Selection of the minimum indicator set for agricultural sustainability assessments at the plot scale
Selección del conjunto mínimo de indicadores para evaluaciones de sostenibilidad agrícola a escala de parcela
DOI:
https://doi.org/10.15446/agron.colomb.v40n1.98797Keywords:
experimental unit, greenhouse tomato, indicator selection, selection criteria, core indicators (en)unidad experimental, tomate bajo invernadero, selección de indicadores, criterios de selección, indicadores centrales (es)
Downloads
Some authors raise concerns about the validity, reliability, and transparency of indicator selection in agricultural sustainability assessments. In this regard, several selection criteria have been put forward for sustainability assessments at the farm, regional, country, or planet levels. However, assessments at the plot or experimental unit level require, in addition to the adaptation of these criteria or the generation of new ones, the construction of a selection methodology. Thus, the aim of this study was to build a framework for selecting the minimum set of indicators that will be part of the agricultural sustainability analyses at the plot or experimental unit level. A hierarchical order of indicators was established, consisting of raw, baseline, and core indicators; the latter made up the minimum indicators set (MIS). Subsequently, selection procedures and criteria were established, consisting of mandatory, main non-mandatory, alternative non-mandatory, and correlation indicators. The selection method was evaluated with the results of a greenhouse tomato fertilization study. Of the 40 raw indicators with which the analysis began, the MIS was made up of eight core indicators: three environmental, four social, and one economic. This indicator selection method uses a rigorous process, with 22 selection criteria, distributed in four hierarchical groups. At the same time, it promotes less subjectivity, by including statistical analysis, algorithms, and mathematical processes.
Algunos autores plantean preocupaciones con respecto a la validez, confianza y transparencia al momento de seleccionar indicadores en los análisis de sostenibilidad agrícola. En ese sentido, se han planteado una serie de criterios de selección orientados a evaluaciones de sostenibilidad a escala finca, región, país o planeta. Sin embargo, las evaluaciones a escala de parcela o unidad experimental requieren, además de la adaptación de esos criterios o la generación de unos nuevos, la construcción de una metodología de selección. El objetivo de este estudio fue, por lo tanto, construir un marco de selección del conjunto mínimo de indicadores que harán parte de los análisis de sostenibilidad agrícola a escala de parcela o unidad experimental. Se estableció un orden jerárquico de indicadores, compuesto por indicadores crudos, base y centrales; estos últimos conforman el conjunto mínimo de indicadores (CMI). Posteriormente, se establecieron los procedimientos y criterios de selección, conformados por: obligatorios, no obligatorios principales, no obligatorios alternativos y de correlación. Para evaluar el marco de selección propuesto, se utilizaron los resultados de un estudio de fertilización en tomate bajo invernadero. De los 40 indicadores crudos con que se inició el análisis, el CMI se conformó por ocho indicadores centrales: tres ambientales, cuatro sociales y uno económico. Esta metodología de selección de indicadores utiliza un riguroso proceso, con 22 criterios de selección, distribuidos en cuatro grupos jerárquicos. Al mismo tiempo, promueve una menor subjetividad, al incluir análisis estadísticos, algoritmos y procesos matemáticos.
References
Alaoui, A., Barão, L., Ferreira, C. S. S., & Hessel, R. (2022). An overview of sustainability assessment frameworks in agriculture. Land, 11(4), Article 537. https://doi.org/10.3390/land11040537 DOI: https://doi.org/10.3390/land11040537
Bélanger, V., Vanasse, A., Parent, D., Allard, G., & Pellerin, D. (2012). Development of agri-environmental indicators to assess dairy farm sustainability in Quebec, Eastern Canada. Ecological Indicators, 23, 421–430. https://doi.org/10.1016/j.ecolind.2012.04.027 DOI: https://doi.org/10.1016/j.ecolind.2012.04.027
Bell, S., & Morse, S. (Eds.). (2008). Sustainability indicators: Measuring the immeasurable? (2nd ed.). Earthscan London Sterling, VA. https://doi.org/10.4324/9781849772723 DOI: https://doi.org/10.4324/9781849772723
Binder, C. R., Feola, G., & Steinberger, J. K. (2010). Considering the normative, systemic and procedural dimensions in indicator-based sustainability assessments in agriculture. Environmental Impact Assessment Review, 30(2), 71–81. https://doi.org/10.1016/j.eiar.2009.06.002 DOI: https://doi.org/10.1016/j.eiar.2009.06.002
Bockstaller, C., Guichard, L., Keichinger, O., Girardin, P., Galan, M. B., & Gaillard, G. (2009). Comparison of methods to assess the sustainability of agricultural systems. A review. Agronomy for Sustainable Development, 29, 223–235. https://doi.org/10.1051/agro:2008058 DOI: https://doi.org/10.1051/agro:2008058
Dantsis, T., Douma, C., Giourga, C., Loumou, A., & Polychronaki, E. A. (2010). A methodological approach to assess and compare the sustainability level of agricultural plant production systems. Ecological Indicators, 10(2), 256–263. https://doi.org/10.1016/j.ecolind.2009.05.007 DOI: https://doi.org/10.1016/j.ecolind.2009.05.007
de Olde, E. M., Moller, H., Marchand, F., McDowell, R. W., MacLeod, C. J., Sautier, M., Halloy, S., Barber, A., Benge, J., Bockstaller, C., Bokkers, E. A. M., de Boer, I. J. M., Legun, K. A., Le Quellec, I., Merfield, C., Oudshoorn, F. W., Reid, J., Shader, C., Szymanski, E., SØrensen, C. A. G., Whitehead, J., & Manhire, J. (2016). When experts disagree: the need to rethink indicator selection for assessing sustainability of agriculture. Environment Development and Sustainability, 19, 1327–1342. https://doi.org/10.1007/s10668-016-9803-x DOI: https://doi.org/10.1007/s10668-016-9803-x
de Olde, E. M., Oudshoorn, F. W., Sørensen, C. A. G., Bokkers, E. A. M., & de Boer, I. J. M., (2016). Assessing sustainability at farm-level: Lessons learned from a comparison of tools in practice. Ecological Indicators, 66, 391–404. https://doi.org/10.1016/j.ecolind.2016.01.047 DOI: https://doi.org/10.1016/j.ecolind.2016.01.047
Filzmoser, P., & Gschwandtner, M. (2017). mvoutlier: Multivariate outlier detection based on robust methods. R package version 2.0.6. https://CRAN.R-project.org/package=mvoutlier
Gasparatos, A. (2010). Embedded value systems in sustainability assessment tools and their implications. Journal of Environmental Management, 91(8), 1613–1622. https://doi.org/10.1016/j.jenvman.2010.03.014 DOI: https://doi.org/10.1016/j.jenvman.2010.03.014
Gavrilov, I., & Pusev, R. (2014). Normtest: Tests for normality. R package version 1.1. https://CRAN.R-project.org/package=normtest
Gerdessen, J. C., & Pascucci, S. (2013). Data envelopment analysis of sustainability indicators of european agricultural systems at regional level. Agricultural Systems, 118, 78–90. https://doi.org/10.1016/j.agsy.2013.03.004 DOI: https://doi.org/10.1016/j.agsy.2013.03.004
Gómez-Limón, J. A., & Sanchez-Fernandez, G. (2010). Empirical evaluation of agricultural sustainability using composite indicators. Ecological Economics, 69(5), 1062–1075. https://doi.org/10.1016/j.ecolecon.2009.11.027 DOI: https://doi.org/10.1016/j.ecolecon.2009.11.027
Hunnemeyer, A.-J., de Camino, R., & Muller, S. (1997). Análisis del desarrollo sostenible en Centroamérica Indicadores para la agricultura y los recursos naturales (1ra ed.). Instituto Interamericano para la Cooperación Agrícola/German Technical Cooperation Agency (IICA/GTZ).
Lebacq, T., Baret, P. V., & Stilmant, D. (2013). Sustainability indicators for livestock farming. A review. Agronomy for Sustainable Development, 33, 311–327. https://doi.org/10.1007/s13593-012-0121-x DOI: https://doi.org/10.1007/s13593-012-0121-x
Marchand, F., Debruyne, L., Triste, L., Gerrard, C., Padel, S., & Lauwers, L. (2014). Key characteristics for tool choice in indicator-based sustainability assessment at farm level. Ecology and Society, 19(3), Article 46. https://doi.org/10.5751/ES-06876-190346 DOI: https://doi.org/10.5751/ES-06876-190346
Mendiburu, F. (2017). Agricolae: Statistical procedures for agricultural research. R package version 1.2-6. https://CRAN.Rproject.org/package=agricolae
Parris, T. M., & Kates, R. W. (2003). Characterizing and measuring sustainable development. Annual Review of Environment and Resources, 28, 559–586. https://doi.org/10.1146/annurev.energy.28.050302.105551 DOI: https://doi.org/10.1146/annurev.energy.28.050302.105551
Pereira, E. A., Bonmati, A., Jimenez, L. E., Brunn, S., Stoumann, L. J., Meers, E., & Anton, A. (2022). Selection and application of agri-environmental indicators to assess potential technologies for nutrient recovery in agriculture. Ecological Indicators, 134, Article 108471. https://doi.org/10.1016/j.ecolind.2021.108471 DOI: https://doi.org/10.1016/j.ecolind.2021.108471
Pintér, L., Hardi, P., Martinuzzi, A., & Hall, J. (2012). Bellagio STAMP: Principles for sustainability assessment and measurement. Ecological Indicators, 17, 20–28. https://doi.org/10.1016/j.ecolind.2011.07.001 DOI: https://doi.org/10.1016/j.ecolind.2011.07.001
R Core Team. 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing. http://www.R-project.org/
Reed, M. S., Fraser, E. D. G., & Dougill, A. J. (2006). An adaptive learning process for developing and applying sustainability indicators with local communities. Ecological Economics, 59(4), 406–418. https://doi.org/10.1016/j.ecolecon.2005.11.008 DOI: https://doi.org/10.1016/j.ecolecon.2005.11.008
Ripley, B., Venables, B., Douglas, M. B., Hornik, K., Gebhardt, A., & Firth, D. (2017). MASS: Support functions and datasets. R package version 7.3-47. https://CRAN.R-project.org/package=MASS
Roy, R., & Chan, N. W. (2012). An assessment of agricultural sustainability indicators in Bangladesh: review and synthesis. The Environmentalist, 32, 99–110. https://doi.org/10.1007/s10669-011-9364-3 DOI: https://doi.org/10.1007/s10669-011-9364-3
Schader, C., Grenz, J., Meier, M. S., & Stolze, M. (2014). Scope and precision of sustainability assessment approaches to food systems. Ecology and Society, 19(3), Article 42. https://doi.org/10.5751/ES-06866-190342 DOI: https://doi.org/10.5751/ES-06866-190342
Singh, R. K., Murty, H. R., Gupta, S. K., & Dikshit, A. K. (2012). An overview of sustainability assessment methodologies. Ecological Indicators, 15(1), 281–299. https://doi.org/10.1016/j.ecolind.2011.01.007 DOI: https://doi.org/10.1016/j.ecolind.2011.01.007
Smith, A. J., & Dumanski, J. (1994, september). FESLM: An international framework for evaluating sustainable land management. World Soil Resources Report No 73. FAO.
Van Asselt, E. D., Van Bussel, L. G. J., Van der Voet, H., Van der Heijden, G. W. A. M., Tromp, S. O., Rijgersberg, H., Van Efert, F., Van Wagenberg, C. P. A., & Van der Fels-Klerx, H. J. (2014). A protocol for evaluating the sustainability of agrifood production systems-A case study on potato production in peri-urban agriculture in The Netherlands. Ecological Indicators, 43, 315–321. https://doi.org/10.1016/j.ecolind.2014.02.027 DOI: https://doi.org/10.1016/j.ecolind.2014.02.027
Waas, T., Hugé, J., Block, T., Wright, T., Benitez-Capistros, F., & Verbruggen, A. (2014). Sustainability assessment and indicators: Tools in a decision-making strategy for sustainable development. Sustainability, 6(9), 5512–5534. https://doi.org/10.3390/su6095512 DOI: https://doi.org/10.3390/su6095512
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Oscar Iván Monsalve Camacho, Gerrit Hoogenboom, Andrea Onelia Rodríguez‐Roa, Oscar Gonzalo Castillo‐Romero. (2025). Estimating the Future With the Sustainability Assessment Methodology to Soil‐Associated Agricultural Experiments. Land Degradation & Development, https://doi.org/10.1002/ldr.5551.
2. Oscar Iván Monsalve Camacho, Wilmar Alexander Wilches Ortiz, Ruy Edeymar Vargas Diaz, Eduardo María Espitia Malagón. (2024). Rotation as a strategy to increase the sustainability of potato crop1. Pesquisa Agropecuária Tropical, 54 https://doi.org/10.1590/1983-40632024v5477804.
Dimensions
PlumX
Article abstract page views
Downloads
License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
© Centro Editorial de la Facultad de Ciencias Agrarias, Universidad Nacional de Colombia
Reproduction and quotation of material appearing in the journal is authorized provided the following are explicitly indicated: journal name, author(s) name, year, volume, issue and pages of the source. The ideas and observations recorded by the authors are their own and do not necessarily represent the views and policies of the Universidad Nacional de Colombia. Mention of products or commercial firms in the journal does not constitute a recommendation or endorsement on the part of the Universidad Nacional de Colombia; furthermore, the use of such products should comply with the product label recommendations.
The Creative Commons license used by Agronomia Colombiana journal is: Attribution - NonCommercial - ShareAlike (by-nc-sa)

Agronomia Colombiana by Centro Editorial of Facultad de Ciencias Agrarias, Universidad Nacional de Colombia is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional License.
Creado a partir de la obra en http://revistas.unal.edu.co/index.php/agrocol/.