Published

2022-04-30

Design and development of a mixed alcoholic beverage kinetics using asaí (Euterpe precatoria) and copoazú (Theobroma grandiflorum)

Diseño y desarrollo de una cinética de bebida alcohólica mixta de asaí (Euterpe precatoria) y copoazú (Theobroma grandiflorum)

DOI:

https://doi.org/10.15446/agron.colomb.v40n1.98208

Keywords:

Amazonian fruits, modelling, fermentation, diffusion (en)
frutos amazónicos, modelamiento, fermentación, difusión (es)

Downloads

Authors

Copoazú (Theobroma grandiflorum), a fruit from the same genus as cacao, and asaí (Euterpe precatoria) a palm fruit, both of Amazonian origin, could promote local economic growth through fruit processing to increase the added value. This study aimed to identify the kinetics of alcoholic fruit beverages made from copoazú and asaí pulp or seeds, i.e., the fermentation kinetics in the case of copoazú drinks and the diffusion kinetics in the case of asaí drinks. Additionally, the feasibility of generating a milky mixture with the liquor obtained from the copoazú fruit processing was evaluated. Statistical analysis was performed by ANOVA tests and modeling of kinetics parameters with an evolutionary algorithm and optimization. Copoazú pulp was fermented with 15% Prestige Turbo Yeast®. Fermentation was separated into two stages: controlled fermentation during the first 5 d and a maturation process in the following 25 d. According to the modeling, the greatest efficiency was observed with 600 g L-1 pulp concentration and soluble solids adjusted at 35°Brix, with alcohol contents of up to 20% (w/v) after 30 d of processing and evidence that there may be inhibition of fermentation due to glycerol. The whole fruit and pulp of asaí were extracted with ethanol to obtain a liquor with the micronutrients and flavors of the fruit, and the anthocyanin content was used as a degradation process marker. Modelling showed that the optimum point that yielded maximum anthocyanin concentration was achieved at 60 d of maturation by extracting pulp in a 45% (w/v) ethanol solution resulting in a maximum anthocyanin content of 94.2 ± 15.3 mg of cyanidin-3-glucoside kg-1 of liquor. After that, a degradation process was observed as anthocyanin content diminished.

El copoazú (Theobroma grandiflorum), una fruta del mismo género que el cacao, y el asaí (Euterpe precatoria) una fruta de palma, ambas de origen amazónico, podrían promover el crecimiento económico local a través de su procesamiento para aumentar el valor agregado. El objetivo de este estudio fue identificar la cinética de las bebidas alcohólicas elaboradas con pulpa o semillas de copoazú y asaí, es decir, la cinética de fermentación en el caso de las bebidas de copoazú y la cinética de difusión en el caso de las bebidas de asaí. Además, se evaluó la viabilidad de generar una mezcla láctea con el licor obtenido del procesamiento del fruto del copoazú. El análisis estadístico se realizó con pruebas ANOVA y el modelamiento de los parámetros de las cinéticas con un algoritmo evolutivo y optimización. La pulpa de copoazú se fermentó con levadura Prestige Turbo® al 15%. La fermentación se separó en dos etapas: fermentación controlada en los primeros 5 d y un proceso de maduración en los siguientes 25 d. De acuerdo con el modelamiento, la mayor eficiencia se obtuvo con una concentración de 600 g L-1 y sólidos solubles ajustados a 35°Brix, con contenidos de alcohol de hasta 20% (p/v) después de 30 d de procesamiento y evidencia de la inhibición de la fermentación debida al glicerol. Un proceso de extracción etanólica de los frutos completos y pulpa de asaí se utilizó para obtener un licor con los micronutrientes y sabores de la fruta, y se usó el contenido de antocianinas como marcador del proceso de degradación. El modelamiento mostró que el punto óptimo se alcanzó tras 60 d de maduración al extraer la pulpa en una solución de etanol al 45% (p/v), alcanzando una concentración máxima de antocianinas de 94.2 ± 15.3 mg de cianidina-3-glucósido kg-1 de licor. Luego de esto, se observó un proceso de degradación al disminuir el contenido de antocianinas.

References

Andersen, M. L., & Skibsted, L. H. (2010). Light-induced quality changes in food and beverages. In L. H. Skibsted, J. Risbo, & M. L. Andersen (Eds.), Chemical deterioration and physical instability of food and beverages (pp. 113–139). Woodhead Publishing. https://doi.org/10.1533/9781845699260.1.113 DOI: https://doi.org/10.1533/9781845699260.1.113

Arroyo-López, F. N., Orlić, S., Querol, A., & Barrio, E. (2009). Effects of temperature, pH, and sugar concentration on the growth parameters of Saccharomyces cerevisiae, S. kudriavzevii, and their interspecific hybrid. International Journal of Food Microbiology, 131(2–3), 120–127. https://doi.org/10.1016/j.ijfoodmicro.2009.01.035 DOI: https://doi.org/10.1016/j.ijfoodmicro.2009.01.035

Arroyo-López, F. N., Querol, A., & Barrio, E. (2009). Application of a substrate inhibition model to estimate the effect of fructose concentration on the growth of diverse Saccharomyces cerevisiae strains. Journal of Industrial Microbiology and Biotechnology, 36(5), 663–669. https://doi.org/10.1007/s10295-009-0535-x DOI: https://doi.org/10.1007/s10295-009-0535-x

Bermejo, C., Haerizadeh, F., Takanaga, H., Chermak, D., & Frommer, W. B. (2011). Optical sensors for measuring dynamic changes of cytosolic metabolite levels in yeast. Nature Protocols, 6, 1806–1817. https://doi.org/10.1038/nprot.2011.391 DOI: https://doi.org/10.1038/nprot.2011.391

Boeira, L. S., Bastos Freitas, P. H., Uchôa, N. R., Bezerra, J. A., Cád, S. V., Duvoisin Junior, S., Albuquerque, P. M., Mar, J. M., Ramos, A. S., Machado, M. B., & Maciel, L. R. (2020). Chemical and sensorial characterization of a novel alcoholic beverage produced with native acai (Euterpe precatoria) from different regions of the Amazonas state. LWT, 117, Article 108632. https://doi.org/10.1016/j.lwt.2019.108632 DOI: https://doi.org/10.1016/j.lwt.2019.108632

Carrillo Bautista, M. P., Cardona Jaramillo, J. E. C., Barrera García, J. A., & Hernández Gómez, M. S. (2016). Colombia: frutas de la Amazonia. Instituto Amazónico de Investigaciones Científicas - SINCHI, Ministerio de Ambiente y Desarrollo Sostenible.

Carrillo Bautista, M. P., Cardona Jaramillo, J. E. C., Diaz Salcedo, R. O., Orduz Díaz, L. L., Peña Rojas, L. F., Hernández Gómez, M. S., & Mosquera Narváez, L. E. (2017). Los ingredientes naturales de la Amazonia colombiana: sus aplicaciones y especificaciones técnicas (1st ed.). Instituto Amazónico de Investigaciones Científicas - SINCHI, Ministerio de Ambiente y Desarrollo Sostenible.

Castillo Quiroga, Y. M., Hernández Gómez, M. S., & Lares, M. (2017). Componentes bioactivos del asai (Euterpe oleracea Mart. y Euterpe precatoria Mart.) y su efecto sobre la salud. Archivos Venezolanos de Farmacología y Terapéutica, 36(3), 58–66.

Castillo, Y. M., Lares, M., & Hernández, M. S. (2012). Caracterización bromatológica y fisicoquímica del fruto amazónico asaí (Euterpe precatoria Mart.). Vitae, 19(1), S309–S311.

Chung, C., Rojanasasithara, T., Mutilangi, W., & McClements, D. J. (2016). Stabilization of natural colors and nutraceuticals: inhibition of anthocyanin degradation in model beverages using polyphenols. Food Chemistry, 212, 596–603. https://doi.org/10.1016/j.foodchem.2016.06.025 DOI: https://doi.org/10.1016/j.foodchem.2016.06.025

Chung, C., Rojanasasithara, T., Mutilangi, W., & McClements, D. J. (2017). Stability improvement of natural food colors: impact of amino acid and peptide addition on anthocyanin stability in model beverages. Food Chemistry, 218, 277–284. https://doi.org/10.1016/j.foodchem.2016.09.087 DOI: https://doi.org/10.1016/j.foodchem.2016.09.087

Comelli, R. N., Seluy, L. G., & Isla, M. A. (2016). Performance of several Saccharomyces strains for the alcoholic fermentation of sugar-sweetened high-strength wastewaters: comparative analysis and kinetic modelling. New Biotechnology, 33(6), 874–882. https://doi.org/10.1016/j.nbt.2016.09.007 DOI: https://doi.org/10.1016/j.nbt.2016.09.007

Cuellar Álvarez, L., Cuellar Álvarez, N., Galeano García, P., & Suárez Salazar, J. C. (2017). Effect of fermentation time on phenolic content and antioxidant potential in Cupuassu (Theobroma grandiflorum (Willd. ex Spreng.) K. Schum.) beans. Acta Agronómica, 66(4), 473–479. https://doi.org/10.15446/acag.v66n4.61821 DOI: https://doi.org/10.15446/acag.v66n4.61821

Dias, D. R., Duarte, W. F., & Schwan, R. F. (2017). Methods of evaluation of fruit wines. In M. R. Kosseva, V. K. Joshi, & P. S. Panesar (Eds.), Science and technology of fruit wine production (pp. 227–252). Academic Press. https://doi.org/10.1016/B978-0-12-800850-8.00005-3 DOI: https://doi.org/10.1016/B978-0-12-800850-8.00005-3

Duarte, W. F., Dias, D. R., Oliveira, J. M., Teixeira, J. A., Almeida e Silva, J. B., & Schwan, R. F. (2010). Characterization of different fruit wines made from cacao, cupuassu, gabiroba, jaboticaba and umbu. LWT - Food Science and Technology, 43(10), 1564–1572. https://doi.org/10.1016/j.lwt.2010.03.010 DOI: https://doi.org/10.1016/j.lwt.2010.03.010

Gao, Y. T., Zhang, Y. S., Wen, X., Song, X. W., Meng, D., Li, B. J., Wang, M. Y., Tao, Y. Q., Zhao, H., Guan, W. Q., & Du, G. (2018). The glycerol and ethanol production kinetics in low-temperature wine fermentation using Saccharomyces cerevisiae yeast strains. International Journal of Food Science and Technology, 54(1), 102–110. https://doi.org/10.1111/ijfs.13910 DOI: https://doi.org/10.1111/ijfs.13910

Kumar, S., Dheeran, P., Singh, S. P., Mishra, I. M., & Adhikari, D. K. (2013). Kinetic studies of ethanol fermentation using Kluyveromyces sp. IIPE453. Journal of Chemical Technology and Biotechnology, 88(10), 1874–1884. https://doi.org/10.1002/jctb.4042 DOI: https://doi.org/10.1002/jctb.4042

Li, H., Wang, H., Li, H., Goodman, S., van der Lee, P., Xu, Z., Fortunato, A., & Yang, P. (2018). The worlds of wine: old, new and ancient. Wine Economics and Policy, 7(2), 178–182. https://doi.org/10.1016/j.wep.2018.10.002 DOI: https://doi.org/10.1016/j.wep.2018.10.002

Li, S., An, Y., Fu, W., Sun, X., Li, W., & Li, T. (2017). Changes in anthocyanins and volatile components of purple sweet potato fermented alcoholic beverage during aging. Food Research International, 100(2), 235–240. https://doi.org/10.1016/j.foodres.2017.08.041 DOI: https://doi.org/10.1016/j.foodres.2017.08.041

Merger, J., Borzì, A., & Herzog, R. (2016). Optimal control of a system of reaction-diffusion equations modeling the wine fermentation process. Optimal Control Applications and Methods, 38(1), 112–132. https://doi.org/10.1002/oca.2246 DOI: https://doi.org/10.1002/oca.2246

Miller, G. H. (2019). Whisky science. A condensed distillation. Springer. https://doi.org/10.1007/978-3-030-13732-8 DOI: https://doi.org/10.1007/978-3-030-13732-8

Miller, K. V., & Block, D. E. (2020). A review of wine fermentation process modeling. Journal of Food Engineering, 273, Article 109783. https://doi.org/10.1016/j.jfoodeng.2019.109783 DOI: https://doi.org/10.1016/j.jfoodeng.2019.109783

Miranda Castilleja, D. E., Aldrete Tapia, J. A., Arvizu Medrano, S. M., Hernández Iturriaga, M., Soto Muñoz, L., & Martínez Peniche, R. Á. (2017). Growth kinetics for the selection of yeast strains for fermented beverages. In A. Morata, & I. Loira (Eds.), Yeast - industrial applications. IntechOpen. https://doi.org/10.5772/intechopen.70224 DOI: https://doi.org/10.5772/intechopen.70224

Peixoto, H., Roxo, M., Krstin, S., Röhrig, T., Richling, E., & Wink, M. (2016). An anthocyanin-rich extract of Acai (Euterpe precatoria Mart.) increases stress resistance and retards aging-related markers in Caenorhabditis elegans. Journal of Agricultural and Food Chemistry, 64(6), 1283–1290. https://doi.org/10.1021/acs.jafc.5b05812 DOI: https://doi.org/10.1021/acs.jafc.5b05812

Pugliese, A. G., Tomas-Barberán, F. A., Truchado, P., & Genovese, M. I. (2013). Flavonoids, proanthocyanidins, vitamin C, and antioxidant activity of Theobroma grandiflorum (cupuassu) pulp and seeds. Journal of Agricultural and Food Chemistry, 61(11), 2720–2728. https://doi.org/10.1021/jf304349u DOI: https://doi.org/10.1021/jf304349u

Reboredo-Rodríguez, P., González-Barreiro, C., Rial-Otero, R., Cancho-Grande, B., & Simal Gándara, J. (2015). Effects of sugar concentration processes in grapes and wine aging on aroma compounds of sweet wines - a review. Critical Reviews in Food Science and Nutrition, 55(8), 1053–1073. https://doi.org/10.1080/10408398.2012.680524 DOI: https://doi.org/10.1080/10408398.2012.680524

Salaha, M. I., Kallithraka, S., Marmaras, I., Koussissi, E., & Tzourou, I. (2008). A natural alternative to sulphur dioxide for red wine production: influence on colour, antioxidant activity and anthocyanin content. Journal of Food Composition and Analysis, 21(8), 660–666. https://doi.org/10.1016/j.jfca.2008.03.010 DOI: https://doi.org/10.1016/j.jfca.2008.03.010

Shafirstein, G., Bäumler, W., Lapidoth, M., Ferguson, S., North, P. E., & Waner, M. (2004). A new mathematical approach to the diffusion approximation theory for selective photothermolysis modeling and its implication in laser treatment of port-wine stains. Lasers in Surgery and Medicine, 34(4), 335–347. https://doi.org/10.1002/lsm.20028 DOI: https://doi.org/10.1002/lsm.20028

Topalovic, A., & Mikulic-Petkovsek, M. (2010). Changes in sugars, organic acids and phenolics of grape berries of cultivar Cardinal during ripening. Journal of Food, Agriculture and Environment, 8(3–4), 223–227.

United States Pharmacopeial Convention. (2013). USP36 NF31, 2013: U.S. pharmacopeia national formulary (Vol. 1). U.S. Pharmacopeia.

Vasantha Rupasinghe, H. P., Joshi, V. K., Smith, A., & Parmar, I. (2017). Chemistry of fruit wines. In M. R. Kosseva, V. K. Joshi, & P. S. Panesar (Eds.), Science and technology of fruit wine production (pp. 105–176). Academic Press. https://doi.org/10.1016/B978-0-12-800850-8.00003-X DOI: https://doi.org/10.1016/B978-0-12-800850-8.00003-X

Wardencki, W. (2019). Alcoholic beverages. In P. Worsfold, C. Poole, A. Townshend, & M. Miró (Eds.), Encyclopedia of Analytical Science (3rd. ed., pp. 67–76). Elsevier. https://doi.org/10.1016/B978-0-12-409547-2.14330-6 DOI: https://doi.org/10.1016/B978-0-12-409547-2.14330-6

Yuyama, L. K. O., Aguiar, J. P. L., Silva Filho, D. F., Yuyama, K., Varejão, M. J., Fávaro, D. I. T., Vasconcellos, M. B. A., Pimentel, S. A., & Caruso, M. S. F. (2011). Caracterização físico-química do suco de açaí de Euterpe precatoria Mart. oriundo de diferentes ecossistemas amazônicos. Acta Amazonica, 41(4), 545–552. https://doi.org/10.1590/S0044-59672011000400011 DOI: https://doi.org/10.1590/S0044-59672011000400011

Zinnai, A., Venturi, F., Sanmartin, C., Quartacci, M. F., & Andrich, G. (2013). Kinetics of D-glucose and D-fructose conversion during the alcoholic fermentation promoted by Saccharomyces cerevisiae. Journal of Bioscience and Bioengineering, 115(1), 43–49. https://doi.org/10.1016/j.jbiosc.2012.08.008 DOI: https://doi.org/10.1016/j.jbiosc.2012.08.008

How to Cite

APA

Quintero Mendoza, W., Díaz-Salcedo, R. O. and Hernández-Gómez, M. S. (2022). Design and development of a mixed alcoholic beverage kinetics using asaí (Euterpe precatoria) and copoazú (Theobroma grandiflorum). Agronomía Colombiana, 40(1), 129–140. https://doi.org/10.15446/agron.colomb.v40n1.98208

ACM

[1]
Quintero Mendoza, W., Díaz-Salcedo, R.O. and Hernández-Gómez, M.S. 2022. Design and development of a mixed alcoholic beverage kinetics using asaí (Euterpe precatoria) and copoazú (Theobroma grandiflorum). Agronomía Colombiana. 40, 1 (Jan. 2022), 129–140. DOI:https://doi.org/10.15446/agron.colomb.v40n1.98208.

ACS

(1)
Quintero Mendoza, W.; Díaz-Salcedo, R. O.; Hernández-Gómez, M. S. Design and development of a mixed alcoholic beverage kinetics using asaí (Euterpe precatoria) and copoazú (Theobroma grandiflorum). Agron. Colomb. 2022, 40, 129-140.

ABNT

QUINTERO MENDOZA, W.; DÍAZ-SALCEDO, R. O.; HERNÁNDEZ-GÓMEZ, M. S. Design and development of a mixed alcoholic beverage kinetics using asaí (Euterpe precatoria) and copoazú (Theobroma grandiflorum). Agronomía Colombiana, [S. l.], v. 40, n. 1, p. 129–140, 2022. DOI: 10.15446/agron.colomb.v40n1.98208. Disponível em: https://revistas.unal.edu.co/index.php/agrocol/article/view/98208. Acesso em: 14 aug. 2024.

Chicago

Quintero Mendoza, Willian, Raquel Oriana Díaz-Salcedo, and María Soledad Hernández-Gómez. 2022. “Design and development of a mixed alcoholic beverage kinetics using asaí (Euterpe precatoria) and copoazú (Theobroma grandiflorum)”. Agronomía Colombiana 40 (1):129-40. https://doi.org/10.15446/agron.colomb.v40n1.98208.

Harvard

Quintero Mendoza, W., Díaz-Salcedo, R. O. and Hernández-Gómez, M. S. (2022) “Design and development of a mixed alcoholic beverage kinetics using asaí (Euterpe precatoria) and copoazú (Theobroma grandiflorum)”, Agronomía Colombiana, 40(1), pp. 129–140. doi: 10.15446/agron.colomb.v40n1.98208.

IEEE

[1]
W. Quintero Mendoza, R. O. Díaz-Salcedo, and M. S. Hernández-Gómez, “Design and development of a mixed alcoholic beverage kinetics using asaí (Euterpe precatoria) and copoazú (Theobroma grandiflorum)”, Agron. Colomb., vol. 40, no. 1, pp. 129–140, Jan. 2022.

MLA

Quintero Mendoza, W., R. O. Díaz-Salcedo, and M. S. Hernández-Gómez. “Design and development of a mixed alcoholic beverage kinetics using asaí (Euterpe precatoria) and copoazú (Theobroma grandiflorum)”. Agronomía Colombiana, vol. 40, no. 1, Jan. 2022, pp. 129-40, doi:10.15446/agron.colomb.v40n1.98208.

Turabian

Quintero Mendoza, Willian, Raquel Oriana Díaz-Salcedo, and María Soledad Hernández-Gómez. “Design and development of a mixed alcoholic beverage kinetics using asaí (Euterpe precatoria) and copoazú (Theobroma grandiflorum)”. Agronomía Colombiana 40, no. 1 (January 1, 2022): 129–140. Accessed August 14, 2024. https://revistas.unal.edu.co/index.php/agrocol/article/view/98208.

Vancouver

1.
Quintero Mendoza W, Díaz-Salcedo RO, Hernández-Gómez MS. Design and development of a mixed alcoholic beverage kinetics using asaí (Euterpe precatoria) and copoazú (Theobroma grandiflorum). Agron. Colomb. [Internet]. 2022 Jan. 1 [cited 2024 Aug. 14];40(1):129-40. Available from: https://revistas.unal.edu.co/index.php/agrocol/article/view/98208

Download Citation

CrossRef Cited-by

CrossRef citations1

1. M.S. Hernández, J.P. Fernandez-Trujillo. (2024). Emergent Amazonian fruits as a source of beverage ingredients. Acta Horticulturae, (1387), p.195. https://doi.org/10.17660/ActaHortic.2024.1387.26.

Dimensions

PlumX

Article abstract page views

242

Downloads

Download data is not yet available.