Published

2022-08-11

Equivalence of grain and forage composition in corn hybrid (Zea mays L.) from genetically modified off-patent (event TC1507) and non-genetically modified conventional corn

Equivalencia de la composición del grano y del forraje en el híbrido de maíz (Zea mays L.) modificado genéticamente off-patent (evento TC1507) y en el maíz convencional no modificado genéticamente

DOI:

https://doi.org/10.15446/agron.colomb.v40n2.98948

Keywords:

transgenic corn, genetically modified off-patent crops, substantial equivalence, food safety, compositional analysis (en)
maíz transgénico, cultivos transgénicos off-patent, equivalencia sustancial, inocuidad de los alimentos, análisis composicional (es)

Downloads

Authors

  • Hernan Darío Suárez Rodríguez Universidad Nacional de Colombia - Bogotá - Grupo de Ingeniería Genética de Plantas https://orcid.org/0000-0002-8460-6995
  • Diego Andrés Benítez Duarte Universidad Nacional de Colombia - Bogotá - Facultad de Ciencias - Departamento de Biología
  • Alejandro Chaparro-Giraldo Universidad Nacional de Colombia - Bogotá - Grupo de Ingeniería Genética de Plantas https://orcid.org/0000-0003-4999-8804
  • Orlando Acosta Universidad Nacional de Colombia - Bogotá - Facultad de Medicina - Departamento de Ciencias Fisiológicas/Instituto de Biotecnología https://orcid.org/0000-0002-1267-098X

Off-patent corn (event TC1507) contains genes coding for CRY1F and PAT proteins, which confer resistance to lepidopteran insects and tolerance to the herbicide glufosinate-ammonium. We employed the substantial equivalence approach to investigate the compositional safety of the corn off-patent event (TC1507). The levels of the nutritional contents of proximate analytes in grain and forage tissues of off-patent genotypes of transgenic maize plants and conventional corn genotypes were compared. The levels of the analytes evaluated in the transgenic plants were found to be within the ranges published in the literature for non-transgenic corn and were statistically indistinguishable from the conventional corn from which they are derived (elite corn lines), indicating substantial equivalence between the off-patent (event TC1507) and its conventional counterpart. These results constitute key evidence of the safety evaluation of the world’s first transgenic corn developed from technologies that are in the public domain.

El maíz off-patent (evento TC1507) contiene los genes que codifican para las proteínas CRY1F y PAT que le confieren resistencia a insectos lepidópteros y tolerancia al herbicida glufosinato de amonio. Empleamos el enfoque de equivalencia sustancial para investigar la seguridad composicional del maíz off-patent (evento TC1507). Se realizaron comparaciones de los contenidos nutricionales de los analitos proximales en los tejidos de grano y forraje de los genotipos off-patent de plantas de maíz transgénicas y de los genotipos de maíz convencional. Los niveles de los analitos evaluados en las plantas transgénicas se encontraron dentro de los rangos publicados en la literatura para el maíz no transgénico y fueron estadísticamente indistinguibles del maíz convencional del cual derivan (líneas elite de maíz), lo que indica la equivalencia sustancial entre el off-patent (evento TC1507) y su homólogo convencional. Estos resultados constituyen una evidencia clave de la evaluación de seguridad del primer maíz transgénico en el mundo desarrollado con base en tecnologías que están en dominio público.

References

Acosta, O., & Chaparro, A. (2008). Genetically modified food crops and public health. Acta Biológica Colombiana, 13(3), 3–26.

Agriculture and Food Systems Institute – AFSI. (2020, December 30). Crop Composition Database Version 9.0. www.cropcomposition.org

Anderson, J. A., Hong, B., Moellring, E., TeRonde, S., Walker, C., Wang, Y., & Maxwell, C. (2019). Composition of forage and grain from genetically modified DP202216 maize is equivalent to non-modified conventional maize (Zea mays L.). GM Crops & Food, 10(2), 77–89. https://doi.org/10.1080/21645698.2019.1609849

Basso, M. F., Arraes, F. B. M., Grossi-de-Sa, M., Moreira, V. J. V., Alves-Ferreira, M., & Grossi-de-Sa, M. F. (2020). Insights into genetic and molecular elements for transgenic crop development. Frontiers in Plant Science, 11, Article 509. https://doi.org/10.3389/fpls.2020.00509

Bell, E., Nakai, S., & Burzio, L. A. (2018). Stacked genetically engineered trait products produced by conventional breeding reflect the compositional profiles of their component single trait products. Journal of Agricultural and Food Chemistry, 66, 7794–7804. https://doi.org/10.1021/acs.jafc.8b02317

Bevan, M. W., Flavell, R. B., & Chilton, M. D. (1983). A chimaeric antibiotic resistance gene as a selectable marker for plant cell transformation. Nature, 304, 184–187. https://doi.org/10.1038/304184a0

Brookes, G., & Barfoot, P. (2018). Farm income and production impacts of using GM crop technology 1996–2016. GM Crops & Food, 9(2), 59–89. https://doi.org/10.108/21645698.2018.1464866

Brookes, G., & Barfoot, P. (2020). GM Crops: Global socio-economic and environmental impacts 1996-2018. PG Economics Ltd. https://pgeconomics.co.uk/pdf/globalimpactfinalreportJuly2020.pdf

Brookes, G. (2020). Genetically modified (GM) crop use in Colombia: farm level economic and environmental contributions. GM Crops & Food, 11(3), 140–153. https://doi.org/10.1080/21645698.2020.1715156

Carpenter, J. E. (2010). Peer-reviewed surveys indicate positive impact of commercialized GM crops. Nature Biotechnology, 28(4), 319–321. https://doi.org/10.1038/nbt0410-319

Cerdeira, A. L., Gazziero, D. L. P., Duke, S. O., & Matallo, M. B. (2011). Agricultural impacts of glyphosate-resistant soybean cultivation in South America. Journal of Agricultural and Food Chemistry, 59(11), 5799–5807. https://doi.org/10.1021/jf102652y

Cheng, K. C., Beaulieu, J., Iquira, E., Belzile, F. J., Fortin, M. G., & Strömvik, M. V. (2008). Effect of transgenes on global gene expression in soybean is within the natural range of variation of conventional cultivars. Journal of Agricultural and Food Chemistry, 56(9), 3057–3067. https://doi.org/10.1021/jf073505i

Codex Alimentarius Commission. (2009). Foods derived from modern biotechnology (2nd ed.). Food and Agriculture Organization of the United Nations, World Health Organization. http://www.fao.org/3/a-a1554e.pdf

Cong, B., Maxwell, C., Luck, S., Vespestad, D., Richard, K., Mickelson, J., & Zhong, C. (2015). Genotypic and environmental impact on natural variation of nutrient composition in 50 non genetically modified commercial maize hybrids in North America. Journal of Agricultural and Food Chemistry, 63(22), 5321–5334. https://doi.org/10.1021/acs.jafc.5b01764

Duke, S. O., & Cerdeira, A. L. (2010). Transgenic crops for herbicide resistance. In C. Kole, C. H. Michler, A. G. Abbott, & T. C. Hall (Eds.), Transgenic crop plants. Springer. https://doi.org/10.1007/978-3-642-04812-8_3

Fraley, R. (2015). GE Crops, Impact on Production Agriculture. Presentation to the National Academy of Sciences. https://vimeo.com/album/3192610/video/115717420

Food Safety Commission of Japan-FSCJ. (2016). Soybean lines generated through cross-breeding of MON 87705, MON 87708, and MON 89788. Food Safety, 4(4), 169−172. https://doi.org/10.14252/foodsafetyfscj.2016025s

Gómez, J., Guevara, J., Cuartas, P., Espinel, C., & Villamizar, L. (2013). Microencapsulated Spodoptera frugiperda nucleopolyhedrovirus: insecticidal activity and effect on arthropod populations in maize. Biocontrol Science and Technology, 23(7), 829–846. https://doi.org/10.1080/09583157.2013.802288

Goodwin, L., Hunst, P., Burzio, L., Rowe, L., Money, S., & Chakravarthy, S. (2021). Stacked trait products are as safe as nongenetically modified (GM) products developed by conventional breeding practices. Journal of Regulatory Science, 9(1), 22–25. https://doi.org/10.21423/jrs-v09I1goodwin

Harrigan, G. G., Glenn, K. C., & Ridley, W. P. (2010). Assessing the natural variability in crop composition. Regulatory Toxicology and Pharmacology, 58(3, Supplement), S13–S20. https://doi.org/10.1016/j.yrtph.2010.08.023

Harrigan, G. G., Lundry, D., Drury, S., Berman, K., Riordan, S. G., Nemeth, M. A., Ridley, W. P., & Glenn, K. C. (2010). Natural variation in crop composition and the impact of transgenesis. Nature Biotechnology, 28(5), 402–404. https://doi.org/10.1038/nbt0510-402

Herman, R. A., Phillips, A. M., Collins, R. A., Tagliani, L. A., Claussen, F. A., Graham, C. D., Bickers, B. L., Harris, T. A., & Prochaska, L. M. (2004). Compositional equivalency of Cry1F corn event TC6275 and conventional corn (Zea mays L.). Journal of Agricultural and Food Chemistry, 52(9), 2726–2734. https://doi.org/10.1021/jf049969n

Herman, R. A., & Price, W. D. (2013). Unintended compositional changes in genetically modified (GM) crops: 20 years of research. Journal of Agricultural and Food Chemistry, 61(48), 11695–11701. https://doi.org/10.1021/jf400135r

Herrera-Estrella, L., Depicker, A., Van Montagu, M., & Schell, J. (1983). Expression of chimeric genes transferred into plant cells using a Ti-plasmid-derived vector. Nature, 303, 209–213. https://doi.org/10.1038/303209a0

Instituto Colombiano Agropecuario–ICA. (2011). Resolución 003662. Por la cual se autoriza el empleo del maíz SmartStax TM (MON-89Ø34-3 x DAS- Ø15Ø7-1 x MON- 88Ø17-3 x DAS-59122-7), para consumo directo y/o como materia prima para la producción de alimentos para animales domésticos. https://www.ica.gov.co/getattachment/3bcf82f7-262e-4760-9218-71a08261e92b/2011R3662.aspx

Instituto Colombiano Agropecuario–ICA. (2013). Resolución 003050. Por la cual se autoriza el uso del maíz MON89034 x 1507 x NK603 (MON-89Ø34-3 x DAS- Ø15Ø7-1 x MONØØ6Ø3-6) para consumo directo y/o como materia prima para la producción de alimentos para animales domésticos. https://www.ica.gov.co/getattachment/3b3a12fe-8289-4c02-88e4-a8998cb7bec4/2013R3050.aspx

Instituto Nacional de Vigilancia de Medicamentos y Alimentos–INVIMA. (2018). Resolución No. 2018027808. Por la cual se autoriza el uso de Maíz TC1507 x MIR604 x NK603 (DAS-01507-1 x SYN-IR604-5 x MON-00603-6) como materia prima para la producción de alimentos para consumo humano. http://www.fao.org/fileadmin/user_upload/gmfp/docs/Resoluci%C3%B3n%202018027808%20de%202018.pdf

ISAAA. (2018). Pocket K No. 56: Substantial equivalence of GM and Non-GM crops. International Service for the Acquisition of Agri-biotech Applications (ISAAA). http://www.isaaa.org/resources/publications/pocketk/56/default.asp

ISAAA. (2019). Global status of commercialized biotech/GM crops in 2019: Biotech crops drive socio-economic development and sustainable environment in the new frontier. ISAAA (Brief No. 55). International Service for the Acquisition of Agri-biotech Applications (ISAAA). https://www.isaaa.org/resources/publications/briefs/55/

Jaramillo-Barrios, C. I., Quijano, E. B., Andrade, B. M., Jaramillo-Barrios, C. I., Quijano, E. B., & Andrade, B. M. (2019). Populations of Spodoptera frugiperda (Lepidoptera: Noctuidae) cause significant damage to genetically modified corn crops. Revista Facultad Nacional de Agronomía Medellín, 72(3), 8953–8962. https://doi.org/10.15446/rfnam.v72n3.75730

Jiménez-Barreto, J., Chaparro-Giraldo, A., Mora-Oberlaender, J., & Vargas-Sánchez, J. E. (2016). Molecular characterization and freedom to operate analysis of maize hybrids from genetically modified and Colombian varieties. Agronomía Colombiana, 34(3), 309–316. https://doi.org/10.15446/agron.colomb.v34n3.60350

Kok, E. J., Pedersen, J., Onori, R., Sowa, S., Schauzu, M., De Schrijver, A., & Teeri, T. H. (2014). Plants with stacked genetically modified events: To assess or not to assess? Trends in Biotechnology, 32(2), 70–73. https://doi.org/10.1016/j.tibtech.2013.12.001

Lundry, D. R., Burns, J. A., Nemeth, M. A., & Riordan, S. G. (2013). Composition of grain and forage from insect-protected and herbicide-tolerant corn, MON 89034 × TC1507 × MON 88017 × DAS-59122-7 (SmartStax), is equivalent to that of conventional corn (Zea mays L.). Journal of Agricultural and Food Chemistry, 61(8), 1991–1998. https://doi.org/10.1021/jf304005n

McDougall, P. (2011). The cost and time involved in the discovery, development and authorisation of a new plant biotechnology derived trait. Consultancy Study for Crop Life International.

Ministerio de Salud y Protección Social–MSPS. (2012a). Resolución 1486. Por la cual se autoriza el uso de granos de maíz, provenientes de híbridos de maíz genéticamente modificado, con la tecnología HX1 x HRW x NK603 (DAS-15Ø7-1 x DAS-59122-7 x MON-ØØ6Ø3-6) como alimento o materia prima para la producción de alimentos de consumo humano. http://www.fao.org/fileadmin/user_upload/gmfp/docs/Resolucion%201486%20de%202012.pdf

Ministerio de Salud y Protección Social–MSPS. (2012b). Resolución 1487. Por la cual se autoriza el uso de granos de maíz, provenientes de híbridos de maíz genéticamente modificado, con la tecnología HX1 x MON810 (DAS-Ø15Ø7-1 x MONØØ81Ø- 6) como alimento o materia prima para la producción de alimentos para consumo humano. http://www.fao.org/fileadmin/user_upload/gmfp/docs/Resolucion%201487%20de%202012.pdf

Ministerio de Salud y Protección Social–MSPS. (2012c). Resolución 1488. Por la cual se autoriza el uso de granos de maíz, provenientes de híbridos de maíz genéticamente modificado, con la tecnología HX1 x MON810 x NK603 (DAS-Ø15Ø7-1 x MON-ØØ81Ø-6 x MON-ØØ6Ø3-6) como alimento o materia prima para la producción de alimentos para consumo humano. http://www.fao.org/fileadmin/user_upload/gmfp/docs/Resolucion%201488%20de%202012.pdf

Ministerio de Salud y Protección Social–MSPS. (2014). Resolución 1861. Por la cual se autoriza el uso de Maíz MON89034 x TC1507 x NK603 (MON-89034-3 x DAS-01507-1 x MON-00603-6) como alimento o materia prima para la elaboración de alimentos de consumo humano. http://www.fao.org/fileadmin/user_upload/gmfp/docs/Resolucion%201861%20de%202014.pdf

OECD. (2002). Consensus document on the biology of Zea mays subsp. mays (Maize). Series on Harmonisation of Regulatory Oversight in Biotechnology, Organization for Economic Cooperation and Development. https://www.oecd.org/env/ehs/biotrack/46815758.pdf

Parrott, W., Chassy, B., Ligon, J., Meyer, L., Petrick, J., Zhou, J., Herman, R., Delaney, B., & Levine, M. (2010). Application of food and feed safety assessment principles to evaluate transgenic approaches to gene modulation in crops. Food and Chemical Toxicology, 48(7), 1773–1790. https://doi.org/10.1016/j.fct.2010.04.017

Pilacinski, W., Crawford, A., Downey, R., Harvey, B., Huber, S., Hunst, P., Lahman, L. K., MacIntosh, S., Pohl, M., Rickard, C., Tagliani, L., & Weber, N. (2011). Plants with genetically modified events combined by conventional breeding: An assessment of the need for additional regulatory data. Food and Chemical Toxicology, 49(1), 1–7. https://doi.org/10.1016/j.fct.2010.11.004

Privalle, L. S., Gillikin, N., & Wandelt, C. (2013). Bringing a transgenic crop to market: Where compositional analysis fits. Journal of Agricultural and Food Chemistry, 61(35), 8260–8266. https://doi.org/10.1021/jf400185q

R Core Team. (2021). The R project for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org

Ridley, W. P., Shillito, R. D., Coats, I., Steiner, H.-Y., Shawgo, M., Phillips, A., Dussold, P., & Kurtyka, L. (2004). Development of the international life sciences institute crop composition database. Journal of Food Composition and Analysis, 17(3-4), 423–438. https://doi.org/10.1016/j.jfca.2004.03.006

Rojas, A. C. A., Palacio, J. L., Chaparro-Giraldo, A., & López-Pazos, S. A. (2017). Patents and genetically modified soybean for glyphosate resistance. World Patent Information, 48, 47–51. https://doi.org/10.1016/j.wpi.2017.01.002

Rüdelsheim, P., Dumont, P., Freyssinet, G., Pertry, I., & Heijde, M. (2018). Off-Patent transgenic events: Challenges and opportunities for new actors and markets in agriculture. Frontiers in Bioengineering and Biotechnology, 6, Article 71. https://doi.org/10.3389/fbioe.2018.00071

Steiner, H.-Y., Halpin, C., Jez, J. M., Kough, J., Parrott, W., Underhill, L., Weber, N., & Hannah, L. C. (2013). Editor’s choice: evaluating the potential for adverse interactions within genetically engineered breeding stacks. Plant Physiology, 161(4), 1587–1594. https://doi.org/10.1104/pp.112.209817

Taylor, M., Bickel, A., Mannion, R., Bell, E., & Harrigan, G. G. (2017). Dicamba-tolerant soybeans (Glycine max L.) MON 87708 and MON 87708 × MON 89788 are compositionally equivalent to conventional soybean. Journal of Agricultural and Food Chemistry, 65(36), 8037–8045. https://doi.org/10.1021/acs.jafc.7b03844

Watson, S. A. (1982). Corn: amazing maize. General properties. In I. A. Wolff (Ed.), CRC handbook of processing and utilization in agriculture (pp. 3–29). CRC Press.

How to Cite

APA

Suárez Rodríguez, H. D., Benítez Duarte, D. A., Chaparro-Giraldo, A. . and Acosta , O. . (2022). Equivalence of grain and forage composition in corn hybrid (Zea mays L.) from genetically modified off-patent (event TC1507) and non-genetically modified conventional corn. Agronomía Colombiana, 40(2), 155–164. https://doi.org/10.15446/agron.colomb.v40n2.98948

ACM

[1]
Suárez Rodríguez, H.D., Benítez Duarte, D.A., Chaparro-Giraldo, A. and Acosta , O. 2022. Equivalence of grain and forage composition in corn hybrid (Zea mays L.) from genetically modified off-patent (event TC1507) and non-genetically modified conventional corn. Agronomía Colombiana. 40, 2 (May 2022), 155–164. DOI:https://doi.org/10.15446/agron.colomb.v40n2.98948.

ACS

(1)
Suárez Rodríguez, H. D.; Benítez Duarte, D. A.; Chaparro-Giraldo, A. .; Acosta , O. . Equivalence of grain and forage composition in corn hybrid (Zea mays L.) from genetically modified off-patent (event TC1507) and non-genetically modified conventional corn. Agron. Colomb. 2022, 40, 155-164.

ABNT

SUÁREZ RODRÍGUEZ, H. D.; BENÍTEZ DUARTE, D. A.; CHAPARRO-GIRALDO, A. .; ACOSTA , O. . Equivalence of grain and forage composition in corn hybrid (Zea mays L.) from genetically modified off-patent (event TC1507) and non-genetically modified conventional corn. Agronomía Colombiana, [S. l.], v. 40, n. 2, p. 155–164, 2022. DOI: 10.15446/agron.colomb.v40n2.98948. Disponível em: https://revistas.unal.edu.co/index.php/agrocol/article/view/98948. Acesso em: 19 apr. 2024.

Chicago

Suárez Rodríguez, Hernan Darío, Diego Andrés Benítez Duarte, Alejandro Chaparro-Giraldo, and Orlando Acosta. 2022. “Equivalence of grain and forage composition in corn hybrid (Zea mays L.) from genetically modified off-patent (event TC1507) and non-genetically modified conventional corn”. Agronomía Colombiana 40 (2):155-64. https://doi.org/10.15446/agron.colomb.v40n2.98948.

Harvard

Suárez Rodríguez, H. D., Benítez Duarte, D. A., Chaparro-Giraldo, A. . and Acosta , O. . (2022) “Equivalence of grain and forage composition in corn hybrid (Zea mays L.) from genetically modified off-patent (event TC1507) and non-genetically modified conventional corn”, Agronomía Colombiana, 40(2), pp. 155–164. doi: 10.15446/agron.colomb.v40n2.98948.

IEEE

[1]
H. D. Suárez Rodríguez, D. A. Benítez Duarte, A. . Chaparro-Giraldo, and O. . Acosta, “Equivalence of grain and forage composition in corn hybrid (Zea mays L.) from genetically modified off-patent (event TC1507) and non-genetically modified conventional corn”, Agron. Colomb., vol. 40, no. 2, pp. 155–164, May 2022.

MLA

Suárez Rodríguez, H. D., D. A. Benítez Duarte, A. . Chaparro-Giraldo, and O. . Acosta. “Equivalence of grain and forage composition in corn hybrid (Zea mays L.) from genetically modified off-patent (event TC1507) and non-genetically modified conventional corn”. Agronomía Colombiana, vol. 40, no. 2, May 2022, pp. 155-64, doi:10.15446/agron.colomb.v40n2.98948.

Turabian

Suárez Rodríguez, Hernan Darío, Diego Andrés Benítez Duarte, Alejandro Chaparro-Giraldo, and Orlando Acosta. “Equivalence of grain and forage composition in corn hybrid (Zea mays L.) from genetically modified off-patent (event TC1507) and non-genetically modified conventional corn”. Agronomía Colombiana 40, no. 2 (May 1, 2022): 155–164. Accessed April 19, 2024. https://revistas.unal.edu.co/index.php/agrocol/article/view/98948.

Vancouver

1.
Suárez Rodríguez HD, Benítez Duarte DA, Chaparro-Giraldo A, Acosta O. Equivalence of grain and forage composition in corn hybrid (Zea mays L.) from genetically modified off-patent (event TC1507) and non-genetically modified conventional corn. Agron. Colomb. [Internet]. 2022 May 1 [cited 2024 Apr. 19];40(2):155-64. Available from: https://revistas.unal.edu.co/index.php/agrocol/article/view/98948

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

390

Downloads

Download data is not yet available.