Components of Pomegranate by Spraying with B2O3 and ZnO Nanoparticles. Agronomy, 13(9), p.2305. https://doi.org/10.3390/agronomy13092305.

3. Iryna Ivanova, Maryna Serdiuk, Tetiana Tymoshchuk, Sergiy Bulygin, Vira Moisiienko. (2023). Assessment of sweet cherry fruit quality according to the requirements of the modern market. PLANT AND SOIL SCIENCE, 14(2) https://doi.org/10.31548/plant2.2023.21.

4. Tie Wang, Liping Tan, Zhaofang Chen, Youting Yang, Ya Yuan, Zhendong Zheng, Lijun Deng, Mingfei Zhang, Guochao Sun, Siya He, Jun Wang, Bo Xiong, Zhihui Wang. (2024). Mitigating citrus fruit cracking: the efficacy of chelated calcium or silicon foliar fertilizers in ‘Okitsu no. 58’ citrus fruit. Frontiers in Plant Science, 15 https://doi.org/10.3389/fpls.2024.1402945.

5. Helber Enrique Balaguera Lopez, Gerhard Fischer, Stanislav Magnitskiy. (2024). Handbook of Goldenberry (Physalis Peruviana). , p.121. https://doi.org/10.1016/B978-0-443-15433-1.00011-X.

6. Ho-Jin Seo, Shailesh S. Sawant, Janghoon Song. (2022). Fruit Cracking in Pears: Its Cause and Management—A Review. Agronomy, 12(10), p.2437. https://doi.org/10.3390/agronomy12102437.

7. David Abekasis, Avi Sadka, Lior Rokach, Shilo Shiff, Michael Morozov, Itzhak Kamara, Tarin Paz-Kagan. (2024). Explainable machine learning for revealing causes of citrus fruit cracking on a regional scale. Precision Agriculture, 25(2), p.589. https://doi.org/10.1007/s11119-023-10084-y.

8. Gerhard Fischer, Alfonso Parra-Coronado, Helber Enrique Balaguera-López. (2022). Altitude as a determinant of fruit quality with emphasis on the Andean tropics of Colombia. A review.. Agronomía Colombiana, 40(2) https://doi.org/10.15446/agron.colomb.v40n2.101854.

9. Gerhard Fischer, Javier Orlando Orduz-Rodríguez, Cassandro Vidal Talamini do Amarante. (2022). Sunburn disorder in tropical and subtropical fruits. A review. Revista Colombiana de Ciencias Hortícolas, 16(3) https://doi.org/10.17584/rcch.2022v16i3.15703.

10. Gerhard Fischer, Helber Enrique Balaguera-López, Luz Marina Melgarejo. (2024). Handbook of Goldenberry (Physalis Peruviana). , p.101. https://doi.org/10.1016/B978-0-443-15433-1.00010-8.

11. Paolo La Spada, Eva Dominguez, Alberto Continella, Antonio Heredia, Alessandra Gentile. (2024). Factors influencing fruit cracking: an environmental and agronomic perspective. Frontiers in Plant Science, 15 https://doi.org/10.3389/fpls.2024.1343452.

12. Luz Stella Barrero, Erika P. Sanchez-Betancourt, Gina A. Garzón-Martinez, Francy L. García-Arias, Jaime A. Osorio-Guarin, Victor M. Nuñez-Zarantes, Felix E. Enciso-Rodríguez. (2024). Handbook of Goldenberry (Physalis Peruviana). , p.39. https://doi.org/10.1016/B978-0-443-15433-1.00004-2.

13. Ho-Jin Seo, Shailesh S. Sawant, Byulhana Lee, Keumsun Kim, Janghoon Song, Eu Ddeum Choi. (2024). Mechanisms driving fruit cracking in ‘Sinhwa’ pears (Pyrus pyrifolia Nakai) and effect of foliar fertilizer application on fruit quality. Scientia Horticulturae, 332, p.113232. https://doi.org/10.1016/j.scienta.2024.113232.

14. Anderson Weber, Carine Borges Batista, Vanderlei Both, Francis Júnior Soldateli, Mateus Gusmão Barcelar, Andrei Soares Moura, Alex Oliveira Bitencourt, Vagner Ludwig. (2024). Quality attributes and volatile compounds of cape gooseberry fruit harvested at different maturity stages. Scientia Horticulturae, 328, p.112947. https://doi.org/10.1016/j.scienta.2024.112947.

15. Marilcen Jaime-Guerrero, Javier Giovanni Álvarez-Herrera, Gerhard Fischer. (2024). Effect of calcium on fruit quality: A review. Agronomía Colombiana, 42(1), p.e112026. https://doi.org/10.15446/agron.colomb.v42n1.112026.

Dimensions

PlumX

Article abstract page views

674

Downloads

Download data is not yet available.