Published

2022-04-30

Plant growth and phosphorus uptake of coffee seedlings through mycorrhizal inoculation

Crecimiento y absorción de fósforo en plántulas de café a través de la inoculación micorrizal

DOI:

https://doi.org/10.15446/agron.colomb.v40n1.98599

Keywords:

Coffea arabica, Rhizoglomus fasciculatum, mycorrhizal colonization, shoot dry weight, soil testing (en)
Coffea arabica, Rhizoglomus fasciculatum, colonización micorrizal, masa seca aérea, análisis de suelo (es)

Downloads

Authors

Soil phosphorus (P) availability is a limiting factor for coffee seedling growth. Usually, large amounts of P fertilizers are required, generating nutritional imbalance, increasing production costs, and raising environmental concerns in water pollution. The use of arbuscular mycorrhizal fungi (AMF) can enhance plant P uptake and growth and reduce the dose of P fertilizers. A greenhouse experiment was conducted in a substrate containing Paleudult soil and quartz sand, with low level of soluble P (1 mg kg-1), to establish the effect of AMF inoculation with Rhizoglomus fasciculatum on coffee (Coffea arabica L. cv. Colombia) seedlings growth and P uptake under three levels of P in soil solution (0.002, 0.02, and 0.2 mg L-1). AMF colonization was significantly reduced when contents of P in solution increased. Shoot dry weight and P foliar concentration were increased by the AMF inoculation when soil P in solution was 0.02 mg L-1; these effects were lower at 0.2 mg L-1 and null at 0.002 mg L-1 P. Results showed that AMF inoculation can play an important role in the growth of coffee seedlings as long as the content P in soil solution maintains intermediate level. At the lowest P level, the response of coffee seedlings to AMF inoculation was ineffective, while at the highest level, AMF application was unnecessary for coffee growth.

La disponibilidad de fósforo (P) es limitante para el crecimiento del café. Usualmente se recomiendan altas cantidades de fertilizantes fosfóricos, causando desbalances nutricionales, incrementos en los costos y contaminación. El uso de hongos arbusculares formadores de micorrizas (HFM) puede promover el crecimiento y la absorción de P del café, reduciendo las cantidades de fertilizantes fosfóricos. Se condujo un experimento en condiciones de invernadero, en un sustrato compuesto por un suelo Paleudult mezclado con arena cuarcítica y con bajo nivel de P soluble (1 mg kg-1), con el objetivo de evaluar el efecto del HFM Rhizoglomus fasciculatum en el crecimiento y la absorción de P en plántulas de café (Coffea arabica L. cv. Colombia) a tres niveles de P en solución del suelo (0.002, 0.02 y 0.2 mg L-1). La colonización de HFM se redujo significativamente con los incrementos en P del suelo. La masa seca total de las plantas y la absorción de P se incrementaron con el HFM a niveles de 0.02 mg L-1 de P en solución, fueron bajos a 0.2 mg L-1 de P y nulos a 0.002 mg L-1 de P. Los resultados mostraron que la inoculación con HFM juega un importante papel en el crecimiento de las plántulas de café, siempre y cuando el P de la solución del suelo se mantenga en un nivel intermedio. A niveles de P en solución muy bajos, la respuesta al HFM fue inefectiva, mientras que, a valores muy altos, la aplicación de HFM fue innecesaria para el crecimiento del café.

References

Allewel, C., Ringeval, B., Ballabio, C., Robinson, D. A., Panagos, P., & Borelli, P. (2020). Global phosphorus shortage will be aggravated by soil erosion. Nature Communications, 11, Article 4546. https://doi.org/10.1038/s41467-020-18326-7 DOI: https://doi.org/10.1038/s41467-020-18326-7

Andrade, S. A. L., Mazzafera, P., Schiavinato, M. A., & Silveira, A. P. D. (2009). Arbuscular mycorrhizal association in coffee. The Journal of Agricultural Science, 147(2), 105–115. https://doi.org/10.1017/S0021859608008344 DOI: https://doi.org/10.1017/S0021859608008344

Augé, R. M. (2004). Arbuscular mycorrhizae and soil/plant water relations. Canadian Journal of Soil Science, 84(4), 373–381. https://doi.org/10.4141/S04-002 DOI: https://doi.org/10.4141/S04-002

Ávila, W., Sadeghian, S., Sánchez, P., & Castro, H. (2007). Producción de almácigos de café en el departamento de Santander con diferentes fuentes de materia orgánica y de fósforo. Avances Técnicos Cenicafé, Article 356. https://www.cenicafe.org/es/publications/avt0356.pdf

Aziz, T., & Habte, M. (1987). Determining vesicular–arbuscular mycorrhizal effectiveness by monitoring P status of leaf disks. Canadian Journal of Microbiology, 33(12), 1097–1101. https://doi.org/10.1139/m87-191 DOI: https://doi.org/10.1139/m87-191

Barjolle, D., Quiñones-Ruiz, X. F., Bagal, M., & Comoé, H. (2017). The role of the state for geographical indications of coffee: case studies from Colombia and Kenya. World Development, 98, 105–119. https://doi.org/10.1016/j.worlddev.2016.12.006 DOI: https://doi.org/10.1016/j.worlddev.2016.12.006

Bhattacharya, S., & Bagyaraj, D. J. (2002). Effectiveness of arbuscular mycorrhizal fungal isolates on arabica coffee (Coffea arabica L.). Biological Agriculture & Horticulture, 20(2), 125–131. https://doi.org/10.1080/01448765.2002.9754956 DOI: https://doi.org/10.1080/01448765.2002.9754956

Bolaños, M. M., Rivillas-Osorio, C. A., & Suárez-Vásquez, S. (2000). Identificación de micorrizas arbusculares en suelos de la zona cafetera colombiana. Revista Cenicafé, 51(4), 245–262.

Cardoso, E. J. B. N., Nogueira, M. A., & Zangaro, W. (2017). Importance of mycorrhizae in tropical soils. In J. L. de Azevedo, & M. C. Quecine (Eds.), Diversity and benefits of microorganisms from the Tropics (pp. 245–267). Springer. https://doi.org/10.1007/978-3-319-55804-2_11 DOI: https://doi.org/10.1007/978-3-319-55804-2_11

Cardoso, I. M., & Kuyper, T. W. (2006). Mycorrhizas and tropical soil fertility. Agriculture, Ecosystems & Environment, 116(1–2), 72–84. https://doi.org/10.1016/j.agee.2006.03.011 DOI: https://doi.org/10.1016/j.agee.2006.03.011

Chiputwa, B., Spielman, D. J., & Qaim, M. (2015). Food standards, certification, and poverty among coffee farmers in Uganda. World Development, 66, 400–412. https://doi.org/10.1016/j.worlddev.2014.09.006 DOI: https://doi.org/10.1016/j.worlddev.2014.09.006

Colombian Coffee Growers Federation–CCGF. (2020). Management report. When the world seemed to stop due to pandemic, we coffee it turn around. Informe de Gestión 2020. https://doi.org/10.38141/10793/2020 DOI: https://doi.org/10.38141/10793/2020

Cruz, R. de S., Araújo, F. H. V., França, A. C., Sardinha, L. T., & Machado, C. M. M (2020). Physiological responses of Coffea arabica cultivars in association with arbuscular mycorrhizal fungi. Coffee Science, 15, Article e151641. https://doi.org/10.25186/cs.v15i.1641 DOI: https://doi.org/10.25186/cs.v15i.1641

Cuervo, C. J. (2017). Dependencia micorrizal de variedades de café bajo diferentes concentraciones de fosfato soluble en el suelo. Universidad Nacional de Colombia, Medellín. [Magister dissertation, Universidad Nacional de Colombia]. UN Medellín Repository. https://repositorio.unal.edu.co/handle/unal/59647

De Beenhouwer, M., Van Geel, M., Ceulemans, T., Muleta, D., Lievens, B., & Honnay, O. (2015). Changing soil characteristics alter the arbuscular mycorrhizal fungi communities of Arabica coffee (Coffea arabica) in Ethiopia across a management intensity gradient. Soil Biology and Biochemistry, 91, 133–139. https://doi.org/10.1016/j.soilbio.2015.08.037 DOI: https://doi.org/10.1016/j.soilbio.2015.08.037

Dutt, S., Sharma, S. D., & Kumar, P. (2013). Arbuscular mycorrhizas and Zn fertilization modify growth and physiological behavior of apricot (Prunus armeniaca L.). Scientia Horticulturae, 155, 97–104. https://doi.org/10.1016/j.scienta.2013.03.012 DOI: https://doi.org/10.1016/j.scienta.2013.03.012

Echeverri-Giraldo, L. F., Ortiz, A., Gallego, C. P., & Imbachí, L. C. (2020). Caracterización de la fracción lipídica del café verde en variedades mejoradas de Coffea arabica L. Revista Cenicafé, 71(2), 39–52. https://doi.org/10.38141/10778/71203 DOI: https://doi.org/10.38141/10778/71203

Eskandari, S., Guppy, C. N., Knox, O. G. G., Flavel, R. J., Backhouse, D., & Haling, R. E. (2017). Mycorrhizal contribution to phosphorus nutrition of cotton in low and highly sodic soils using dual isotope labelling (32P and 33P). Soil Biology and Biochemistry, 105, 37–44. https://doi.org/10.1016/j.soilbio.2016.11.004 DOI: https://doi.org/10.1016/j.soilbio.2016.11.004

Federación Nacional de Cafeteros de Colombia-FNC. (2021, September). Sistema de información cafetera @SICA.

Fox, R. L., & Kamprath, E. J. (1970). Phosphate sorption isotherms for evaluating the phosphate requirements of soils. Soil Science Society of America Journal, 34(6), 902–907. https://doi.org/10.2136/sssaj1970.03615995003400060025x DOI: https://doi.org/10.2136/sssaj1970.03615995003400060025x

França, A. C., Carvalho, F. P., Franco, M. H. R., de Avelar, M., Souza, B. P., & Stürmer, S. L. (2014). Crescimento de mudas de cafeeiro inoculadas com fungos micorrízicos arbusculares. Revista Brasileira de Ciências Agrárias, 9(4), 506–511. https://doi.org/10.5039/agraria.v9i4a3938 DOI: https://doi.org/10.5039/agraria.v9i4a3938

Giovannetti, M., & Mosse, B. (1980). An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytologist, 84(3), 489–500. https://doi.org/10.1111/j.1469-8137.1980.tb04556.x DOI: https://doi.org/10.1111/j.1469-8137.1980.tb04556.x

González, O. H. (2018). Biotechnological alternatives to improve phosphorus (P) fertilization efficiency in coffee growing. [Doctoral dissertation, Universidad Nacional de Colombia]. UN Medellín. https://repositorio.unal.edu.co/bitstream/handle/unal/63742/75076781.2018.pdf?sequence=1&isAllowed=y

Habte, M., & Bittenbender, H. C. (1999). Reactions of coffee to soil solution P concentration and arbuscular mycorrhizal colonization. Journal of South Pacific Agriculture, 6, 29–34.

Habte, M., & Osorio, N. W. (2001). Arbuscular mycorrhizas: Producing and applying arbuscular mycorrhizal inoculum. University of Hawaii, College of Tropical Agriculture and Human Resources, Honolulu, HI.

Harrison, M. J. (1999). Molecular and cellular aspects of the arbuscular mycorrhizal symbiosis. Annual Review of Plant Physiology and Plant Molecular Biology, 50(1), 361–389. https://doi.org/10.1146/annurev.arplant.50.1.361 DOI: https://doi.org/10.1146/annurev.arplant.50.1.361

Hernández-Acosta, E., Trejo-Aguilar, D., Rivera-Fernández, A., Ferrera-Cerrato, R. (2020). La micorriza arbuscular como biofertilizante en cultivo de café. Terra Latinoamericana, 38(3), 613–628. https://doi.org/10.28940/terra.v38i3.659 DOI: https://doi.org/10.28940/terra.v38i3.659

Hernández-Acosta, E., Banuelos, J., Trejo-Aguilar, D. (2021). Revisión: Distribución y efecto de los hongos micorrízicos en el agroecosistema de café. Revista de Biología Tropical, 69(2), 445–461. http://doi.org/10.15517/rbt.v69i2.42256 DOI: https://doi.org/10.15517/rbt.v69i2.42256

Jaitieng, S., Sinma, K., Rungcharoenthong, P., & Amkha, S. (2021). Arbuscular mycorrhiza fungi applications and rock phosphate fertilizers enhance available phosphorus in soil and promote plant immunity in robusta coffee. Soil Science and Plant Nutrition, 67 (1), 97–101. https://doi.org/10.1080/00380768.2020.1848343 DOI: https://doi.org/10.1080/00380768.2020.1848343

Jaramillo, S., & Osorio, W. (2009). Factores que determinan la dependencia micorrizal de las plantas. Suelos Ecuatoriales, 35(2), 34–40.

Kormanik, P. P., Bryan, W. C., & Schultz, R. C. (1980). Procedures and equipment for staining large numbers of plant root samples for endomycorrhizal assay. Canadian Journal of Microbiology, 26(4), 536–538. https://doi.org/10.1139/m80-090 DOI: https://doi.org/10.1139/m80-090

Lebrón, L., Lodge, D. J., & Bayman, P. (2012). Differences in arbuscular mycorrhizal fungi among three coffee cultivars in Puerto Rico. International Scholarly Reserch Notices, Article 148042. https://doi.org/10.5402/2012/148042 DOI: https://doi.org/10.5402/2012/148042

López- Arredondo D. L., Leyva- González, M. A., González- Morales, S. I., López-Bucio, J., & Herrera-Estrella, L. (2014). Phosphate nutrition: improving low-phosphate tolerance in crops. Annual Review of Plant Biology, 65, 95–123. https://doi.org/10.1146/annurev-arplant-050213-035949 DOI: https://doi.org/10.1146/annurev-arplant-050213-035949

Moreira, S. D., França, A. C., Grazziotti, P. H., Leal, F. D. S., & Silva, E. de B. (2019). Arbuscular mycorrhizal fungi and phosphorus doses on coffee growth under a nonsterile soil. Revista Caatinga, 32(1), 72–80. https://doi.org/10.1590/1983-21252019v32n108rc DOI: https://doi.org/10.1590/1983-21252019v32n108rc

Murphy, J., & Riley, J. P. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27, 31–36. https://doi.org/10.1016/S0003-2670(00)88444-5 DOI: https://doi.org/10.1016/S0003-2670(00)88444-5

Ni, Z., & Wang, S. (2015). Historical accumulation and environmental risk of nitrogen and phosphorus in sediments of Erhai Lake, Southwest China. Ecological Engineering, 79, 42–53. https://doi.org/10.1016/j.ecoleng.2015.03.005 DOI: https://doi.org/10.1016/j.ecoleng.2015.03.005

Orozco, P. F. H. (1988). Efecto de la inoculación con hongos formadores de micorrizas vesicular arbuscular en plántulas de café Coffea arabica. var. Colombia. Suelos Ecuatoriales, 18(2), 213–219.

Osorio, N. W., & Habte, M. (2014). Effect of a phosphate-solubilizing fungus and an arbuscular mycorrhizal fungus on leucaena seedlings in tropical soils with contrasting phosphate sorption capacity. Plant and Soil, 389(1–2), 375–385. https://doi.org/10.1007/s11104-014-2357-5 DOI: https://doi.org/10.1007/s11104-014-2357-5

Ozdemir, G., Akpinar, C., Sabir, A., Bilir, H., Tangolar, S., & Ortas, I. (2010). Effect of inoculation with mycorrhizal fungi on growth and nutrient uptake of grapevine genotypes (Vitis spp.). European Journal of Horticultural Science, 75(3), 103–110.

Rai, A., Rai, S., & Rakshit, A. (2013). Mycorrhiza-mediated phosphorus use efficiency in plants. Enviromental and Experimental Biology, 11, 107–117.

Rashad, Y. M., Fekry, W. M. E., Sleem, M. M., & Elazab, N. T. (2021). Effects of mycorrhizal colonization on transcriptional expression of the responsive factor JERF3 and stress-responsive genes in banana plantlets in response to combined biotic and abiotic stresses. Frontiers in Plant Science, 12, Article 742628. https://doi.org/10.3389/fpls.2021.742628 DOI: https://doi.org/10.3389/fpls.2021.742628

Rivillas, C., & Dodd, J. C. (1995). The effects of arbuscular mycorrhizal fungi on two different coffee varieties from Colombia and their biochemical detection in roots. Kent, University of Kent. Research School of Biosciences.

Roth, R., & Paszkowski, U. (2017). Plant carbon nourishment of arbuscular mycorrhizal fungi. Current Opinion in Plant Biology, 39, 50–56. https://doi.org/10.1016/j.pbi.2017.05.008 DOI: https://doi.org/10.1016/j.pbi.2017.05.008

Sadeghian, K. S., & González, O. H. (2012). Alternativas generales de fertilización para cafetales en la etapa de producción. Chinchiná. Avances Técnicos Cenicafé, Article 424.

Sadeghian, K., & Ospina, P. M. (2021). Manejo nutricional de café durante la etapa de almácigo. Avances Técnicos Cenicafé, Article 532, 1-8. https://doi.org/10.38141/10779/0532 DOI: https://doi.org/10.38141/10779/0532

Sepúlveda, W. S., Chekmam, L., Maza, M. T., & Mancilla, N. O. (2016). Consumers’ preference for the origin and quality attributes associated with production of specialty coffees: Results from a cross-cultural study. Food Research International, 89 (Part 2), 997–1003. https://doi.org/10.1016/j.foodres.2016.03.039 DOI: https://doi.org/10.1016/j.foodres.2016.03.039

Sewnet, T. C., & Tuju, F. A. (2013). Arbuscular mycorrhizal fungi associated with shade trees and Coffea arabica L. in a coffee-based agroforestry system in Bonga, Southwestern Ethiopia. Afrika Focus, 26(2), 111–131. https://doi.org/10.21825/af.v26i2.4912 DOI: https://doi.org/10.1163/2031356X-02602007

Tian, J., Boitt, G., Black, A., Wakelin, S., Condron, L. M., & Chen, L. (2017). Accumulation and distribution of phosphorus in the soil profile under fertilized grazed pasture. Agriculture, Ecosystems & Environment, 239, 228–235. https://doi.org/10.1016/j.agee.2017.01.022 DOI: https://doi.org/10.1016/j.agee.2017.01.022

Wang, W., Shi, J., Xie, Q., Jiang, Y., Yu, N., & Wang, E. (2017). Nutrient exchange and regulation in arbuscular mycorrhizal symbiosis. Molecular Plant, 10(9), 1147–1158. https://doi.org/10.1016/j.molp.2017.07.012 DOI: https://doi.org/10.1016/j.molp.2017.07.012

Williams G. (2021, August). Phosphate Outlook 2022: Geopolitics to be a Key Market Mover.Investing News (INN). https://investingnews.com/phosphate-outlook-2022/

Zhang, W., Liu, D. Y., Li, C., Chen, X. P., & Zou, C. Q. (2017). Accumulation, partitioning, and bioavailability of micronutrients in summer maize as affected by phosphorus supply. European Journal of Agronomy, 86, 48–59. https://doi.org/10.1016/j.eja.2017.03.005 DOI: https://doi.org/10.1016/j.eja.2017.03.005

How to Cite

APA

González-Osorio, H., Góngora Botero, C. E., Jaramillo Padilla, S. P. and Osorio, W. (2022). Plant growth and phosphorus uptake of coffee seedlings through mycorrhizal inoculation. Agronomía Colombiana, 40(1), 77–84. https://doi.org/10.15446/agron.colomb.v40n1.98599

ACM

[1]
González-Osorio, H., Góngora Botero, C.E., Jaramillo Padilla, S.P. and Osorio, W. 2022. Plant growth and phosphorus uptake of coffee seedlings through mycorrhizal inoculation. Agronomía Colombiana. 40, 1 (Jan. 2022), 77–84. DOI:https://doi.org/10.15446/agron.colomb.v40n1.98599.

ACS

(1)
González-Osorio, H.; Góngora Botero, C. E.; Jaramillo Padilla, S. P.; Osorio, W. Plant growth and phosphorus uptake of coffee seedlings through mycorrhizal inoculation. Agron. Colomb. 2022, 40, 77-84.

ABNT

GONZÁLEZ-OSORIO, H.; GÓNGORA BOTERO, C. E.; JARAMILLO PADILLA, S. P.; OSORIO, W. Plant growth and phosphorus uptake of coffee seedlings through mycorrhizal inoculation. Agronomía Colombiana, [S. l.], v. 40, n. 1, p. 77–84, 2022. DOI: 10.15446/agron.colomb.v40n1.98599. Disponível em: https://revistas.unal.edu.co/index.php/agrocol/article/view/98599. Acesso em: 16 jul. 2024.

Chicago

González-Osorio, Hernán, Carmenza Esther Góngora Botero, Sandra Patricia Jaramillo Padilla, and Walter Osorio. 2022. “Plant growth and phosphorus uptake of coffee seedlings through mycorrhizal inoculation”. Agronomía Colombiana 40 (1):77-84. https://doi.org/10.15446/agron.colomb.v40n1.98599.

Harvard

González-Osorio, H., Góngora Botero, C. E., Jaramillo Padilla, S. P. and Osorio, W. (2022) “Plant growth and phosphorus uptake of coffee seedlings through mycorrhizal inoculation”, Agronomía Colombiana, 40(1), pp. 77–84. doi: 10.15446/agron.colomb.v40n1.98599.

IEEE

[1]
H. González-Osorio, C. E. Góngora Botero, S. P. Jaramillo Padilla, and W. Osorio, “Plant growth and phosphorus uptake of coffee seedlings through mycorrhizal inoculation”, Agron. Colomb., vol. 40, no. 1, pp. 77–84, Jan. 2022.

MLA

González-Osorio, H., C. E. Góngora Botero, S. P. Jaramillo Padilla, and W. Osorio. “Plant growth and phosphorus uptake of coffee seedlings through mycorrhizal inoculation”. Agronomía Colombiana, vol. 40, no. 1, Jan. 2022, pp. 77-84, doi:10.15446/agron.colomb.v40n1.98599.

Turabian

González-Osorio, Hernán, Carmenza Esther Góngora Botero, Sandra Patricia Jaramillo Padilla, and Walter Osorio. “Plant growth and phosphorus uptake of coffee seedlings through mycorrhizal inoculation”. Agronomía Colombiana 40, no. 1 (January 1, 2022): 77–84. Accessed July 16, 2024. https://revistas.unal.edu.co/index.php/agrocol/article/view/98599.

Vancouver

1.
González-Osorio H, Góngora Botero CE, Jaramillo Padilla SP, Osorio W. Plant growth and phosphorus uptake of coffee seedlings through mycorrhizal inoculation. Agron. Colomb. [Internet]. 2022 Jan. 1 [cited 2024 Jul. 16];40(1):77-84. Available from: https://revistas.unal.edu.co/index.php/agrocol/article/view/98599

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

395

Downloads

Download data is not yet available.